ultralytics 8.3.66__tar.gz → 8.3.68__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ultralytics-8.3.66/ultralytics.egg-info → ultralytics-8.3.68}/PKG-INFO +1 -1
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/test_exports.py +41 -38
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/__init__.py +1 -1
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/exporter.py +133 -20
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/results.py +4 -1
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/nas/val.py +1 -7
- ultralytics-8.3.68/ultralytics/models/yolo/detect/predict.py +73 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/detect/val.py +4 -0
- ultralytics-8.3.68/ultralytics/models/yolo/obb/predict.py +46 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/obb/val.py +0 -14
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/pose/predict.py +18 -25
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/pose/val.py +0 -13
- ultralytics-8.3.68/ultralytics/models/yolo/segment/predict.py +74 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/segment/val.py +1 -10
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/autobackend.py +11 -4
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/__init__.py +7 -2
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/benchmarks.py +2 -2
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/ops.py +22 -6
- {ultralytics-8.3.66 → ultralytics-8.3.68/ultralytics.egg-info}/PKG-INFO +1 -1
- ultralytics-8.3.66/ultralytics/models/yolo/detect/predict.py +0 -41
- ultralytics-8.3.66/ultralytics/models/yolo/obb/predict.py +0 -53
- ultralytics-8.3.66/ultralytics/models/yolo/segment/predict.py +0 -55
- {ultralytics-8.3.66 → ultralytics-8.3.68}/LICENSE +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/README.md +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/pyproject.toml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/setup.cfg +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/conftest.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/test_cli.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/test_cuda.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/test_engine.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/test_integrations.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/test_python.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/tests/test_solutions.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/solutions/default.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/augment.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/base.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/build.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/converter.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/dataset.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/loaders.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/data/utils.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/model.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/trainer.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/tuner.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/engine/validator.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/hub/auth.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/hub/google/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/hub/session.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/hub/utils.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/build.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/blocks.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/memory_attention.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/modules/utils.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/sam/predict.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/model.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/modules/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/modules/activation.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/modules/block.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/modules/head.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/nn/tasks.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/parking_management.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/region_counter.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/security_alarm.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/solutions.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/streamlit_inference.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/solutions/trackzone.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/checks.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/downloads.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/files.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/loss.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/metrics.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/patches.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/plotting.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/torch_utils.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics.egg-info/SOURCES.txt +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.3.66 → ultralytics-8.3.68}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.68
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -43,14 +43,16 @@ def test_export_openvino():
|
|
43
43
|
@pytest.mark.slow
|
44
44
|
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
45
45
|
@pytest.mark.parametrize(
|
46
|
-
"task, dynamic, int8, half, batch",
|
47
|
-
[ # generate all combinations
|
48
|
-
(task, dynamic, int8, half, batch)
|
49
|
-
for task, dynamic, int8, half, batch in product(
|
50
|
-
|
46
|
+
"task, dynamic, int8, half, batch, nms",
|
47
|
+
[ # generate all combinations except for exclusion cases
|
48
|
+
(task, dynamic, int8, half, batch, nms)
|
49
|
+
for task, dynamic, int8, half, batch, nms in product(
|
50
|
+
TASKS, [True, False], [True, False], [True, False], [1, 2], [True, False]
|
51
|
+
)
|
52
|
+
if not ((int8 and half) or (task == "classify" and nms))
|
51
53
|
],
|
52
54
|
)
|
53
|
-
def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
55
|
+
def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
|
54
56
|
"""Test YOLO model exports to OpenVINO under various configuration matrix conditions."""
|
55
57
|
file = YOLO(TASK2MODEL[task]).export(
|
56
58
|
format="openvino",
|
@@ -60,6 +62,7 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
|
60
62
|
half=half,
|
61
63
|
batch=batch,
|
62
64
|
data=TASK2DATA[task],
|
65
|
+
nms=nms,
|
63
66
|
)
|
64
67
|
if WINDOWS:
|
65
68
|
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
|
@@ -72,36 +75,39 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
|
72
75
|
|
73
76
|
@pytest.mark.slow
|
74
77
|
@pytest.mark.parametrize(
|
75
|
-
"task, dynamic, int8, half, batch, simplify
|
78
|
+
"task, dynamic, int8, half, batch, simplify, nms",
|
79
|
+
[ # generate all combinations except for exclusion cases
|
80
|
+
(task, dynamic, int8, half, batch, simplify, nms)
|
81
|
+
for task, dynamic, int8, half, batch, simplify, nms in product(
|
82
|
+
TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
|
83
|
+
)
|
84
|
+
if not ((int8 and half) or (task == "classify" and nms) or (task == "obb" and nms and not TORCH_1_13))
|
85
|
+
],
|
76
86
|
)
|
77
|
-
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify):
|
87
|
+
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
78
88
|
"""Test YOLO exports to ONNX format with various configurations and parameters."""
