ultralytics 8.3.77__tar.gz → 8.3.79__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (251) hide show
  1. {ultralytics-8.3.77/ultralytics.egg-info → ultralytics-8.3.79}/PKG-INFO +1 -1
  2. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/__init__.py +1 -1
  3. ultralytics-8.3.79/ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  4. ultralytics-8.3.79/ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  5. ultralytics-8.3.79/ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  6. ultralytics-8.3.79/ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  7. ultralytics-8.3.79/ultralytics/cfg/models/12/yolo12.yaml +48 -0
  8. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/annotator.py +5 -7
  9. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/augment.py +22 -13
  10. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/converter.py +3 -3
  11. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/exporter.py +5 -5
  12. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/trainer.py +4 -0
  13. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/rtdetr/predict.py +2 -2
  14. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/rtdetr/val.py +1 -1
  15. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/detect/val.py +1 -1
  16. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/autobackend.py +8 -7
  17. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/modules/__init__.py +2 -0
  18. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/modules/block.py +202 -0
  19. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/tasks.py +9 -2
  20. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/comet.py +12 -4
  21. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/downloads.py +1 -0
  22. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/metrics.py +1 -1
  23. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/torch_utils.py +1 -2
  24. {ultralytics-8.3.77 → ultralytics-8.3.79/ultralytics.egg-info}/PKG-INFO +1 -1
  25. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics.egg-info/SOURCES.txt +5 -0
  26. {ultralytics-8.3.77 → ultralytics-8.3.79}/LICENSE +0 -0
  27. {ultralytics-8.3.77 → ultralytics-8.3.79}/README.md +0 -0
  28. {ultralytics-8.3.77 → ultralytics-8.3.79}/pyproject.toml +0 -0
  29. {ultralytics-8.3.77 → ultralytics-8.3.79}/setup.cfg +0 -0
  30. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/__init__.py +0 -0
  31. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/conftest.py +0 -0
  32. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/test_cli.py +0 -0
  33. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/test_cuda.py +0 -0
  34. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/test_engine.py +0 -0
  35. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/test_exports.py +0 -0
  36. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/test_integrations.py +0 -0
  37. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/test_python.py +0 -0
  38. {ultralytics-8.3.77 → ultralytics-8.3.79}/tests/test_solutions.py +0 -0
  39. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/assets/bus.jpg +0 -0
  40. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/assets/zidane.jpg +0 -0
  41. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/__init__.py +0 -0
  42. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  43. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  44. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  45. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  46. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  47. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  48. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  49. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  50. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  51. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  52. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  53. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  54. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  55. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/coco.yaml +0 -0
  56. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  57. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  58. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  59. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  60. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  61. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  62. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  63. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  64. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  65. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  66. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  67. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  68. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  69. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/signature.yaml +0 -0
  70. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  71. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/datasets/xView.yaml +0 -0
  72. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/default.yaml +0 -0
  73. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  74. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  75. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  76. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  77. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  78. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  79. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  80. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  81. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  82. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  83. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  84. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  85. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  86. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  87. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  88. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  89. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  90. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  91. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  92. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  93. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  94. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  95. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  96. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  97. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  98. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  99. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  100. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  101. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  102. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  103. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  104. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  105. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  106. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  107. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  108. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  109. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  110. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  111. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  112. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  113. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  114. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  115. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  116. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  117. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  118. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  119. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/solutions/default.yaml +0 -0
  120. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  121. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  122. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/__init__.py +0 -0
  123. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/base.py +0 -0
  124. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/build.py +0 -0
  125. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/dataset.py +0 -0
  126. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/loaders.py +0 -0
  127. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/split_dota.py +0 -0
  128. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/data/utils.py +0 -0
  129. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/__init__.py +0 -0
  130. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/model.py +0 -0
  131. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/predictor.py +0 -0
  132. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/results.py +0 -0
  133. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/tuner.py +0 -0
  134. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/engine/validator.py +0 -0
  135. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/hub/__init__.py +0 -0
  136. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/hub/auth.py +0 -0
  137. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/hub/google/__init__.py +0 -0
