ultralytics 8.3.88__tar.gz → 8.3.89__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (255) hide show
  1. {ultralytics-8.3.88/ultralytics.egg-info → ultralytics-8.3.89}/PKG-INFO +2 -2
  2. {ultralytics-8.3.88 → ultralytics-8.3.89}/pyproject.toml +1 -1
  3. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/__init__.py +1 -1
  4. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/base.py +7 -9
  5. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/converter.py +30 -29
  6. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/utils.py +20 -28
  7. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/model.py +2 -2
  8. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/tuner.py +11 -21
  9. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/hub/__init__.py +13 -17
  10. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/fastsam/model.py +4 -7
  11. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/nas/model.py +8 -14
  12. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/nas/predict.py +7 -9
  13. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/nas/val.py +7 -9
  14. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/rtdetr/predict.py +6 -9
  15. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/rtdetr/train.py +5 -8
  16. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/rtdetr/val.py +5 -8
  17. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/classify/predict.py +6 -9
  18. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/classify/train.py +5 -8
  19. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/classify/val.py +5 -8
  20. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/detect/predict.py +6 -9
  21. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/detect/train.py +5 -8
  22. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/detect/val.py +5 -8
  23. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/obb/predict.py +6 -9
  24. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/obb/train.py +5 -8
  25. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/obb/val.py +10 -15
  26. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/pose/predict.py +6 -9
  27. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/pose/train.py +5 -8
  28. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/pose/val.py +12 -17
  29. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/segment/predict.py +6 -9
  30. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/segment/train.py +5 -8
  31. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/segment/val.py +10 -15
  32. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/world/train.py +5 -8
  33. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/world/train_world.py +21 -25
  34. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/modules/__init__.py +9 -12
  35. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/tasks.py +7 -12
  36. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/__init__.py +5 -8
  37. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/checks.py +25 -35
  38. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/downloads.py +25 -48
  39. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/instance.py +6 -8
  40. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/ops.py +5 -9
  41. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/plotting.py +8 -14
  42. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/torch_utils.py +23 -33
  43. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/tuner.py +5 -9
  44. {ultralytics-8.3.88 → ultralytics-8.3.89/ultralytics.egg-info}/PKG-INFO +2 -2
  45. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics.egg-info/requires.txt +1 -1
  46. {ultralytics-8.3.88 → ultralytics-8.3.89}/LICENSE +0 -0
  47. {ultralytics-8.3.88 → ultralytics-8.3.89}/README.md +0 -0
  48. {ultralytics-8.3.88 → ultralytics-8.3.89}/setup.cfg +0 -0
  49. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/__init__.py +0 -0
  50. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/conftest.py +0 -0
  51. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/test_cli.py +0 -0
  52. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/test_cuda.py +0 -0
  53. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/test_engine.py +0 -0
  54. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/test_exports.py +0 -0
  55. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/test_integrations.py +0 -0
  56. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/test_python.py +0 -0
  57. {ultralytics-8.3.88 → ultralytics-8.3.89}/tests/test_solutions.py +0 -0
  58. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/assets/bus.jpg +0 -0
  59. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/assets/zidane.jpg +0 -0
  60. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/__init__.py +0 -0
  61. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  62. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  63. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  64. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  65. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  66. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  67. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  68. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  69. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  70. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  71. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  72. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  73. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  74. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/coco.yaml +0 -0
  75. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  76. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  77. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  78. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  79. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  80. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  81. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  82. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  83. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  84. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  85. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  86. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  87. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  88. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/signature.yaml +0 -0
  89. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  90. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/datasets/xView.yaml +0 -0
  91. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/default.yaml +0 -0
  92. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  93. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  94. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  95. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  96. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  97. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  98. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  99. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  100. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  101. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  102. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  103. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  104. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  105. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  106. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  107. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  108. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  109. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  110. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  111. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  112. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  113. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  114. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  115. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  116. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  117. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  118. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  119. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  120. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  121. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  122. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  123. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  124. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  125. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  126. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  127. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  128. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  129. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  130. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  131. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  132. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  133. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  134. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  135. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  136. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  137. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  138. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  139. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  140. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  141. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  142. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  143. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/solutions/default.yaml +0 -0
  144. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  145. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  146. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/__init__.py +0 -0
  147. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/annotator.py +0 -0
  148. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/augment.py +0 -0