|
79
89
|
file = YOLO(TASK2MODEL[task]).export(
|
80
|
-
format="onnx",
|
81
|
-
imgsz=32,
|
82
|
-
dynamic=dynamic,
|
83
|
-
int8=int8,
|
84
|
-
half=half,
|
85
|
-
batch=batch,
|
86
|
-
simplify=simplify,
|
90
|
+
format="onnx", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, simplify=simplify, nms=nms
|
87
91
|
)
|
88
92
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
89
93
|
Path(file).unlink() # cleanup
|
90
94
|
|
91
95
|
|
92
96
|
@pytest.mark.slow
|
93
|
-
@pytest.mark.parametrize(
|
94
|
-
|
97
|
+
@pytest.mark.parametrize(
|
98
|
+
"task, dynamic, int8, half, batch, nms",
|
99
|
+
[ # generate all combinations except for exclusion cases
|
100
|
+
(task, dynamic, int8, half, batch, nms)
|
101
|
+
for task, dynamic, int8, half, batch, nms in product(TASKS, [False], [False], [False], [1, 2], [True, False])
|
102
|
+
if not (task == "classify" and nms)
|
103
|
+
],
|
104
|
+
)
|
105
|
+
def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
|
95
106
|
"""Tests YOLO model exports to TorchScript format under varied configurations."""
|
96
107
|
file = YOLO(TASK2MODEL[task]).export(
|
97
|
-
format="torchscript",
|
98
|
-
imgsz=32,
|
99
|
-
dynamic=dynamic,
|
100
|
-
int8=int8,
|
101
|
-
half=half,
|
102
|
-
batch=batch,
|
108
|
+
format="torchscript", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
|
103
109
|
)
|
104
|
-
YOLO(file)([SOURCE] *
|
110
|
+
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
105
111
|
Path(file).unlink() # cleanup
|
106
112
|
|
107
113
|
|
@@ -111,10 +117,10 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch):
|
|
111
117
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
112
118
|
@pytest.mark.parametrize(
|
113
119
|
"task, dynamic, int8, half, batch",
|
114
|
-
[ # generate all combinations
|
120
|
+
[ # generate all combinations except for exclusion cases
|
115
121
|
(task, dynamic, int8, half, batch)
|
116
122
|
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
117
|
-
if not (int8 and half)
|
123
|
+
if not (int8 and half)
|
118
124
|
],
|
119
125
|
)
|
120
126
|
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
@@ -135,22 +141,19 @@ def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
|
135
141
|
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
|
136
142
|
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
137
143
|
@pytest.mark.parametrize(
|
138
|
-
"task, dynamic, int8, half, batch",
|
139
|
-
[ # generate all combinations
|
140
|
-
(task, dynamic, int8, half, batch)
|
141
|
-
for task, dynamic, int8, half, batch in product(
|
142
|
-
|
144
|
+
"task, dynamic, int8, half, batch, nms",
|
145
|
+
[ # generate all combinations except for exclusion cases
|
146
|
+
(task, dynamic, int8, half, batch, nms)
|
147
|
+
for task, dynamic, int8, half, batch, nms in product(
|
148
|
+
TASKS, [False], [True, False], [True, False], [1], [True, False]
|
149
|
+
)
|
150
|
+
if not ((int8 and half) or (task == "classify" and nms))
|
143
151
|
],
|
144
152
|
)
|
145
|
-
def test_export_tflite_matrix(task, dynamic, int8, half, batch):
|
153
|
+
def test_export_tflite_matrix(task, dynamic, int8, half, batch, nms):
|
146
154
|
"""Test YOLO exports to TFLite format considering various export configurations."""
