ultralytics 8.3.38__tar.gz → 8.3.40__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (243) hide show
  1. {ultralytics-8.3.38/ultralytics.egg-info → ultralytics-8.3.40}/PKG-INFO +13 -9
  2. {ultralytics-8.3.38 → ultralytics-8.3.40}/README.md +12 -8
  3. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/__init__.py +1 -1
  4. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/__init__.py +9 -7
  5. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/model.py +29 -0
  6. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/classify/predict.py +1 -1
  7. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/detect/train.py +1 -1
  8. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/modules/head.py +1 -1
  9. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/__init__.py +2 -0
  10. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/ai_gym.py +1 -1
  11. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/solutions.py +5 -1
  12. ultralytics-8.3.40/ultralytics/solutions/trackzone.py +68 -0
  13. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/ops.py +2 -3
  14. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/plotting.py +54 -10
  15. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/torch_utils.py +5 -11
  16. {ultralytics-8.3.38 → ultralytics-8.3.40/ultralytics.egg-info}/PKG-INFO +13 -9
  17. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics.egg-info/SOURCES.txt +1 -0
  18. {ultralytics-8.3.38 → ultralytics-8.3.40}/LICENSE +0 -0
  19. {ultralytics-8.3.38 → ultralytics-8.3.40}/pyproject.toml +0 -0
  20. {ultralytics-8.3.38 → ultralytics-8.3.40}/setup.cfg +0 -0
  21. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/__init__.py +0 -0
  22. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/conftest.py +0 -0
  23. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/test_cli.py +0 -0
  24. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/test_cuda.py +0 -0
  25. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/test_engine.py +0 -0
  26. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/test_exports.py +0 -0
  27. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/test_integrations.py +0 -0
  28. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/test_python.py +0 -0
  29. {ultralytics-8.3.38 → ultralytics-8.3.40}/tests/test_solutions.py +0 -0
  30. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/assets/bus.jpg +0 -0
  31. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/assets/zidane.jpg +0 -0
  32. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  33. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  34. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  35. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  36. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  37. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  38. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  39. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  40. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  41. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  42. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  43. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  44. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  45. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/coco.yaml +0 -0
  46. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  47. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  48. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  49. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  50. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  51. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  52. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  53. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  54. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  55. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  56. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  57. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  58. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/signature.yaml +0 -0
  59. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  60. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/datasets/xView.yaml +0 -0
  61. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/default.yaml +0 -0
  62. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  63. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  64. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  65. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  66. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  67. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  68. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  69. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  70. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  71. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  72. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  73. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  74. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  75. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  76. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  77. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  78. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  79. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  80. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  81. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  82. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  83. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  84. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  85. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  86. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  87. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  88. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  89. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  90. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  91. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  92. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  93. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  94. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  95. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  96. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  97. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  98. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  99. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  100. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  101. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  102. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  103. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  104. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  105. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  106. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  107. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/solutions/default.yaml +0 -0
  108. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  109. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  110. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/__init__.py +0 -0
  111. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/annotator.py +0 -0
  112. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/augment.py +0 -0
  113. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/base.py +0 -0
  114. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/build.py +0 -0
  115. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/converter.py +0 -0
  116. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/dataset.py +0 -0
  117. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/loaders.py +0 -0
  118. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/split_dota.py +0 -0
  119. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/data/utils.py +0 -0
  120. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/__init__.py +0 -0
  121. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/exporter.py +0 -0
  122. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/predictor.py +0 -0
  123. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/results.py +0 -0
  124. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/trainer.py +0 -0
  125. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/tuner.py +0 -0
  126. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/engine/validator.py +0 -0
  127. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/hub/__init__.py +0 -0
  128. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/hub/auth.py +0 -0
  129. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/hub/google/__init__.py +0 -0
  130. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/hub/session.py +0 -0
  131. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/hub/utils.py +0 -0
  132. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/__init__.py +0 -0
  133. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/fastsam/__init__.py +0 -0