  149. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/build.py +0 -0
  150. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/dataset.py +0 -0
  151. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/loaders.py +0 -0
  152. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/data/split_dota.py +0 -0
  153. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/__init__.py +0 -0
  154. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/exporter.py +0 -0
  155. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/predictor.py +0 -0
  156. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/results.py +0 -0
  157. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/trainer.py +0 -0
  158. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/engine/validator.py +0 -0
  159. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/hub/auth.py +0 -0
  160. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/hub/google/__init__.py +0 -0
  161. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/hub/session.py +0 -0
  162. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/hub/utils.py +0 -0
  163. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/__init__.py +0 -0
  164. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/fastsam/__init__.py +0 -0
  165. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/fastsam/predict.py +0 -0
  166. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/fastsam/utils.py +0 -0
  167. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/fastsam/val.py +0 -0
  168. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/nas/__init__.py +0 -0
  169. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/rtdetr/__init__.py +0 -0
  170. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/rtdetr/model.py +0 -0
  171. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/__init__.py +0 -0
  172. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/amg.py +0 -0
  173. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/build.py +0 -0
  174. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/model.py +0 -0
  175. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/__init__.py +0 -0
  176. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/blocks.py +0 -0
  177. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/decoders.py +0 -0
  178. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/encoders.py +0 -0
  179. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  180. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/sam.py +0 -0
  181. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  182. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/transformer.py +0 -0
  183. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/modules/utils.py +0 -0
  184. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/sam/predict.py +0 -0
  185. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/utils/__init__.py +0 -0
  186. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/utils/loss.py +0 -0
  187. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/utils/ops.py +0 -0
  188. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/__init__.py +0 -0
  189. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/classify/__init__.py +0 -0
  190. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/detect/__init__.py +0 -0
  191. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/model.py +0 -0
  192. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/obb/__init__.py +0 -0
  193. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/pose/__init__.py +0 -0
  194. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/segment/__init__.py +0 -0
  195. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/models/yolo/world/__init__.py +0 -0
  196. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/__init__.py +0 -0
  197. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/autobackend.py +0 -0
  198. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/modules/activation.py +0 -0
  199. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/modules/block.py +0 -0
  200. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/modules/conv.py +0 -0
  201. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/modules/head.py +0 -0
  202. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/modules/transformer.py +0 -0
  203. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/nn/modules/utils.py +0 -0
  204. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/__init__.py +0 -0
  205. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/ai_gym.py +0 -0
  206. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/analytics.py +0 -0
  207. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/distance_calculation.py +0 -0
  208. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/heatmap.py +0 -0
  209. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/instance_segmentation.py +0 -0
  210. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/object_blurrer.py +0 -0
  211. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/object_counter.py +0 -0
  212. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/object_cropper.py +0 -0
  213. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/parking_management.py +0 -0
  214. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/queue_management.py +0 -0
  215. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/region_counter.py +0 -0
  216. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/security_alarm.py +0 -0
  217. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/solutions.py +0 -0
  218. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/speed_estimation.py +0 -0
  219. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/streamlit_inference.py +0 -0
  220. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/trackzone.py +0 -0
  221. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/solutions/vision_eye.py +0 -0
  222. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/__init__.py +0 -0
  223. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/basetrack.py +0 -0
  224. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/bot_sort.py +0 -0
  225. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/byte_tracker.py +0 -0
  226. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/track.py +0 -0
  227. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/utils/__init__.py +0 -0
  228. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/utils/gmc.py +0 -0
  229. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  230. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/trackers/utils/matching.py +0 -0
  231. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/autobatch.py +0 -0
  232. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/benchmarks.py +0 -0
  233. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/__init__.py +0 -0
  234. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/base.py +0 -0
  235. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/clearml.py +0 -0
  236. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/comet.py +0 -0
  237. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/dvc.py +0 -0
  238. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/hub.py +0 -0
  239. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/mlflow.py +0 -0
  240. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/neptune.py +0 -0
  241. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/raytune.py +0 -0
  242. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  243. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/callbacks/wb.py +0 -0
  244. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/dist.py +0 -0
  245. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/errors.py +0 -0
  246. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/files.py +0 -0
  247. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/loss.py +0 -0
  248. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/metrics.py +0 -0
  249. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/patches.py +0 -0
  250. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/tal.py +0 -0
  251. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics/utils/triton.py +0 -0
  252. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics.egg-info/SOURCES.txt +0 -0
  253. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics.egg-info/dependency_links.txt +0 -0
  254. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics.egg-info/entry_points.txt +0 -0
  255. {ultralytics-8.3.88 → ultralytics-8.3.89}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ultralytics
3
- Version: 8.3.88
3
+ Version: 8.3.89
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -65,7 +65,7 @@ Requires-Dist: coremltools>=7.0; (platform_system != "Windows" and python_versio
65
65
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
66
66
  Requires-Dist: openvino!=2025.0.0,>=2024.0.0; extra == "export"
67
67
  Requires-Dist: tensorflow>=2.0.0; extra == "export"
68
- Requires-Dist: tensorflowjs>=3.9.0; extra == "export"
68
+ Requires-Dist: tensorflowjs>=4.0.0; extra == "export"
69
69
  Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
70
70
  Requires-Dist: keras; extra == "export"
71
71
  Requires-Dist: flatbuffers<100,>=23.5.26; platform_machine == "aarch64" and extra == "export"
@@ -99,7 +99,7 @@ export = [
99
99
  "scikit-learn>=1.3.2; platform_system != 'Windows' and python_version <= '3.11'", # CoreML k-means quantization
100
100
  "openvino>=2024.0.0,!=2025.0.0", # OpenVINO export
101
101
  "tensorflow>=2.0.0", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
102
- "tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
102
+ "tensorflowjs>=4.0.0", # TF.js export, automatically installs tensorflow
103
103
  "tensorstore>=0.1.63; platform_machine == 'aarch64' and python_version >= '3.9'", # for TF Raspberry Pi exports
104
104
  "keras", # not installed automatically by tensorflow>=2.16
105
105
  "flatbuffers>=23.5.26,<100; platform_machine == 'aarch64'", # update old 'flatbuffers' included inside tensorflow package
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.88"
3
+ __version__ = "8.3.89"
4
4
 