|
147
155
|
file = YOLO(TASK2MODEL[task]).export(
|
148
|
-
format="tflite",
|
149
|
-
imgsz=32,
|
150
|
-
dynamic=dynamic,
|
151
|
-
int8=int8,
|
152
|
-
half=half,
|
153
|
-
batch=batch,
|
156
|
+
format="tflite", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
|
154
157
|
)
|
155
158
|
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
156
159
|
Path(file).unlink() # cleanup
|
@@ -75,7 +75,7 @@ from ultralytics.data.dataset import YOLODataset
|
|
75
75
|
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
76
76
|
from ultralytics.nn.autobackend import check_class_names, default_class_names
|
77
77
|
from ultralytics.nn.modules import C2f, Classify, Detect, RTDETRDecoder
|
78
|
-
from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
|
78
|
+
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, WorldModel
|
79
79
|
from ultralytics.utils import (
|
80
80
|
ARM64,
|
81
81
|
DEFAULT_CFG,
|
@@ -103,7 +103,7 @@ from ultralytics.utils.checks import (
|
|
103
103
|
)
|
104
104
|
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
|
105
105
|
from ultralytics.utils.files import file_size, spaces_in_path
|
106
|
-
from ultralytics.utils.ops import Profile
|
106
|
+
from ultralytics.utils.ops import Profile, nms_rotated, xywh2xyxy
|
107
107
|
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device
|
108
108
|
|
109
109
|
|
@@ -111,16 +111,16 @@ def export_formats():
|
|
111
111
|
"""Ultralytics YOLO export formats."""
|
112
112
|
x = [
|
113
113
|
["PyTorch", "-", ".pt", True, True, []],
|
114
|
-
["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize"]],
|
115
|
-
["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify"]],
|
116
|
-
["OpenVINO", "openvino", "_openvino_model", True, False, ["batch", "dynamic", "half", "int8"]],
|
117
|
-
["TensorRT", "engine", ".engine", False, True, ["batch", "dynamic", "half", "int8", "simplify"]],
|
114
|
+
["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize", "nms"]],
|
115
|
+
["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify", "nms"]],
|
116
|
+
["OpenVINO", "openvino", "_openvino_model", True, False, ["batch", "dynamic", "half", "int8", "nms"]],
|
117
|
+
["TensorRT", "engine", ".engine", False, True, ["batch", "dynamic", "half", "int8", "simplify", "nms"]],
|
118
118
|
["CoreML", "coreml", ".mlpackage", True, False, ["batch", "half", "int8", "nms"]],
|
119
|
-
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras"]],
|
119
|
+
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras", "nms"]],
|
120
120
|
["TensorFlow GraphDef", "pb", ".pb", True, True, ["batch"]],
|
121
|
-
["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8"]],
|
121
|
+
["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8", "nms"]],
|
122
122
|
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False, []],
|
123
|
-
["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8"]],
|
123
|
+
["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8", "nms"]],
|
124
124
|
["PaddlePaddle", "paddle", "_paddle_model", True, True, ["batch"]],
|
125
125
|
["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
|
126
126
|
["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
|
@@ -281,6 +281,12 @@ class Exporter:
|
|
281
281
|
)
|
282
282
|
if self.args.int8 and tflite:
|
283
283
|
assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
|
284
|
+
if self.args.nms:
|
285
|
+
assert not isinstance(model, ClassificationModel), "'nms=True' is not valid for classification models."
|
286
|
+
if getattr(model, "end2end", False):
|
287
|
+
LOGGER.warning("WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
|
288
|
+
self.args.nms = False
|
289
|
+
self.args.conf = self.args.conf or 0.25 # set conf default value for nms export
|
284
290
|
if edgetpu:
|
285
291
|
if not LINUX:
|
286
292
|
raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler")
|
@@ -344,8 +350,8 @@ class Exporter:
|
|
344
350
|
)
|
345
351
|
|
346
352
|
y = None
|
347
|
-
for _ in range(2):
|
348
|
-
y = model(im)
|
353
|
+
for _ in range(2): # dry runs
|
354
|
+
y = NMSModel(model, self.args)(im) if self.args.nms and not coreml else model(im)
|
349
355
|
if self.args.half and onnx and self.device.type != "cpu":
|
350
356
|
im, model = im.half(), model.half() # to FP16
|
351
357
|
|
@@ -476,7 +482,7 @@ class Exporter:
|
|
476
482
|
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
|
477
483
|
f = self.file.with_suffix(".torchscript")
|
478
484
|
|
479
|
-
ts = torch.jit.trace(self.model, self.im, strict=False)
|
485
|
+
ts = torch.jit.trace(NMSModel(self.model, self.args) if self.args.nms else self.model, self.im, strict=False)
|
480
486
|
extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
|
481
487
|
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
482
488
|
LOGGER.info(f"{prefix} optimizing for mobile...")