  134. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/fastsam/model.py +0 -0
  135. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/fastsam/predict.py +0 -0
  136. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/fastsam/utils.py +0 -0
  137. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/fastsam/val.py +0 -0
  138. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/nas/__init__.py +0 -0
  139. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/nas/model.py +0 -0
  140. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/nas/predict.py +0 -0
  141. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/nas/val.py +0 -0
  142. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/rtdetr/__init__.py +0 -0
  143. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/rtdetr/model.py +0 -0
  144. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/rtdetr/predict.py +0 -0
  145. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/rtdetr/train.py +0 -0
  146. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/rtdetr/val.py +0 -0
  147. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/__init__.py +0 -0
  148. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/amg.py +0 -0
  149. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/build.py +0 -0
  150. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/model.py +0 -0
  151. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/__init__.py +0 -0
  152. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/blocks.py +0 -0
  153. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/decoders.py +0 -0
  154. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/encoders.py +0 -0
  155. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  156. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/sam.py +0 -0
  157. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  158. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/transformer.py +0 -0
  159. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/modules/utils.py +0 -0
  160. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/sam/predict.py +0 -0
  161. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/utils/__init__.py +0 -0
  162. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/utils/loss.py +0 -0
  163. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/utils/ops.py +0 -0
  164. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/__init__.py +0 -0
  165. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/classify/__init__.py +0 -0
  166. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/classify/train.py +0 -0
  167. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/classify/val.py +0 -0
  168. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/detect/__init__.py +0 -0
  169. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/detect/predict.py +0 -0
  170. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/detect/val.py +0 -0
  171. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/model.py +0 -0
  172. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/obb/__init__.py +0 -0
  173. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/obb/predict.py +0 -0
  174. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/obb/train.py +0 -0
  175. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/obb/val.py +0 -0
  176. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/pose/__init__.py +0 -0
  177. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/pose/predict.py +0 -0
  178. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/pose/train.py +0 -0
  179. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/pose/val.py +0 -0
  180. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/segment/__init__.py +0 -0
  181. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/segment/predict.py +0 -0
  182. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/segment/train.py +0 -0
  183. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/segment/val.py +0 -0
  184. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/world/__init__.py +0 -0
  185. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/world/train.py +0 -0
  186. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/models/yolo/world/train_world.py +0 -0
  187. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/__init__.py +0 -0
  188. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/autobackend.py +0 -0
  189. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/modules/__init__.py +0 -0
  190. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/modules/activation.py +0 -0
  191. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/modules/block.py +0 -0
  192. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/modules/conv.py +0 -0
  193. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/modules/transformer.py +0 -0
  194. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/modules/utils.py +0 -0
  195. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/nn/tasks.py +0 -0
  196. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/analytics.py +0 -0
  197. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/distance_calculation.py +0 -0
  198. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/heatmap.py +0 -0
  199. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/object_counter.py +0 -0
  200. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/parking_management.py +0 -0
  201. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/queue_management.py +0 -0
  202. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/region_counter.py +0 -0
  203. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/speed_estimation.py +0 -0
  204. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/solutions/streamlit_inference.py +0 -0
  205. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/__init__.py +0 -0
  206. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/basetrack.py +0 -0
  207. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/bot_sort.py +0 -0
  208. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/byte_tracker.py +0 -0
  209. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/track.py +0 -0
  210. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/utils/__init__.py +0 -0
  211. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/utils/gmc.py +0 -0
  212. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  213. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/trackers/utils/matching.py +0 -0
  214. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/__init__.py +0 -0
  215. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/autobatch.py +0 -0
  216. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/benchmarks.py +0 -0
  217. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/__init__.py +0 -0
  218. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/base.py +0 -0
  219. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/clearml.py +0 -0
  220. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/comet.py +0 -0
  221. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/dvc.py +0 -0
  222. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/hub.py +0 -0
  223. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/mlflow.py +0 -0
  224. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/neptune.py +0 -0
  225. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/raytune.py +0 -0
  226. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  227. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/callbacks/wb.py +0 -0
  228. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/checks.py +0 -0
  229. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/dist.py +0 -0
  230. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/downloads.py +0 -0
  231. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/errors.py +0 -0
  232. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/files.py +0 -0
  233. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/instance.py +0 -0
  234. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/loss.py +0 -0
  235. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/metrics.py +0 -0
  236. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/patches.py +0 -0
  237. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/tal.py +0 -0
  238. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/triton.py +0 -0
  239. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics/utils/tuner.py +0 -0
  240. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics.egg-info/dependency_links.txt +0 -0
  241. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics.egg-info/entry_points.txt +0 -0
  242. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics.egg-info/requires.txt +0 -0
  243. {ultralytics-8.3.38 → ultralytics-8.3.40}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.38
3
+ Version: 8.3.40
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -115,7 +115,9 @@ We hope that the resources here will help you get the most out of YOLO. Please b
115
115
 