  138. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/hub/session.py +0 -0
  139. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/hub/utils.py +0 -0
  140. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/__init__.py +0 -0
  141. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/fastsam/__init__.py +0 -0
  142. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/fastsam/model.py +0 -0
  143. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/fastsam/predict.py +0 -0
  144. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/fastsam/utils.py +0 -0
  145. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/fastsam/val.py +0 -0
  146. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/nas/__init__.py +0 -0
  147. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/nas/model.py +0 -0
  148. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/nas/predict.py +0 -0
  149. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/nas/val.py +0 -0
  150. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/rtdetr/__init__.py +0 -0
  151. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/rtdetr/model.py +0 -0
  152. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/rtdetr/train.py +0 -0
  153. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/__init__.py +0 -0
  154. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/amg.py +0 -0
  155. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/build.py +0 -0
  156. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/model.py +0 -0
  157. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/__init__.py +0 -0
  158. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/blocks.py +0 -0
  159. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/decoders.py +0 -0
  160. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/encoders.py +0 -0
  161. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  162. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/sam.py +0 -0
  163. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  164. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/transformer.py +0 -0
  165. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/modules/utils.py +0 -0
  166. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/sam/predict.py +0 -0
  167. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/utils/__init__.py +0 -0
  168. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/utils/loss.py +0 -0
  169. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/utils/ops.py +0 -0
  170. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/__init__.py +0 -0
  171. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/classify/__init__.py +0 -0
  172. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/classify/predict.py +0 -0
  173. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/classify/train.py +0 -0
  174. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/classify/val.py +0 -0
  175. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/detect/__init__.py +0 -0
  176. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/detect/predict.py +0 -0
  177. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/detect/train.py +0 -0
  178. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/model.py +0 -0
  179. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/obb/__init__.py +0 -0
  180. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/obb/predict.py +0 -0
  181. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/obb/train.py +0 -0
  182. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/obb/val.py +0 -0
  183. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/pose/__init__.py +0 -0
  184. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/pose/predict.py +0 -0
  185. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/pose/train.py +0 -0
  186. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/pose/val.py +0 -0
  187. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/segment/__init__.py +0 -0
  188. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/segment/predict.py +0 -0
  189. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/segment/train.py +0 -0
  190. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/segment/val.py +0 -0
  191. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/world/__init__.py +0 -0
  192. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/world/train.py +0 -0
  193. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/models/yolo/world/train_world.py +0 -0
  194. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/__init__.py +0 -0
  195. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/modules/activation.py +0 -0
  196. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/modules/conv.py +0 -0
  197. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/modules/head.py +0 -0
  198. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/modules/transformer.py +0 -0
  199. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/nn/modules/utils.py +0 -0
  200. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/__init__.py +0 -0
  201. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/ai_gym.py +0 -0
  202. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/analytics.py +0 -0
  203. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/distance_calculation.py +0 -0
  204. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/heatmap.py +0 -0
  205. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/object_counter.py +0 -0
  206. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/parking_management.py +0 -0
  207. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/queue_management.py +0 -0
  208. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/region_counter.py +0 -0
  209. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/security_alarm.py +0 -0
  210. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/solutions.py +0 -0
  211. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/speed_estimation.py +0 -0
  212. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/streamlit_inference.py +0 -0
  213. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/solutions/trackzone.py +0 -0
  214. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/__init__.py +0 -0
  215. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/basetrack.py +0 -0
  216. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/bot_sort.py +0 -0
  217. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/byte_tracker.py +0 -0
  218. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/track.py +0 -0
  219. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/utils/__init__.py +0 -0
  220. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/utils/gmc.py +0 -0
  221. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  222. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/trackers/utils/matching.py +0 -0
  223. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/__init__.py +0 -0
  224. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/autobatch.py +0 -0
  225. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/benchmarks.py +0 -0
  226. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/__init__.py +0 -0
  227. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/base.py +0 -0
  228. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/clearml.py +0 -0
  229. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/dvc.py +0 -0
  230. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/hub.py +0 -0
  231. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/mlflow.py +0 -0
  232. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/neptune.py +0 -0
  233. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/raytune.py +0 -0
  234. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  235. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/callbacks/wb.py +0 -0
  236. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/checks.py +0 -0
  237. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/dist.py +0 -0
  238. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/errors.py +0 -0
  239. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/files.py +0 -0
  240. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/instance.py +0 -0
  241. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/loss.py +0 -0
  242. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/ops.py +0 -0
  243. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/patches.py +0 -0
  244. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/plotting.py +0 -0
  245. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/tal.py +0 -0
  246. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/triton.py +0 -0
  247. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics/utils/tuner.py +0 -0
  248. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics.egg-info/dependency_links.txt +0 -0
  249. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics.egg-info/entry_points.txt +0 -0
  250. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics.egg-info/requires.txt +0 -0
  251. {ultralytics-8.3.77 → ultralytics-8.3.79}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ultralytics
3
- Version: 8.3.77
3
+ Version: 8.3.79
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.77"
3
+ __version__ = "8.3.79"
4
4
 