|
@@ -499,19 +505,29 @@ class Exporter:
|
|
499
505
|
opset_version = self.args.opset or get_latest_opset()
|
500
506
|
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...")
|
501
507
|
f = str(self.file.with_suffix(".onnx"))
|
502
|
-
|
503
508
|
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
|
504
509
|
dynamic = self.args.dynamic
|
505
510
|
if dynamic:
|
511
|
+
self.model.cpu() # dynamic=True only compatible with cpu
|
506
512
|
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
|
507
513
|
if isinstance(self.model, SegmentationModel):
|
508
514
|
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
|
509
515
|
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
|
510
516
|
elif isinstance(self.model, DetectionModel):
|
511
517
|
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
|
518
|
+
if self.args.nms: # only batch size is dynamic with NMS
|
519
|
+
dynamic["output0"].pop(2)
|
520
|
+
if self.args.nms and self.model.task == "obb":
|
521
|
+
self.args.opset = opset_version # for NMSModel
|
522
|
+
# OBB error https://github.com/pytorch/pytorch/issues/110859#issuecomment-1757841865
|
523
|
+
try:
|
524
|
+
torch.onnx.register_custom_op_symbolic("aten::lift_fresh", lambda g, x: x, opset_version)
|
525
|
+
except RuntimeError: # it will fail if it's already registered
|
526
|
+
pass
|
527
|
+
check_requirements("onnxslim>=0.1.46") # Older versions has bug with OBB
|
512
528
|
|
513
529
|
torch.onnx.export(
|
514
|
-
self.model.
|
530
|
+
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
515
531
|
self.im.cpu() if dynamic else self.im,
|
516
532
|
f,
|
517
533
|
verbose=False,
|
@@ -553,7 +569,7 @@ class Exporter:
|
|
553
569
|
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
|
554
570
|
assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed"
|
555
571
|
ov_model = ov.convert_model(
|
556
|
-
self.model,
|
572
|
+
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
557
573
|
input=None if self.args.dynamic else [self.im.shape],
|
558
574
|
example_input=self.im,
|
559
575
|
)
|
@@ -736,9 +752,6 @@ class Exporter:
|
|
736
752
|
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
|
737
753
|
if f.is_dir():
|
738
754
|
shutil.rmtree(f)
|
739
|
-
if self.args.nms and getattr(self.model, "end2end", False):
|
740
|
-
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
|
741
|
-
self.args.nms = False
|
742
755
|
|
743
756
|
bias = [0.0, 0.0, 0.0]
|
744
757
|
scale = 1 / 255
|
@@ -1438,8 +1451,8 @@ class Exporter:
|
|
1438
1451
|
nms.coordinatesOutputFeatureName = "coordinates"
|
1439
1452
|
nms.iouThresholdInputFeatureName = "iouThreshold"
|
1440
1453
|
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
|
1441
|
-
nms.iouThreshold =
|
1442
|
-
nms.confidenceThreshold =
|
1454
|
+
nms.iouThreshold = self.args.iou
|
1455
|
+
nms.confidenceThreshold = self.args.conf
|
1443
1456
|
nms.pickTop.perClass = True
|
1444
1457
|
nms.stringClassLabels.vector.extend(names.values())
|
1445
1458
|
nms_model = ct.models.MLModel(nms_spec)
|
@@ -1507,3 +1520,103 @@ class IOSDetectModel(torch.nn.Module):
|
|
1507
1520
|
"""Normalize predictions of object detection model with input size-dependent factors."""
|
1508
1521
|
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
|
1509
1522
|
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|
1523
|
+
|
1524
|
+
|
1525
|
+
class NMSModel(torch.nn.Module):
|
1526
|
+
"""Model wrapper with embedded NMS for Detect, Segment, Pose and OBB."""