116
116
  To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
117
117
 
118
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots"></a>
118
+ <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
119
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
120
+ </a>
119
121
 
120
122
  <div align="center">
121
123
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
@@ -166,7 +168,7 @@ YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` comm
166
168
  yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
167
169
  ```
168
170
 
169
- `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
171
+ `yolo` can be used for a variety of tasks and modes and accepts additional arguments, e.g. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
170
172
 
171
173
  ### Python
172
174
 
@@ -203,11 +205,13 @@ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more exam
203
205
 
204
206
  ## <div align="center">Models</div>
205
207
 
206
- YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
208
+ YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models. All [Models](https://docs.ultralytics.com/models/) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
207
209
 
208
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
209
-
210
- All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
210
+ <a href="https://docs.ultralytics.com/tasks/" target="_blank">
211
+ <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
212
+ </a>
213
+ <br>
214
+ <br>
211
215
 
212
216
  <details open><summary>Detection (COCO)</summary>
213
217
 
@@ -298,9 +302,9 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
298
302
 
299
303
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
300
304
 
301
- <br>
302
305
  <a href="https://www.ultralytics.com/hub" target="_blank">
303
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
306
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
307
+ </a>
304
308
  <br>
305
309
  <br>
306
310
 
@@ -27,7 +27,9 @@ We hope that the resources here will help you get the most out of YOLO. Please b
27
27
 
28
28
  To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
29
29
 
30
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots"></a>
30
+ <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
31
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
32
+ </a>
31
33
 
32
34
  <div align="center">
33
35
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
@@ -78,7 +80,7 @@ YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` comm
78
80
  yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
79
81
  ```
80
82
 
81
- `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
83
+ `yolo` can be used for a variety of tasks and modes and accepts additional arguments, e.g. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
82
84
 
83
85
  ### Python
84
86
 
@@ -115,11 +117,13 @@ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more exam
115
117
 
116
118
  ## <div align="center">Models</div>
117
119
 
118
- YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
120
+ YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models. All [Models](https://docs.ultralytics.com/models/) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
119
121
 
120
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
121
-
122
- All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
122
+ <a href="https://docs.ultralytics.com/tasks/" target="_blank">
123
+ <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
124
+ </a>
125
+ <br>
126
+ <br>
123
127
 
124
128
  <details open><summary>Detection (COCO)</summary>
125
129
 
@@ -210,9 +214,9 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
210
214
 
211
215
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
212
216
 
213
- <br>
214
217
  <a href="https://www.ultralytics.com/hub" target="_blank">
215
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
218
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
219
+ </a>
216
220
  <br>
217
221
  <br>
218
222
 
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.38"
3
+ __version__ = "8.3.40"
4
4
 
5
5
  import os
6
6
 
@@ -11,7 +11,6 @@ import cv2
11
11
 
12
12
  from ultralytics.utils import (
13
13
  ASSETS,
14
- ASSETS_URL,
15
14
  DEFAULT_CFG,
16
15
  DEFAULT_CFG_DICT,
17
16
  DEFAULT_CFG_PATH,
@@ -42,6 +41,7 @@ SOLUTION_MAP = {
42
41
  "speed": ("SpeedEstimator", "estimate_speed"),
43
42
  "workout": ("AIGym", "monitor"),
44
43
  "analytics": ("Analytics", "process_data"),
44
+ "trackzone": ("TrackZone", "trackzone"),
45
45
  "help": None,
46
46
  }
47
47
 
@@ -75,13 +75,12 @@ ARGV = sys.argv or ["", ""] # sometimes sys.argv = []
75
75
  SOLUTIONS_HELP_MSG = f"""
76
76
  Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo solutions' usage overview:
77
77
 