5
5
  import os
6
6
 
@@ -0,0 +1,32 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-cls image classification model
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/classify
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-cls.yaml' will call yolo12-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 152 layers, 1,820,976 parameters, 1,820,976 gradients, 3.7 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 152 layers, 6,206,992 parameters, 6,206,992 gradients, 13.6 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 172 layers, 12,083,088 parameters, 12,083,088 gradients, 44.2 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 312 layers, 15,558,640 parameters, 15,558,640 gradients, 56.9 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 312 layers, 34,172,592 parameters, 34,172,592 gradients, 126.5 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, Classify, [nc]] # Classify
@@ -0,0 +1,48 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/obb
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-obb.yaml' will call yolo12-obb.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 287 layers, 2,673,955 parameters, 2,673,939 gradients, 6.9 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 287 layers, 9,570,275 parameters, 9,570,259 gradients, 22.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 307 layers, 21,048,003 parameters, 21,047,987 gradients, 71.8 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 503 layers, 27,299,619 parameters, 27,299,603 gradients, 93.4 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 503 layers, 61,119,939 parameters, 61,119,923 gradients, 208.6 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
38
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
39
+
40
+ - [-1, 1, Conv, [256, 3, 2]]
41
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
42
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
43
+
44
+ - [-1, 1, Conv, [512, 3, 2]]
45
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
46
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
47
+
48
+ - [[14, 17, 20], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)
@@ -0,0 +1,49 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/pose
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
10
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-pose.yaml' will call yolo12-pose.yaml with scale 'n'
11
+ # [depth, width, max_channels]
12
+ n: [0.50, 0.25, 1024] # summary: 287 layers, 2,886,715 parameters, 2,886,699 gradients, 7.8 GFLOPs
13
+ s: [0.50, 0.50, 1024] # summary: 287 layers, 9,774,155 parameters, 9,774,139 gradients, 23.5 GFLOPs
14
+ m: [0.50, 1.00, 512] # summary: 307 layers, 21,057,753 parameters, 21,057,737 gradients, 71.8 GFLOPs
15
+ l: [1.00, 1.00, 512] # summary: 503 layers, 27,309,369 parameters, 27,309,353 gradients, 93.5 GFLOPs
16
+ x: [1.00, 1.50, 512] # summary: 503 layers, 61,134,489 parameters, 61,134,473 gradients, 208.7 GFLOPs
17
+
18
+ # YOLO12n backbone
19
+ backbone:
20
+ # [from, repeats, module, args]
21
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
22
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
23
+ - [-1, 2, C3k2, [256, False, 0.25]]
24
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
25
+ - [-1, 2, C3k2, [512, False, 0.25]]
26
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
27
+ - [-1, 4, A2C2f, [512, True, 4]]
28
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
29
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
30
+
31
+ # YOLO12n head
32
+ head:
33
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
34
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
35
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
36
+
37
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
38
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
39
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
40
+
41
+ - [-1, 1, Conv, [256, 3, 2]]
42
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
43
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
44
+
45
+ - [-1, 1, Conv, [512, 3, 2]]
46
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
47
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