|
1527
|
+
|
1528
|
+
def __init__(self, model, args):
|
1529
|
+
"""
|
1530
|
+
Initialize the NMSModel.
|
1531
|
+
|
1532
|
+
Args:
|
1533
|
+
model (torch.nn.module): The model to wrap with NMS postprocessing.
|
1534
|
+
args (Namespace): The export arguments.
|
1535
|
+
"""
|
1536
|
+
super().__init__()
|
1537
|
+
self.model = model
|
1538
|
+
self.args = args
|
1539
|
+
self.obb = model.task == "obb"
|
1540
|
+
self.is_tf = self.args.format in frozenset({"saved_model", "tflite", "tfjs"})
|
1541
|
+
|
1542
|
+
def forward(self, x):
|
1543
|
+
"""
|
1544
|
+
Performs inference with NMS post-processing. Supports Detect, Segment, OBB and Pose.
|
1545
|
+
|
1546
|
+
Args:
|
1547
|
+
x (torch.tensor): The preprocessed tensor with shape (N, 3, H, W).
|
1548
|
+
|
1549
|
+
Returns:
|
1550
|
+
out (torch.tensor): The post-processed results with shape (N, max_det, 4 + 2 + extra_shape).
|
1551
|
+
"""
|
1552
|
+
from functools import partial
|
1553
|
+
|
1554
|
+
from torchvision.ops import nms
|
1555
|
+
|
1556
|
+
preds = self.model(x)
|
1557
|
+
pred = preds[0] if isinstance(preds, tuple) else preds
|
1558
|
+
pred = pred.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
|
1559
|
+
extra_shape = pred.shape[-1] - (4 + self.model.nc) # extras from Segment, OBB, Pose
|
1560
|
+
boxes, scores, extras = pred.split([4, self.model.nc, extra_shape], dim=2)
|
1561
|
+
scores, classes = scores.max(dim=-1)
|
1562
|
+
self.args.max_det = min(pred.shape[1], self.args.max_det) # in case num_anchors < max_det
|
1563
|
+
# (N, max_det, 4 coords + 1 class score + 1 class label + extra_shape).
|
1564
|
+
out = torch.zeros(
|
1565
|
+
boxes.shape[0],
|
1566
|
+
self.args.max_det,
|
1567
|
+
boxes.shape[-1] + 2 + extra_shape,
|
1568
|
+
device=boxes.device,
|
1569
|
+
dtype=boxes.dtype,
|
1570
|
+
)
|
1571
|
+
for i, (box, cls, score, extra) in enumerate(zip(boxes, classes, scores, extras)):
|
1572
|
+
mask = score > self.args.conf
|
1573
|
+
if self.is_tf:
|
1574
|
+
# TFLite GatherND error if mask is empty
|
1575
|
+
score *= mask
|
1576
|
+
# Explicit length otherwise reshape error, hardcoded to `self.args.max_det * 5`
|
1577
|
+
mask = score.topk(min(self.args.max_det * 5, score.shape[0])).indices
|
1578
|
+
box, score, cls, extra = box[mask], score[mask], cls[mask], extra[mask]
|
1579
|
+
if not self.obb:
|
1580
|
+
box = xywh2xyxy(box)
|
1581
|
+
if self.is_tf:
|
1582
|
+
# TFlite bug returns less boxes
|
1583
|
+
box = torch.nn.functional.pad(box, (0, 0, 0, mask.shape[0] - box.shape[0]))
|
1584
|
+
nmsbox = box.clone()
|
1585
|
+
# `8` is the minimum value experimented to get correct NMS results for obb
|
1586
|
+
multiplier = 8 if self.obb else 1
|
1587
|
+
# Normalize boxes for NMS since large values for class offset causes issue with int8 quantization
|
1588
|
+
if self.args.format == "tflite": # TFLite is already normalized
|
1589
|
+
nmsbox *= multiplier
|
1590
|
+
else:
|
1591
|
+
nmsbox = multiplier * nmsbox / torch.tensor(x.shape[2:], device=box.device, dtype=box.dtype).max()
|
1592
|
+
if not self.args.agnostic_nms: # class-specific NMS
|
1593
|
+
end = 2 if self.obb else 4
|
1594
|
+
# fully explicit expansion otherwise reshape error
|
1595
|
+
# large max_wh causes issues when quantizing
|
1596
|
+