78
- yolo SOLUTIONS SOLUTION ARGS
79
-
80
- Where SOLUTIONS (required) is a keyword
81
- SOLUTION (optional) is one of {list(SOLUTION_MAP.keys())}
82
- ARGS (optional) are any number of custom 'arg=value' pairs like 'show_in=True' that override defaults.
83
- See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
78
+ yolo solutions SOLUTION ARGS
84
79
 
80
+ Where SOLUTION (optional) is one of {list(SOLUTION_MAP.keys())}
81
+ ARGS (optional) are any number of custom 'arg=value' pairs like 'show_in=True' that override defaults
82
+ at https://docs.ultralytics.com/usage/cfg
83
+
85
84
  1. Call object counting solution
86
85
  yolo solutions count source="path/to/video/file.mp4" region=[(20, 400), (1080, 400), (1080, 360), (20, 360)]
87
86
 
@@ -96,6 +95,9 @@ SOLUTIONS_HELP_MSG = f"""
96
95
 
97
96
  5. Generate analytical graphs
98
97
  yolo solutions analytics analytics_type="pie"
98
+
99
+ 6. Track Objects Within Specific Zones
100
+ yolo solutions trackzone source="path/to/video/file.mp4" region=[(150, 150), (1130, 150), (1130, 570), (150, 570)]
99
101
  """
100
102
  CLI_HELP_MSG = f"""
101
103
  Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo' commands use the following syntax:
@@ -144,6 +144,9 @@ class Model(nn.Module):
144
144
  else:
145
145
  self._load(model, task=task)
146
146
 
147
+ # Delete super().training for accessing self.model.training
148
+ del self.training
149
+
147
150
  def __call__(
148
151
  self,
149
152
  source: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor] = None,
@@ -1143,3 +1146,29 @@ class Model(nn.Module):
1143
1146
  """
1144
1147
  self.model.eval()
1145
1148
  return self
1149
+
1150
+ def __getattr__(self, name):
1151
+ """
1152
+ Enables accessing model attributes directly through the Model class.
1153
+
1154
+ This method provides a way to access attributes of the underlying model directly through the Model class
1155
+ instance. It first checks if the requested attribute is 'model', in which case it returns the model from
1156
+ the module dictionary. Otherwise, it delegates the attribute lookup to the underlying model.
1157
+
1158
+ Args:
1159
+ name (str): The name of the attribute to retrieve.
1160
+
1161
+ Returns:
1162
+ (Any): The requested attribute value.
1163
+
1164
+ Raises:
1165
+ AttributeError: If the requested attribute does not exist in the model.
1166
+
1167
+ Examples:
1168
+ >>> model = YOLO("yolo11n.pt")
1169
+ >>> print(model.stride)
1170
+ >>> print(model.task)
1171
+ """
1172
+ if name == "model":
1173
+ return self._modules["model"]
1174
+ return getattr(self.model, name)
@@ -54,6 +54,6 @@ class ClassificationPredictor(BasePredictor):
54
54
  orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
55
55
 
56
56
  return [
57
- Results(orig_img, path=img_path, names=self.model.names, probs=pred)
57
+ Results(orig_img, path=img_path, names=self.model.names, probs=pred.softmax(0))
58
58
  for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
59
59
  ]
@@ -146,5 +146,5 @@ class DetectionTrainer(BaseTrainer):
146
146
  """Get batch size by calculating memory occupation of model."""
147
147
  train_dataset = self.build_dataset(self.trainset, mode="train", batch=16)
148
148
  # 4 for mosaic augmentation
149
- max_num_obj = max(len(l["cls"]) for l in train_dataset.labels) * 4
149
+ max_num_obj = max(len(label["cls"]) for label in train_dataset.labels) * 4
150
150
  return super().auto_batch(max_num_obj)
@@ -296,7 +296,7 @@ class Classify(nn.Module):
296
296
  if isinstance(x, list):
297
297
  x = torch.cat(x, 1)
298
298
  x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
299
- return x if self.training else x.softmax(1)
299
+ return x
300
300
 