5
5
  import os
6
6
 
@@ -312,15 +312,13 @@ class BaseDataset(Dataset):
312
312
  """
313
313
  Users can customize augmentations here.
314
314
 
315
- Example:
316
- ```python
317
- if self.augment:
318
- # Training transforms
319
- return Compose([])
320
- else:
321
- # Val transforms
322
- return Compose([])
323
- ```
315
+ Examples:
316
+ >>> if self.augment:
317
+ ... # Training transforms
318
+ ... return Compose([])
319
+ >>> else:
320
+ ... # Val transforms
321
+ ... return Compose([])
324
322
  """
325
323
  raise NotImplementedError
326
324
 
@@ -124,15 +124,16 @@ def coco80_to_coco91_class():
124
124
  Converts 80-index (val2014) to 91-index (paper).
125
125
  For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.
126
126
 
127
- Example:
128
- ```python
129
- import numpy as np
130
-
131
- a = np.loadtxt("data/coco.names", dtype="str", delimiter="\n")
132
- b = np.loadtxt("data/coco_paper.names", dtype="str", delimiter="\n")
133
- x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
134
- x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
135
- ```
127
+ Examples:
128
+ >>> import numpy as np
129
+ >>> a = np.loadtxt("data/coco.names", dtype="str", delimiter="\n")
130
+ >>> b = np.loadtxt("data/coco_paper.names", dtype="str", delimiter="\n")
131
+
132
+ Convert the darknet to COCO format
133
+ >>> x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]
134
+
135
+ Convert the COCO to darknet format
136
+ >>> x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]
136
137
  """
137
138
  return [
138
139
  1,
@@ -237,15 +238,20 @@ def convert_coco(
237
238
  cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.
238
239
  lvis (bool, optional): Whether to convert data in lvis dataset way.
239
240
 
240
- Example:
241
- ```python
242
- from ultralytics.data.converter import convert_coco
241
+ Examples:
242
+ >>> from ultralytics.data.converter import convert_coco
243
+
244
+ Convert COCO annotations to YOLO format
245
+ >>> convert_coco("../datasets/coco/annotations/", use_segments=True, use_keypoints=False, cls91to80=False)
243
246
 
244
- convert_coco("../datasets/coco/annotations/", use_segments=True, use_keypoints=False, cls91to80=False)
245
- convert_coco(
246
- "../datasets/lvis/annotations/", use_segments=True, use_keypoints=False, cls91to80=False, lvis=True
247
- )
248
- ```
247
+ Convert LVIS annotations to YOLO format
248
+ >>> convert_coco(
249
+ >>> "../datasets/lvis/annotations/",
250
+ ... use_segments=True,
251
+ ... use_keypoints=False,
252
+ ... cls91to80=False,
253
+ ... lvis=True
254
+ ... )
249
255
 