cls_offset = cls.reshape(-1, 1).expand(nmsbox.shape[0], end)
|
1597
|
+
offbox = nmsbox[:, :end] + cls_offset * multiplier
|
1598
|
+
nmsbox = torch.cat((offbox, nmsbox[:, end:]), dim=-1)
|
1599
|
+
nms_fn = (
|
1600
|
+
partial(
|
1601
|
+
nms_rotated,
|
1602
|
+
use_triu=not (
|
1603
|
+
self.is_tf
|
1604
|
+
or (self.args.opset or 14) < 14
|
1605
|
+
or (self.args.format == "openvino" and self.args.int8) # OpenVINO int8 error with triu
|
1606
|
+
),
|
1607
|
+
)
|
1608
|
+
if self.obb
|
1609
|
+
else nms
|
1610
|
+
)
|
1611
|
+
keep = nms_fn(
|
1612
|
+
torch.cat([nmsbox, extra], dim=-1) if self.obb else nmsbox,
|
1613
|
+
score,
|
1614
|
+
self.args.iou,
|
1615
|
+
)[: self.args.max_det]
|
1616
|
+
dets = torch.cat(
|
1617
|
+
[box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1).to(out.dtype), extra[keep]], dim=-1
|
1618
|
+
)
|
1619
|
+
# Zero-pad to max_det size to avoid reshape error
|
1620
|
+
pad = (0, 0, 0, self.args.max_det - dets.shape[0])
|
1621
|
+
out[i] = torch.nn.functional.pad(dets, pad)
|
1622
|
+
return (out, preds[1]) if self.model.task == "segment" else out
|
@@ -305,7 +305,7 @@ class Results(SimpleClass):
|
|
305
305
|
if v is not None:
|
306
306
|
return len(v)
|
307
307
|
|
308
|
-
def update(self, boxes=None, masks=None, probs=None, obb=None):
|
308
|
+
def update(self, boxes=None, masks=None, probs=None, obb=None, keypoints=None):
|
309
309
|
"""
|
310
310
|
Updates the Results object with new detection data.
|
311
311
|
|
@@ -318,6 +318,7 @@ class Results(SimpleClass):
|
|
318
318
|
masks (torch.Tensor | None): A tensor of shape (N, H, W) containing segmentation masks.
|
319
319
|
probs (torch.Tensor | None): A tensor of shape (num_classes,) containing class probabilities.
|
320
320
|
obb (torch.Tensor | None): A tensor of shape (N, 5) containing oriented bounding box coordinates.
|
321
|
+
keypoints (torch.Tensor | None): A tensor of shape (N, 17, 3) containing keypoints.
|
321
322
|
|
322
323
|
Examples:
|
323
324
|
>>> results = model("image.jpg")
|
@@ -332,6 +333,8 @@ class Results(SimpleClass):
|
|
332
333
|
self.probs = probs
|
333
334
|
if obb is not None:
|
334
335
|
self.obb = OBB(obb, self.orig_shape)
|
336
|
+
if keypoints is not None:
|
337
|
+
self.keypoints = Keypoints(keypoints, self.orig_shape)
|
335
338
|
|
336
339
|
def _apply(self, fn, *args, **kwargs):
|
337
340
|
"""
|
@@ -38,13 +38,7 @@ class NASValidator(DetectionValidator):
|
|
38
38
|
"""Apply Non-maximum suppression to prediction outputs."""
|
39
39
|
boxes = ops.xyxy2xywh(preds_in[0][0])
|
40
40
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
41
|
-
return
|
41
|
+
return super().postprocess(
|
42
42
|
preds,
|
43
|
-
self.args.conf,
|
44
|
-
self.args.iou,
|
45
|
-
labels=self.lb,
|
46
|
-
multi_label=False,
|
47
|
-
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
48
|
-
max_det=self.args.max_det,
|
49
43
|
max_time_img=0.5,
|
50
44
|
)
|
@@ -0,0 +1,73 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
from ultralytics.engine.predictor import BasePredictor
|
4
|
+
from ultralytics.engine.results import Results
|
5
|
+
from ultralytics.utils import ops
|
6
|
+
|
7
|
+
|
8
|
+
class DetectionPredictor(BasePredictor):
|
9
|
+
"""
|
10
|
+
A class extending the BasePredictor class for prediction based on a detection model.