301
301
 
302
302
  class WorldDetect(Detect):
@@ -10,6 +10,7 @@ from .queue_management import QueueManager
10
10
  from .region_counter import RegionCounter
11
11
  from .speed_estimation import SpeedEstimator
12
12
  from .streamlit_inference import inference
13
+ from .trackzone import TrackZone
13
14
 
14
15
  __all__ = (
15
16
  "AIGym",
@@ -23,4 +24,5 @@ __all__ = (
23
24
  "Analytics",
24
25
  "inference",
25
26
  "RegionCounter",
27
+ "TrackZone",
26
28
  )
@@ -71,7 +71,7 @@ class AIGym(BaseSolution):
71
71
  >>> processed_image = gym.monitor(image)
72
72
  """
73
73
  # Extract tracks
74
- tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])[0]
74
+ tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"], **self.track_add_args)[0]
75
75
 
76
76
  if tracks.boxes.id is not None:
77
77
  # Extract and check keypoints
@@ -74,6 +74,10 @@ class BaseSolution:
74
74
  self.model = YOLO(self.CFG["model"])
75
75
  self.names = self.model.names
76
76
 
77
+ self.track_add_args = { # Tracker additional arguments for advance configuration
78
+ k: self.CFG[k] for k in ["verbose", "iou", "conf", "device", "max_det", "half", "tracker"]
79
+ }
80
+
77
81
  if IS_CLI and self.CFG["source"] is None:
78
82
  d_s = "solutions_ci_demo.mp4" if "-pose" not in self.CFG["model"] else "solution_ci_pose_demo.mp4"
79
83
  LOGGER.warning(f"⚠️ WARNING: source not provided. using default source {ASSETS_URL}/{d_s}")
@@ -98,7 +102,7 @@ class BaseSolution:
98
102
  >>> frame = cv2.imread("path/to/image.jpg")
99
103
  >>> solution.extract_tracks(frame)
100
104
  """
101
- self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"])
105
+ self.tracks = self.model.track(source=im0, persist=True, classes=self.CFG["classes"], **self.track_add_args)
102
106
 
103
107
  # Extract tracks for OBB or object detection
104
108
  self.track_data = self.tracks[0].obb or self.tracks[0].boxes
@@ -0,0 +1,68 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ import cv2
4
+ import numpy as np
5
+
6
+ from ultralytics.solutions.solutions import BaseSolution
7
+ from ultralytics.utils.plotting import Annotator, colors
8
+
9
+
10
+ class TrackZone(BaseSolution):
11
+ """
12
+ A class to manage region-based object tracking in a video stream.
13
+
14
+ This class extends the BaseSolution class and provides functionality for tracking objects within a specific region
15
+ defined by a polygonal area. Objects outside the region are excluded from tracking. It supports dynamic initialization
16
+ of the region, allowing either a default region or a user-specified polygon.
17
+
18
+ Attributes:
19
+ region (ndarray): The polygonal region for tracking, represented as a convex hull.
20
+
21
+ Methods:
22
+ trackzone: Processes each frame of the video, applying region-based tracking.
23
+
24
+ Examples:
25
+ >>> tracker = TrackZone()
26
+ >>> frame = cv2.imread("frame.jpg")
27
+ >>> processed_frame = tracker.trackzone(frame)
28
+ >>> cv2.imshow("Tracked Frame", processed_frame)
29
+ """
30
+
31
+ def __init__(self, **kwargs):
32
+ """Initializes the TrackZone class for tracking objects within a defined region in video streams."""
33
+ super().__init__(**kwargs)
34
+ default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)]
35
+ self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32))
36
+
37
+ def trackzone(self, im0):
38
+ """
39
+ Processes the input frame to track objects within a defined region.
40
+
41
+ This method initializes the annotator, creates a mask for the specified region, extracts tracks
42
+ only from the masked area, and updates tracking information. Objects outside the region are ignored.
43
+
44
+ Args:
45
+ im0 (numpy.ndarray): The input image or frame to be processed.
46
+
47
+ Returns:
48
+ (numpy.ndarray): The processed image with tracking id and bounding boxes annotations.
49
+
50
+ Examples:
51
+ >>> tracker = TrackZone()
52
+ >>> frame = cv2.imread("path/to/image.jpg")
53
+ >>> tracker.trackzone(frame)
54
+ """
55
+ self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
56
+ # Create a mask for the region and extract tracks from the masked image
57
+ masked_frame = cv2.bitwise_and(im0, im0, mask=cv2.fillPoly(np.zeros_like(im0[:, :, 0]), [self.region], 255))
58
+ self.extract_tracks(masked_frame)
59
+
60
+ cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2)
61
+
62
+ # Iterate over boxes, track ids, classes indexes list and draw bounding boxes
63
+ for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
64
+ self.annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True))
65
+
66
+ self.display_output(im0) # display output with base class function
67
+
68
+ return im0 # return output image for more usage
@@ -75,9 +75,8 @@ def segment2box(segment, width=640, height=640):
75
75
  (np.ndarray): the minimum and maximum x and y values of the segment.
76
76
  """
77
77
  x, y = segment.T # segment xy
78
- inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
79
- x = x[inside]
80
- y = y[inside]
78
+ x = x.clip(0, width)
79
+ y = y.clip(0, height)
81
80
  return (
82
81
  np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype)
83
82
  if any(x)
@@ -238,7 +238,16 @@ class Annotator:
238
238
  }
239
239
 