250
256
  Output:
251
257
  Generates output files in the specified output directory.
@@ -353,13 +359,11 @@ def convert_segment_masks_to_yolo_seg(masks_dir, output_dir, classes):
353
359
  output_dir (str): The path to the directory where the converted YOLO segmentation masks will be stored.
354
360
  classes (int): Total classes in the dataset i.e. for COCO classes=80
355
361
 
356
- Example:
357
- ```python
358
- from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
362
+ Examples:
363
+ >>> from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
359
364
 
360
- # The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
361
- convert_segment_masks_to_yolo_seg("path/to/masks_directory", "path/to/output/directory", classes=80)
362
- ```
365
+ The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
366
+ >>> convert_segment_masks_to_yolo_seg("path/to/masks_directory", "path/to/output/directory", classes=80)
363
367
 
364
368
  Notes:
365
369
  The expected directory structure for the masks is:
@@ -429,12 +433,9 @@ def convert_dota_to_yolo_obb(dota_root_path: str):
429
433
  Args:
430
434
  dota_root_path (str): The root directory path of the DOTA dataset.
431
435
 
432
- Example:
433
- ```python
434
- from ultralytics.data.converter import convert_dota_to_yolo_obb
435
-
436
- convert_dota_to_yolo_obb("path/to/DOTA")
437
- ```
436
+ Examples:
437
+ >>> from ultralytics.data.converter import convert_dota_to_yolo_obb
438
+ >>> convert_dota_to_yolo_obb("path/to/DOTA")
438
439
 
439
440
  Notes:
440
441
  The directory structure assumed for the DOTA dataset:
@@ -478,21 +478,19 @@ class HUBDatasetStats:
478
478
  task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Default is 'detect'.
479
479
  autodownload (bool): Attempt to download dataset if not found locally. Default is False.
480
480
 
481
- Example:
481
+ Note:
482
482
  Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets
483
- i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
484
- ```python
485
- from ultralytics.data.utils import HUBDatasetStats
486
-
487
- stats = HUBDatasetStats("path/to/coco8.zip", task="detect") # detect dataset
488
- stats = HUBDatasetStats("path/to/coco8-seg.zip", task="segment") # segment dataset
489
- stats = HUBDatasetStats("path/to/coco8-pose.zip", task="pose") # pose dataset
490
- stats = HUBDatasetStats("path/to/dota8.zip", task="obb") # OBB dataset
491
- stats = HUBDatasetStats("path/to/imagenet10.zip", task="classify") # classification dataset
492
-
493
- stats.get_json(save=True)
494
- stats.process_images()
495
- ```
483
+ i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
484
+
485
+ Examples:
486
+ >>> from ultralytics.data.utils import HUBDatasetStats
487
+ >>> stats = HUBDatasetStats("path/to/coco8.zip", task="detect") # detect dataset
488
+ >>> stats = HUBDatasetStats("path/to/coco8-seg.zip", task="segment") # segment dataset
489
+ >>> stats = HUBDatasetStats("path/to/coco8-pose.zip", task="pose") # pose dataset
490
+ >>> stats = HUBDatasetStats("path/to/dota8.zip", task="obb") # OBB dataset
491
+ >>> stats = HUBDatasetStats("path/to/imagenet10.zip", task="classify") # classification dataset
492
+ >>> stats.get_json(save=True)
493
+ >>> stats.process_images()
496
494
  """
497
495
 
498
496
  def __init__(self, path="coco8.yaml", task="detect", autodownload=False):
@@ -639,14 +637,11 @@ def compress_one_image(f, f_new=None, max_dim=1920, quality=50):
639
637
  max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels.
640
638
  quality (int, optional): The image compression quality as a percentage. Default is 50%.
641
639
 