48
+
49
+ - [[14, 17, 20], 1, Pose, [nc, kpt_shape]] # Detect(P3, P4, P5)
@@ -0,0 +1,48 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12-seg instance segmentation model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/segment
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n-seg.yaml' will call yolo12-seg.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 294 layers, 2,855,056 parameters, 2,855,040 gradients, 10.6 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 294 layers, 9,938,592 parameters, 9,938,576 gradients, 35.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 314 layers, 22,505,376 parameters, 22,505,360 gradients, 123.5 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 510 layers, 28,756,992 parameters, 28,756,976 gradients, 145.1 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 510 layers, 64,387,264 parameters, 64,387,248 gradients, 324.6 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
38
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
39
+
40
+ - [-1, 1, Conv, [256, 3, 2]]
41
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
42
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
43
+
44
+ - [-1, 1, Conv, [512, 3, 2]]
45
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
46
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
47
+
48
+ - [[14, 17, 20], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)
@@ -0,0 +1,48 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # YOLO12 object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo12
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo12n.yaml' will call yolo12.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 272 layers, 2,602,288 parameters, 2,602,272 gradients, 6.7 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 272 layers, 9,284,096 parameters, 9,284,080 gradients, 21.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 292 layers, 20,199,168 parameters, 20,199,152 gradients, 68.1 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 488 layers, 26,450,784 parameters, 26,450,768 gradients, 89.7 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 488 layers, 59,210,784 parameters, 59,210,768 gradients, 200.3 GFLOPs
16
+
17
+ # YOLO12n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 4, A2C2f, [512, True, 4]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 4, A2C2f, [1024, True, 1]] # 8
29
+
30
+ # YOLO12n head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 2, A2C2f, [512, False, -1]] # 11
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
38
+ - [-1, 2, A2C2f, [256, False, -1]] # 14
39
+
40
+ - [-1, 1, Conv, [256, 3, 2]]
41
+ - [[-1, 11], 1, Concat, [1]] # cat head P4
42
+ - [-1, 2, A2C2f, [512, False, -1]] # 17
43
+
44
+ - [-1, 1, Conv, [512, 3, 2]]
45
+ - [[-1, 8], 1, Concat, [1]] # cat head P5
46
+ - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)
47
+
48
+ - [[14, 17, 20], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -58,15 +58,13 @@ def auto_annotate(
58
58
 
59
59
  for result in det_results:
60
60
  class_ids = result.boxes.cls.int().tolist() # noqa
61
- if len(class_ids):
61
+ if class_ids:
62
62
  boxes = result.boxes.xyxy # Boxes object for bbox outputs
63
63
  sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
64
64
  segments = sam_results[0].masks.xyn # noqa
65
65
 
66
66
  with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f:
67
- for i in range(len(segments)):
68
- s = segments[i]
69
- if len(s) == 0:
70
- continue
71
- segment = map(str, segments[i].reshape(-1).tolist())
72
- f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")
67
+ for i, s in enumerate(segments):
68
+ if s.any():
69
+ segment = map(str, s.reshape(-1).tolist())
70
+ f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")
@@ -1364,17 +1364,26 @@ class RandomHSV:
1364
1364
  >>> hsv_augmenter(labels)
1365
1365
  >>> augmented_img = labels["img"]
1366
1366
  """
1367
- img = labels["img"]
1368
1367
  if self.hgain or self.sgain or self.vgain:
1369
- r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains
1370
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
1368
+ img = labels["img"]
1371
1369
  dtype = img.dtype # uint8
1372
1370
 