240
240
  def get_txt_color(self, color=(128, 128, 128), txt_color=(255, 255, 255)):
241
- """Assign text color based on background color."""
241
+ """
242
+ Assign text color based on background color.
243
+
244
+ Args:
245
+ color (tuple, optional): The background color of the rectangle for text (B, G, R).
246
+ txt_color (tuple, optional): The color of the text (R, G, B).
247
+
248
+ Returns:
249
+ txt_color (tuple): Text color for label
250
+ """
242
251
  if color in self.dark_colors:
243
252
  return 104, 31, 17
244
253
  elif color in self.light_colors:
@@ -544,7 +553,9 @@ class Annotator:
544
553
  bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).
545
554
 
546
555
  Returns:
547
- angle (degree): Degree value of angle between three points
556
+ width (float): Width of the bounding box.
557
+ height (float): Height of the bounding box.
558
+ area (float): Area enclosed by the bounding box.
548
559
  """
549
560
  x_min, y_min, x_max, y_max = bbox
550
561
  width = x_max - x_min
@@ -791,19 +802,52 @@ class Annotator:
791
802
  cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
792
803
  text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf)
793
804
 
794
- cv2.rectangle(
795
- self.im,
796
- (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
797
- (int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)),
798
- mask_color,
799
- -1,
800
- )
801
-
802
805
  if label:
806
+ cv2.rectangle(
807
+ self.im,
808
+ (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
809
+ (int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)),
810
+ mask_color,
811
+ -1,
812
+ )
803
813
  cv2.putText(
804
814
  self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1])), 0, self.sf, txt_color, self.tf
805
815
  )
806
816
 
817
+ def sweep_annotator(self, line_x=0, line_y=0, label=None, color=(221, 0, 186), txt_color=(255, 255, 255)):
818
+ """
819
+ Function for drawing a sweep annotation line and an optional label.
820
+
821
+ Args:
822
+ line_x (int): The x-coordinate of the sweep line.
823
+ line_y (int): The y-coordinate limit of the sweep line.
824
+ label (str, optional): Text label to be drawn in center of sweep line. If None, no label is drawn.
825
+ color (tuple): RGB color for the line and label background.
826
+ txt_color (tuple): RGB color for the label text.
827
+ """
828
+ # Draw the sweep line
829
+ cv2.line(self.im, (line_x, 0), (line_x, line_y), color, self.tf * 2)
830
+
831
+ # Draw label, if provided
832
+ if label:
833
+ (text_width, text_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf, self.tf)
834
+ cv2.rectangle(
835
+ self.im,
836
+ (line_x - text_width // 2 - 10, line_y // 2 - text_height // 2 - 10),
837
+ (line_x + text_width // 2 + 10, line_y // 2 + text_height // 2 + 10),
838
+ color,
839
+ -1,
840
+ )
841
+ cv2.putText(
842
+ self.im,
843
+ label,
844
+ (line_x - text_width // 2, line_y // 2 + text_height // 2),
845
+ cv2.FONT_HERSHEY_SIMPLEX,
846
+ self.sf,
847
+ txt_color,
848
+ self.tf,
849
+ )
850
+
807
851
  def plot_distance_and_line(
808
852
  self, pixels_distance, centroids, line_color=(104, 31, 17), centroid_color=(255, 0, 255)
809
853
  ):
@@ -301,28 +301,22 @@ def fuse_deconv_and_bn(deconv, bn):
301
301
 