642
- Example:
643
- ```python
644
- from pathlib import Path
645
- from ultralytics.data.utils import compress_one_image
646
-
647
- for f in Path("path/to/dataset").rglob("*.jpg"):
648
- compress_one_image(f)
649
- ```
640
+ Examples:
641
+ >>> from pathlib import Path
642
+ >>> from ultralytics.data.utils import compress_one_image
643
+ >>> for f in Path("path/to/dataset").rglob("*.jpg"):
644
+ >>> compress_one_image(f)
650
645
  """
651
646
  try: # use PIL
652
647
  im = Image.open(f)
@@ -673,12 +668,9 @@ def autosplit(path=DATASETS_DIR / "coco8/images", weights=(0.9, 0.1, 0.0), annot
673
668
  weights (list | tuple, optional): Train, validation, and test split fractions. Defaults to (0.9, 0.1, 0.0).
674
669
  annotated_only (bool, optional): If True, only images with an associated txt file are used. Defaults to False.
675
670
 
676
- Example:
677
- ```python
678
- from ultralytics.data.utils import autosplit
679
-
680
- autosplit()
681
- ```
671
+ Examples:
672
+ >>> from ultralytics.data.utils import autosplit
673
+ >>> autosplit()
682
674
  """
683
675
  path = Path(path) # images dir
684
676
  files = sorted(x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS) # image files only
@@ -1146,8 +1146,8 @@ class Model(torch.nn.Module):
1146
1146
  (Model): The model instance with evaluation mode set.
1147
1147
 
1148
1148
  Examples:
1149
- >> model = YOLO("yolo11n.pt")
1150
- >> model.eval()
1149
+ >>> model = YOLO("yolo11n.pt")
1150
+ >>> model.eval()
1151
1151
  """
1152
1152
  self.model.eval()
1153
1153
  return self
@@ -7,14 +7,11 @@ Hyperparameter tuning is the process of systematically searching for the optimal
7
7
  that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
8
8
  where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.
9
9
 
10
- Example:
10
+ Examples:
11
11
  Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
12
- ```python
13
- from ultralytics import YOLO
14
-
15
- model = YOLO("yolo11n.pt")
16
- model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
17
- ```
12
+ >>> from ultralytics import YOLO
13
+ >>> model = YOLO("yolo11n.pt")
14
+ >>> model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
18
15
  """
19
16
 
20
17
  import random
@@ -49,22 +46,15 @@ class Tuner:
49
46
  __call__():
50
47
  Executes the hyperparameter evolution across multiple iterations.
51
48
 
52
- Example:
49
+ Examples:
53
50
  Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
54
- ```python
55
- from ultralytics import YOLO
56
-
57
- model = YOLO("yolo11n.pt")
58
- model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
59
- ```
60
-
51
+ >>> from ultralytics import YOLO
52
+ >>> model = YOLO("yolo11n.pt")
53
+ >>> model.tune(
54
+ ... data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False
55
+ ... )
61
56
  Tune with custom search space.
62
- ```python
63
- from ultralytics import YOLO
64
-
65
- model = YOLO("yolo11n.pt")
66
- model.tune(space={key1: val1, key2: val2}) # custom search space dictionary
67
- ```
57
+ >>> model.tune(space={key1: val1, key2: val2}) # custom search space dictionary
68
58
  """
69
59
 
70
60
  def __init__(self, args=DEFAULT_CFG, _callbacks=None):
@@ -71,12 +71,9 @@ def logout():
71
71
  """
72
72
  Log out of Ultralytics HUB by removing the API key from the settings file. To log in again, use 'yolo login'.
73
73
 
74
- Example:
75
- ```python
76
- from ultralytics import hub
77
-
78
- hub.logout()
79
- ```
74
+ Examples:
75
+ >>> from ultralytics import hub
76
+ >>> hub.logout()
80
77
  """
81
78
  SETTINGS["api_key"] = ""
82
79
  LOGGER.info(f"{PREFIX}logged out ✅. To log in again, use 'yolo login'.")
@@ -129,18 +126,17 @@ def check_dataset(path: str, task: str) -> None:
129
126
  path (str): Path to data.zip (with data.yaml inside data.zip).
130
127
  task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify', 'obb'.
131
128
 