|
11
|
+
|
12
|
+
Example:
|
13
|
+
```python
|
14
|
+
from ultralytics.utils import ASSETS
|
15
|
+
from ultralytics.models.yolo.detect import DetectionPredictor
|
16
|
+
|
17
|
+
args = dict(model="yolo11n.pt", source=ASSETS)
|
18
|
+
predictor = DetectionPredictor(overrides=args)
|
19
|
+
predictor.predict_cli()
|
20
|
+
```
|
21
|
+
"""
|
22
|
+
|
23
|
+
def postprocess(self, preds, img, orig_imgs, **kwargs):
|
24
|
+
"""Post-processes predictions and returns a list of Results objects."""
|
25
|
+
preds = ops.non_max_suppression(
|
26
|
+
preds,
|
27
|
+
self.args.conf,
|
28
|
+
self.args.iou,
|
29
|
+
self.args.classes,
|
30
|
+
self.args.agnostic_nms,
|
31
|
+
max_det=self.args.max_det,
|
32
|
+
nc=len(self.model.names),
|
33
|
+
end2end=getattr(self.model, "end2end", False),
|
34
|
+
rotated=self.args.task == "obb",
|
35
|
+
)
|
36
|
+
|
37
|
+
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
38
|
+
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
39
|
+
|
40
|
+
return self.construct_results(preds, img, orig_imgs, **kwargs)
|
41
|
+
|
42
|
+
def construct_results(self, preds, img, orig_imgs):
|
43
|
+
"""
|
44
|
+
Constructs a list of result objects from the predictions.
|
45
|
+
|
46
|
+
Args:
|
47
|
+
preds (List[torch.Tensor]): List of predicted bounding boxes and scores.
|
48
|
+
img (torch.Tensor): The image after preprocessing.
|
49
|
+
orig_imgs (List[np.ndarray]): List of original images before preprocessing.
|
50
|
+
|
51
|
+
Returns:
|
52
|
+
(list): List of result objects containing the original images, image paths, class names, and bounding boxes.
|
53
|
+
"""
|
54
|
+
return [
|
55
|
+
self.construct_result(pred, img, orig_img, img_path)
|
56
|
+
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
|
57
|
+
]
|
58
|
+
|
59
|
+
def construct_result(self, pred, img, orig_img, img_path):
|
60
|
+
"""
|
61
|
+
Constructs the result object from the prediction.
|
62
|
+
|
63
|
+
Args:
|
64
|
+
pred (torch.Tensor): The predicted bounding boxes and scores.
|
65
|
+
img (torch.Tensor): The image after preprocessing.
|
66
|
+
orig_img (np.ndarray): The original image before preprocessing.
|
67
|
+
img_path (str): The path to the original image.
|
68
|
+
|
69
|
+
Returns:
|
70
|
+
(Results): The result object containing the original image, image path, class names, and bounding boxes.
|
71
|
+
"""
|
72
|
+
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
73
|
+
return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])
|
@@ -78,6 +78,7 @@ class DetectionValidator(BaseValidator):
|
|
78
78
|
self.args.save_json |= self.args.val and (self.is_coco or self.is_lvis) and not self.training # run final val
|
79
79
|
self.names = model.names
|
80
80
|
self.nc = len(model.names)
|
81
|
+
self.end2end = getattr(model, "end2end", False)
|
81
82
|
self.metrics.names = self.names
|
82
83
|
self.metrics.plot = self.args.plots
|
83
84
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)
|
@@ -96,9 +97,12 @@ class DetectionValidator(BaseValidator):
|
|
96
97
|
self.args.conf,
|
97
98
|
self.args.iou,
|
98
99
|
labels=self.lb,
|
100
|
+
nc=self.nc,
|
99
101
|
multi_label=True,
|
100
102
|
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
101
103
|
max_det=self.args.max_det,
|
104
|
+
end2end=self.end2end,
|
105
|
+
rotated=self.args.task == "obb",
|
102
106
|
)
|
103
107
|
|
104
108
|
def _prepare_batch(self, si, batch):
|
@@ -0,0 +1,46 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import torch
|
4
|
+
|
5
|
+
from ultralytics.engine.results import Results
|
6
|
+
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
7
|
+
from ultralytics.utils import DEFAULT_CFG, ops
|
8
|
+
|
9
|
+
|
10
|
+
class OBBPredictor(DetectionPredictor):
|
11
|
+
"""
|
12
|
+
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model.