302
302
 
303
303
  def model_info(model, detailed=False, verbose=True, imgsz=640):
304
- """
305
- Model information.
306
-
307
- imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320].
308
- """
304
+ """Print and return detailed model information layer by layer."""
309
305
  if not verbose:
310
306
  return
311
307
  n_p = get_num_params(model) # number of parameters
312
308
  n_g = get_num_gradients(model) # number of gradients
313
309
  n_l = len(list(model.modules())) # number of layers
314
310
  if detailed:
315
- LOGGER.info(
316
- f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}"
317
- )
311
+ LOGGER.info(f"{'layer':>5}{'name':>40}{'gradient':>10}{'parameters':>12}{'shape':>20}{'mu':>10}{'sigma':>10}")
318
312
  for i, (name, p) in enumerate(model.named_parameters()):
319
313
  name = name.replace("module_list.", "")
320
314
  LOGGER.info(
321
- "%5g %40s %9s %12g %20s %10.3g %10.3g %10s"
322
- % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype)
315
+ f"{i:>5g}{name:>40s}{p.requires_grad!r:>10}{p.numel():>12g}{str(list(p.shape)):>20s}"
316
+ f"{p.mean():>10.3g}{p.std():>10.3g}{str(p.dtype):>15s}"
323
317
  )
324
318
 
325
- flops = get_flops(model, imgsz)
319
+ flops = get_flops(model, imgsz) # imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
326
320
  fused = " (fused)" if getattr(model, "is_fused", lambda: False)() else ""
327
321
  fs = f", {flops:.1f} GFLOPs" if flops else ""
328
322
  yaml_file = getattr(model, "yaml_file", "") or getattr(model, "yaml", {}).get("yaml_file", "")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.38
3
+ Version: 8.3.40
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -115,7 +115,9 @@ We hope that the resources here will help you get the most out of YOLO. Please b
115
115
 
116
116
  To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
117
117
 
118
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots"></a>
118
+ <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
119
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
120
+ </a>
119
121
 
120
122
  <div align="center">
121
123
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
@@ -166,7 +168,7 @@ YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` comm
166
168
  yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
167
169
  ```
168
170
 
169
- `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
171
+ `yolo` can be used for a variety of tasks and modes and accepts additional arguments, e.g. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
170
172
 
171
173
  ### Python
172
174
 
@@ -203,11 +205,13 @@ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more exam
203
205
 
204
206
  ## <div align="center">Models</div>
205
207
 
206
- YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
208
+ YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models. All [Models](https://docs.ultralytics.com/models/) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
207
209
 
208
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
209
-
210
- All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
210
+ <a href="https://docs.ultralytics.com/tasks/" target="_blank">
211
+ <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
212
+ </a>
213
+ <br>
214
+ <br>
211
215
 
212
216
  <details open><summary>Detection (COCO)</summary>
213
217
 
@@ -298,9 +302,9 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
298
302
 
299
303
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
300
304
 
301
- <br>
302
305
  <a href="https://www.ultralytics.com/hub" target="_blank">
303
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
306
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
307
+ </a>
304
308
  <br>
305
309
  <br>
306
310
 
@@ -207,6 +207,7 @@ ultralytics/solutions/region_counter.py
207
207
  ultralytics/solutions/solutions.py
208
208
  ultralytics/solutions/speed_estimation.py
209
209
  ultralytics/solutions/streamlit_inference.py
210
+ ultralytics/solutions/trackzone.py
210
211
  ultralytics/trackers/__init__.py
211
212
  ultralytics/trackers/basetrack.py
212
213
  ultralytics/trackers/bot_sort.py
File without changes
File without changes