132
- Example:
129
+ Note:
133
130
  Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets
134
- i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
135
- ```python
136
- from ultralytics.hub import check_dataset
137
-
138
- check_dataset("path/to/coco8.zip", task="detect") # detect dataset
139
- check_dataset("path/to/coco8-seg.zip", task="segment") # segment dataset
140
- check_dataset("path/to/coco8-pose.zip", task="pose") # pose dataset
141
- check_dataset("path/to/dota8.zip", task="obb") # OBB dataset
142
- check_dataset("path/to/imagenet10.zip", task="classify") # classification dataset
143
- ```
131
+ i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
132
+
133
+ Examples:
134
+ >>> from ultralytics.hub import check_dataset
135
+ >>> check_dataset("path/to/coco8.zip", task="detect") # detect dataset
136
+ >>> check_dataset("path/to/coco8-seg.zip", task="segment") # segment dataset
137
+ >>> check_dataset("path/to/coco8-pose.zip", task="pose") # pose dataset
138
+ >>> check_dataset("path/to/dota8.zip", task="obb") # OBB dataset
139
+ >>> check_dataset("path/to/imagenet10.zip", task="classify") # classification dataset
144
140
  """
145
141
  HUBDatasetStats(path=path, task=task).get_json()
146
142
  LOGGER.info(f"Checks completed correctly ✅. Upload this dataset to {HUB_WEB_ROOT}/datasets/.")
@@ -12,13 +12,10 @@ class FastSAM(Model):
12
12
  """
13
13
  FastSAM model interface.
14
14
 
15
- Example:
16
- ```python
17
- from ultralytics import FastSAM
18
-
19
- model = FastSAM("last.pt")
20
- results = model.predict("ultralytics/assets/bus.jpg")
21
- ```
15
+ Examples:
16
+ >>> from ultralytics import FastSAM
17
+ >>> model = FastSAM("last.pt")
18
+ >>> results = model.predict("ultralytics/assets/bus.jpg")
22
19
  """
23
20
 
24
21
  def __init__(self, model="FastSAM-x.pt"):
@@ -2,13 +2,10 @@
2
2
  """
3
3
  YOLO-NAS model interface.
4
4
 
5
- Example:
6
- ```python
7
- from ultralytics import NAS
8
-
9
- model = NAS("yolo_nas_s")
10
- results = model.predict("ultralytics/assets/bus.jpg")
11
- ```
5
+ Examples:
6
+ >>> from ultralytics import NAS
7
+ >>> model = NAS("yolo_nas_s")
8
+ >>> results = model.predict("ultralytics/assets/bus.jpg")
12
9
  """
13
10
 
14
11
  from pathlib import Path
@@ -31,13 +28,10 @@ class NAS(Model):
31
28
  This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.
32
29
  It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
33
30
 
34
- Example:
35
- ```python
36
- from ultralytics import NAS
37
-
38
- model = NAS("yolo_nas_s")
39
- results = model.predict("ultralytics/assets/bus.jpg")
40
- ```
31
+ Examples:
32
+ >>> from ultralytics import NAS
33
+ >>> model = NAS("yolo_nas_s")
34
+ >>> results = model.predict("ultralytics/assets/bus.jpg")
41
35
 
42
36
  Attributes:
43
37
  model (str): Path to the pre-trained model or model name. Defaults to 'yolo_nas_s.pt'.
@@ -18,15 +18,13 @@ class NASPredictor(BasePredictor):
18
18
  Attributes:
19
19
  args (Namespace): Namespace containing various configurations for post-processing.
20
20
 
21
- Example:
22
- ```python
23
- from ultralytics import NAS
24
-
25
- model = NAS("yolo_nas_s")
26
- predictor = model.predictor
27
- # Assumes that raw_preds, img, orig_imgs are available
28
- results = predictor.postprocess(raw_preds, img, orig_imgs)
29
- ```
21
+ Examples:
22
+ >>> from ultralytics import NAS
23
+ >>> model = NAS("yolo_nas_s")
24
+ >>> predictor = model.predictor
25
+
26
+ Assumes that raw_preds, img, orig_imgs are available
27
+ >>> results = predictor.postprocess(raw_preds, img, orig_imgs)
30
28
 
31
29
  Note:
32
30
  Typically, this class is not instantiated directly. It is used internally within the `NAS` class.
@@ -20,15 +20,13 @@ class NASValidator(DetectionValidator):
20
20
  args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU.
21
21
  lb (torch.Tensor): Optional tensor for multilabel NMS.
22
22
 