|
13
|
+
|
14
|
+
Example:
|
15
|
+
```python
|
16
|
+
from ultralytics.utils import ASSETS
|
17
|
+
from ultralytics.models.yolo.obb import OBBPredictor
|
18
|
+
|
19
|
+
args = dict(model="yolo11n-obb.pt", source=ASSETS)
|
20
|
+
predictor = OBBPredictor(overrides=args)
|
21
|
+
predictor.predict_cli()
|
22
|
+
```
|
23
|
+
"""
|
24
|
+
|
25
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
26
|
+
"""Initializes OBBPredictor with optional model and data configuration overrides."""
|
27
|
+
super().__init__(cfg, overrides, _callbacks)
|
28
|
+
self.args.task = "obb"
|
29
|
+
|
30
|
+
def construct_result(self, pred, img, orig_img, img_path):
|
31
|
+
"""
|
32
|
+
Constructs the result object from the prediction.
|
33
|
+
|
34
|
+
Args:
|
35
|
+
pred (torch.Tensor): The predicted bounding boxes, scores, and rotation angles.
|
36
|
+
img (torch.Tensor): The image after preprocessing.
|
37
|
+
orig_img (np.ndarray): The original image before preprocessing.
|
38
|
+
img_path (str): The path to the original image.
|
39
|
+
|
40
|
+
Returns:
|
41
|
+
(Results): The result object containing the original image, image path, class names, and oriented bounding boxes.
|
42
|
+
"""
|
43
|
+
rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1))
|
44
|
+
rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True)
|
45
|
+
obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1)
|
46
|
+
return Results(orig_img, path=img_path, names=self.model.names, obb=obb)
|
@@ -36,20 +36,6 @@ class OBBValidator(DetectionValidator):
|
|
36
36
|
val = self.data.get(self.args.split, "") # validation path
|
37
37
|
self.is_dota = isinstance(val, str) and "DOTA" in val # is COCO
|
38
38
|
|
39
|
-
def postprocess(self, preds):
|
40
|
-
"""Apply Non-maximum suppression to prediction outputs."""
|
41
|
-
return ops.non_max_suppression(
|
42
|
-
preds,
|
43
|
-
self.args.conf,
|
44
|
-
self.args.iou,
|
45
|
-
labels=self.lb,
|
46
|
-
nc=self.nc,
|
47
|
-
multi_label=True,
|
48
|
-
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
49
|
-
max_det=self.args.max_det,
|
50
|
-
rotated=True,
|
51
|
-
)
|
52
|
-
|
53
39
|
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
54
40
|
"""
|
55
41
|
Perform computation of the correct prediction matrix for a batch of detections and ground truth bounding boxes.
|
@@ -1,6 +1,5 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
-
from ultralytics.engine.results import Results
|
4
3
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
5
4
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops
|
6
5
|
|
@@ -30,27 +29,21 @@ class PosePredictor(DetectionPredictor):
|
|
30
29
|
"See https://github.com/ultralytics/ultralytics/issues/4031."
|
31
30
|
)
|
32
31
|
|
33
|
-
def
|
34
|
-
"""
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
52
|
-
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
|
53
|
-
results.append(
|
54
|
-
Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)
|
55
|
-
)
|
56
|
-
return results
|
32
|
+
def construct_result(self, pred, img, orig_img, img_path):
|
33
|
+
"""
|
34
|
+
Constructs the result object from the prediction.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
pred (torch.Tensor): The predicted bounding boxes, scores, and keypoints.
|
38
|
+
img (torch.Tensor): The image after preprocessing.
|
39
|
+
orig_img (np.ndarray): The original image before preprocessing.
|
40
|
+
img_path (str): The path to the original image.
|
41
|
+
|
42
|
+
Returns:
|
43
|
+
(Results): The result object containing the original image, image path, class names, bounding boxes, and keypoints.
|
44
|
+
"""
|
45
|
+
result = super().construct_result(pred, img, orig_img, img_path)
|
46
|
+
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
47
|
+
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
|
48
|
+
result.update(keypoints=pred_kpts)
|
49
|
+
return result
|