1371
+ # Original implementation (bug) from ultralytics<=8.3.78
1372
+ # r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains
1373
+ # x = np.arange(0, 256, dtype=r.dtype)
1374
+ # lut_hue = ((x * r[0]) % 180).astype(dtype)
1375
+ # lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
1376
+ # lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
1377
+
1378
+ # Fixed implementation in https://github.com/ultralytics/ultralytics/pull/19311
1379
+ r = np.random.uniform(-1, 1, 3) * (self.hgain, self.sgain, self.vgain) * (180, 255, 255) # random gains
1373
1380
  x = np.arange(0, 256, dtype=r.dtype)
1374
- lut_hue = ((x * r[0]) % 180).astype(dtype)
1375
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
1376
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
1381
+ lut_hue = ((x + r[0]) % 180).astype(dtype)
1382
+ lut_sat = np.clip(x + r[1], 0, 255).astype(dtype)
1383
+ lut_val = np.clip(x + r[2], 0, 255).astype(dtype)
1384
+ lut_sat[0] = 0 # prevent pure white changing color
1377
1385
 
1386
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
1378
1387
  im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
1379
1388
  cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
1380
1389
  return labels
@@ -1484,7 +1493,7 @@ class LetterBox:
1484
1493
  Attributes:
1485
1494
  new_shape (tuple): Target shape (height, width) for resizing.
1486
1495
  auto (bool): Whether to use minimum rectangle.
1487
- scaleFill (bool): Whether to stretch the image to new_shape.
1496
+ scale_fill (bool): Whether to stretch the image to new_shape.
1488
1497
  scaleup (bool): Whether to allow scaling up. If False, only scale down.
1489
1498
  stride (int): Stride for rounding padding.
1490
1499
  center (bool): Whether to center the image or align to top-left.
@@ -1499,7 +1508,7 @@ class LetterBox:
1499
1508
  >>> updated_instances = result["instances"]
1500
1509
  """
1501
1510
 
1502
- def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
1511
+ def __init__(self, new_shape=(640, 640), auto=False, scale_fill=False, scaleup=True, center=True, stride=32):
1503
1512
  """
1504
1513
  Initialize LetterBox object for resizing and padding images.
1505
1514
 
@@ -1509,7 +1518,7 @@ class LetterBox:
1509
1518
  Args:
1510
1519
  new_shape (Tuple[int, int]): Target size (height, width) for the resized image.
1511
1520
  auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly.
1512
- scaleFill (bool): If True, stretch the image to new_shape without padding.
1521
+ scale_fill (bool): If True, stretch the image to new_shape without padding.
1513
1522
  scaleup (bool): If True, allow scaling up. If False, only scale down.
1514
1523
  center (bool): If True, center the placed image. If False, place image in top-left corner.
1515
1524
  stride (int): Stride of the model (e.g., 32 for YOLOv5).
@@ -1517,17 +1526,17 @@ class LetterBox:
1517
1526
  Attributes:
1518
1527
  new_shape (Tuple[int, int]): Target size for the resized image.
1519
1528
  auto (bool): Flag for using minimum rectangle resizing.
1520
- scaleFill (bool): Flag for stretching image without padding.
1529
+ scale_fill (bool): Flag for stretching image without padding.
1521
1530
  scaleup (bool): Flag for allowing upscaling.
1522
1531
  stride (int): Stride value for ensuring image size is divisible by stride.
1523
1532
 