23
- Example:
24
- ```python
25
- from ultralytics import NAS
26
-
27
- model = NAS("yolo_nas_s")
28
- validator = model.validator
29
- # Assumes that raw_preds are available
30
- final_preds = validator.postprocess(raw_preds)
31
- ```
23
+ Examples:
24
+ >>> from ultralytics import NAS
25
+ >>> model = NAS("yolo_nas_s")
26
+ >>> validator = model.validator
27
+
28
+ Assumes that raw_preds are available
29
+ >>> final_preds = validator.postprocess(raw_preds)
32
30
 
33
31
  Note:
34
32
  This class is generally not instantiated directly but is used internally within the `NAS` class.
@@ -16,15 +16,12 @@ class RTDETRPredictor(BasePredictor):
16
16
  This class leverages the power of Vision Transformers to provide real-time object detection while maintaining
17
17
  high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection.
18
18
 
19
- Example:
20
- ```python
21
- from ultralytics.utils import ASSETS
22
- from ultralytics.models.rtdetr import RTDETRPredictor
23
-
24
- args = dict(model="rtdetr-l.pt", source=ASSETS)
25
- predictor = RTDETRPredictor(overrides=args)
26
- predictor.predict_cli()
27
- ```
19
+ Examples:
20
+ >>> from ultralytics.utils import ASSETS
21
+ >>> from ultralytics.models.rtdetr import RTDETRPredictor
22
+ >>> args = dict(model="rtdetr-l.pt", source=ASSETS)
23
+ >>> predictor = RTDETRPredictor(overrides=args)
24
+ >>> predictor.predict_cli()
28
25
 
29
26
  Attributes:
30
27
  imgsz (int): Image size for inference (must be square and scale-filled).
@@ -21,14 +21,11 @@ class RTDETRTrainer(DetectionTrainer):
21
21
  - F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
22
22
  - AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.
23
23
 
24
- Example:
25
- ```python
26
- from ultralytics.models.rtdetr.train import RTDETRTrainer
27
-
28
- args = dict(model="rtdetr-l.yaml", data="coco8.yaml", imgsz=640, epochs=3)
29
- trainer = RTDETRTrainer(overrides=args)
30
- trainer.train()
31
- ```
24
+ Examples:
25
+ >>> from ultralytics.models.rtdetr.train import RTDETRTrainer
26
+ >>> args = dict(model="rtdetr-l.yaml", data="coco8.yaml", imgsz=640, epochs=3)
27
+ >>> trainer = RTDETRTrainer(overrides=args)
28
+ >>> trainer.train()
32
29
  """
33
30
 
34
31
  def get_model(self, cfg=None, weights=None, verbose=True):
@@ -58,14 +58,11 @@ class RTDETRValidator(DetectionValidator):
58
58
  The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
59
59
  post-processing, and updates evaluation metrics accordingly.
60
60
 
61
- Example:
62
- ```python
63
- from ultralytics.models.rtdetr import RTDETRValidator
64
-
65
- args = dict(model="rtdetr-l.pt", data="coco8.yaml")
66
- validator = RTDETRValidator(args=args)
67
- validator()
68
- ```
61
+ Examples:
62
+ >>> from ultralytics.models.rtdetr import RTDETRValidator
63
+ >>> args = dict(model="rtdetr-l.pt", data="coco8.yaml")
64
+ >>> validator = RTDETRValidator(args=args)
65
+ >>> validator()
69
66
 
70
67
  Note:
71
68
  For further details on the attributes and methods, refer to the parent DetectionValidator class.
@@ -16,15 +16,12 @@ class ClassificationPredictor(BasePredictor):
16
16
  Notes:
17
17
  - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
18
18
 
19
- Example:
20
- ```python
21
- from ultralytics.utils import ASSETS
22
- from ultralytics.models.yolo.classify import ClassificationPredictor
23
-
24
- args = dict(model="yolo11n-cls.pt", source=ASSETS)
25
- predictor = ClassificationPredictor(overrides=args)
26
- predictor.predict_cli()
27
- ```
19
+ Examples:
20
+ >>> from ultralytics.utils import ASSETS
21
+ >>> from ultralytics.models.yolo.classify import ClassificationPredictor
22
+ >>> args = dict(model="yolo11n-cls.pt", source=ASSETS)
23
+ >>> predictor = ClassificationPredictor(overrides=args)
24
+ >>> predictor.predict_cli()
28
25
  """
29
26
 