1524
1533
  Examples:
1525
- >>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32)
1534
+ >>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scale_fill=False, scaleup=True, stride=32)
1526
1535
  >>> resized_img = letterbox(original_img)
1527
1536
  """
1528
1537
  self.new_shape = new_shape
1529
1538
  self.auto = auto
1530
- self.scaleFill = scaleFill
1539
+ self.scale_fill = scale_fill
1531
1540
  self.scaleup = scaleup
1532
1541
  self.stride = stride
1533
1542
  self.center = center # Put the image in the middle or top-left
@@ -1573,7 +1582,7 @@ class LetterBox:
1573
1582
  dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
1574
1583
  if self.auto: # minimum rectangle
1575
1584
  dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
1576
- elif self.scaleFill: # stretch
1585
+ elif self.scale_fill: # stretch
1577
1586
  dw, dh = 0.0, 0.0
1578
1587
  new_unpad = (new_shape[1], new_shape[0])
1579
1588
  ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
@@ -274,13 +274,13 @@ def convert_coco(
274
274
  # Create image dict
275
275
  images = {f"{x['id']:d}": x for x in data["images"]}
276
276
  # Create image-annotations dict
277
- imgToAnns = defaultdict(list)
277
+ annotations = defaultdict(list)
278
278
  for ann in data["annotations"]:
279
- imgToAnns[ann["image_id"]].append(ann)
279
+ annotations[ann["image_id"]].append(ann)
280
280
 
281
281
  image_txt = []
282
282
  # Write labels file
283
- for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"):
283
+ for img_id, anns in TQDM(annotations.items(), desc=f"Annotations {json_file}"):
284
284
  img = images[f"{img_id:d}"]
285
285
  h, w = img["height"], img["width"]
286
286
  f = str(Path(img["coco_url"]).relative_to("http://images.cocodataset.org")) if lvis else img["file_name"]
@@ -170,6 +170,7 @@ def try_export(inner_func):
170
170
  def outer_func(*args, **kwargs):
171
171
  """Export a model."""
172
172
  prefix = inner_args["prefix"]
173
+ dt = 0.0
173
174
  try:
174
175
  with Profile() as dt:
175
176
  f, model = inner_func(*args, **kwargs)
@@ -309,9 +310,8 @@ class Exporter:
309
310
  "WARNING ⚠️ INT8 export requires a missing 'data' arg for calibration. "
310
311
  f"Using default 'data={self.args.data}'."
311
312
  )
312
- if tfjs:
313
- if ARM64 and LINUX:
314
- raise SystemError("TensorFlow.js export not supported on ARM64 Linux")
313
+ if tfjs and (ARM64 and LINUX):
314
+ raise SystemError("TensorFlow.js export not supported on ARM64 Linux")
315
315
 
316
316
  # Input
317
317
  im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
@@ -419,7 +419,7 @@ class Exporter:
419
419
  if pb or tfjs: # pb prerequisite to tfjs
420
420
  f[6], _ = self.export_pb(keras_model=keras_model)
421
421
  if tflite:
422
- f[7], _ = self.export_tflite(keras_model=keras_model, nms=False, agnostic_nms=self.args.agnostic_nms)
422
+ f[7], _ = self.export_tflite()
423
423
  if edgetpu:
424
424
  f[8], _ = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite")
425
425
  if tfjs:
@@ -1077,7 +1077,7 @@ class Exporter:
1077
1077
  return f, None
1078
1078
 
1079
1079
  @try_export
1080
- def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
1080
+ def export_tflite(self, prefix=colorstr("TensorFlow Lite:")):
1081
1081
  """YOLO TensorFlow Lite export."""
1082
1082
  # BUG https://github.com/ultralytics/ultralytics/issues/13436
1083
1083
  import tensorflow as tf # noqa
@@ -567,6 +567,10 @@ class BaseTrainer:
567
567
  except Exception as e:
568
568
  raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e
569
569
  self.data = data
570
+ if self.args.single_cls:
571
+ LOGGER.info("Overriding class names with single class.")
572
+ self.data["names"] = {0: "item"}
573
+ self.data["nc"] = 1
570
574
  return data["train"], data.get("val") or data.get("test")
571
575
 