30
27
  def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
@@ -20,14 +20,11 @@ class ClassificationTrainer(BaseTrainer):
20
20
  Notes:
21
21
  - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
22
22
 
23
- Example:
24
- ```python
25
- from ultralytics.models.yolo.classify import ClassificationTrainer
26
-
27
- args = dict(model="yolo11n-cls.pt", data="imagenet10", epochs=3)
28
- trainer = ClassificationTrainer(overrides=args)
29
- trainer.train()
30
- ```
23
+ Examples:
24
+ >>> from ultralytics.models.yolo.classify import ClassificationTrainer
25
+ >>> args = dict(model="yolo11n-cls.pt", data="imagenet10", epochs=3)
26
+ >>> trainer = ClassificationTrainer(overrides=args)
27
+ >>> trainer.train()
31
28
  """
32
29
 
33
30
  def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
@@ -16,14 +16,11 @@ class ClassificationValidator(BaseValidator):
16
16
  Notes:
17
17
  - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
18
18
 
19
- Example:
20
- ```python
21
- from ultralytics.models.yolo.classify import ClassificationValidator
22
-
23
- args = dict(model="yolo11n-cls.pt", data="imagenet10")
24
- validator = ClassificationValidator(args=args)
25
- validator()
26
- ```
19
+ Examples:
20
+ >>> from ultralytics.models.yolo.classify import ClassificationValidator
21
+ >>> args = dict(model="yolo11n-cls.pt", data="imagenet10")
22
+ >>> validator = ClassificationValidator(args=args)
23
+ >>> validator()
27
24
  """
28
25
 
29
26
  def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
@@ -9,15 +9,12 @@ class DetectionPredictor(BasePredictor):
9
9
  """
10
10
  A class extending the BasePredictor class for prediction based on a detection model.
11
11
 
12
- Example:
13
- ```python
14
- from ultralytics.utils import ASSETS
15
- from ultralytics.models.yolo.detect import DetectionPredictor
16
-
17
- args = dict(model="yolo11n.pt", source=ASSETS)
18
- predictor = DetectionPredictor(overrides=args)
19
- predictor.predict_cli()
20
- ```
12
+ Examples:
13
+ >>> from ultralytics.utils import ASSETS
14
+ >>> from ultralytics.models.yolo.detect import DetectionPredictor
15
+ >>> args = dict(model="yolo11n.pt", source=ASSETS)
16
+ >>> predictor = DetectionPredictor(overrides=args)
17
+ >>> predictor.predict_cli()
21
18
  """
22
19
 
23
20
  def postprocess(self, preds, img, orig_imgs, **kwargs):
@@ -20,14 +20,11 @@ class DetectionTrainer(BaseTrainer):
20
20
  """
21
21
  A class extending the BaseTrainer class for training based on a detection model.
22
22
 
23
- Example:
24
- ```python
25
- from ultralytics.models.yolo.detect import DetectionTrainer
26
-
27
- args = dict(model="yolo11n.pt", data="coco8.yaml", epochs=3)
28
- trainer = DetectionTrainer(overrides=args)
29
- trainer.train()
30
- ```
23
+ Examples:
24
+ >>> from ultralytics.models.yolo.detect import DetectionTrainer
25
+ >>> args = dict(model="yolo11n.pt", data="coco8.yaml", epochs=3)
26
+ >>> trainer = DetectionTrainer(overrides=args)
27
+ >>> trainer.train()
31
28
  """
32
29
 
33
30
  def build_dataset(self, img_path, mode="train", batch=None):
@@ -18,14 +18,11 @@ class DetectionValidator(BaseValidator):
18
18
  """
19
19
  A class extending the BaseValidator class for validation based on a detection model.
20
20
 
21
- Example:
22
- ```python
23
- from ultralytics.models.yolo.detect import DetectionValidator
24
-
25
- args = dict(model="yolo11n.pt", data="coco8.yaml")
26
- validator = DetectionValidator(args=args)
27
- validator()
28
- ```
21
+ Examples:
22
+ >>> from ultralytics.models.yolo.detect import DetectionValidator
23
+ >>> args = dict(model="yolo11n.pt", data="coco8.yaml")
24
+ >>> validator = DetectionValidator(args=args)
25
+ >>> validator()
29
26
  """
30
27
 
31
28
  def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):