572
576
  def setup_model(self):
@@ -72,7 +72,7 @@ class RTDETRPredictor(BasePredictor):
72
72
  def pre_transform(self, im):
73
73
  """
74
74
  Pre-transforms the input images before feeding them into the model for inference. The input images are
75
- letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scaleFilled.
75
+ letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scale_filled.
76
76
 
77
77
  Args:
78
78
  im (list[np.ndarray] |torch.Tensor): Input images of shape (N,3,h,w) for tensor, [(h,w,3) x N] for list.
@@ -80,5 +80,5 @@ class RTDETRPredictor(BasePredictor):
80
80
  Returns:
81
81
  (list): List of pre-transformed images ready for model inference.
82
82
  """
83
- letterbox = LetterBox(self.imgsz, auto=False, scaleFill=True)
83
+ letterbox = LetterBox(self.imgsz, auto=False, scale_fill=True)
84
84
  return [letterbox(image=x) for x in im]
@@ -34,7 +34,7 @@ class RTDETRDataset(YOLODataset):
34
34
  hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
35
35
  transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
36
36
  else:
37
- # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
37
+ # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scale_fill=True)])
38
38
  transforms = Compose([])
39
39
  transforms.append(
40
40
  Format(
@@ -186,7 +186,7 @@ class DetectionValidator(BaseValidator):
186
186
  self.nt_per_class = np.bincount(stats["target_cls"].astype(int), minlength=self.nc)
187
187
  self.nt_per_image = np.bincount(stats["target_img"].astype(int), minlength=self.nc)
188
188
  stats.pop("target_img", None)
189
- if len(stats) and stats["tp"].any():
189
+ if len(stats):
190
190
  self.metrics.process(**stats)
191
191
  return self.metrics.results_dict
192
192
 
@@ -197,12 +197,13 @@ class AutoBackend(nn.Module):
197
197
  import onnxruntime
198
198
 
199
199
  providers = ["CPUExecutionProvider"]
200
- if cuda and "CUDAExecutionProvider" in onnxruntime.get_available_providers():
201
- providers.insert(0, "CUDAExecutionProvider")
202
- elif cuda: # Only log warning if CUDA was requested but unavailable
203
- LOGGER.warning("WARNING ⚠️ Failed to start ONNX Runtime with CUDA. Using CPU...")
204
- device = torch.device("cpu")
205
- cuda = False
200
+ if cuda:
201
+ if "CUDAExecutionProvider" in onnxruntime.get_available_providers():
202
+ providers.insert(0, "CUDAExecutionProvider")
203
+ else: # Only log warning if CUDA was requested but unavailable
204
+ LOGGER.warning("WARNING ⚠️ Failed to start ONNX Runtime with CUDA. Using CPU...")
205
+ device = torch.device("cpu")
206
+ cuda = False
206
207
  LOGGER.info(f"Using ONNX Runtime {providers[0]}")
207
208
  if onnx:
208
209
  session = onnxruntime.InferenceSession(w, providers=providers)
@@ -223,7 +224,7 @@ class AutoBackend(nn.Module):
223
224
  output_names = [x.name for x in session.get_outputs()]
224
225
  metadata = session.get_modelmeta().custom_metadata_map
225
226
  dynamic = isinstance(session.get_outputs()[0].shape[0], str)
226
- fp16 = True if "float16" in session.get_inputs()[0].type else False
227
+ fp16 = "float16" in session.get_inputs()[0].type
227
228
  if not dynamic:
228
229
  io = session.io_binding()
229
230
  bindings = []
@@ -30,6 +30,7 @@ from .block import (
30
30
  SPP,
31
31
  SPPELAN,
32
32
  SPPF,
33
+ A2C2f,
33
34
  AConv,
34
35
  ADown,
35
36
  Attention,
@@ -160,4 +161,5 @@ __all__ = (
160
161
  "PSA",
161
162
  "TorchVision",
162
163
  "Index",
164
+ "A2C2f",
163
165
  )