ultralytics 8.3.2__tar.gz → 8.3.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (244) hide show
  1. {ultralytics-8.3.2 → ultralytics-8.3.4}/PKG-INFO +40 -39
  2. {ultralytics-8.3.2 → ultralytics-8.3.4}/README.md +37 -37
  3. {ultralytics-8.3.2 → ultralytics-8.3.4}/pyproject.toml +10 -9
  4. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/__init__.py +1 -1
  5. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/exporter.py +10 -0
  6. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/trainer.py +2 -2
  7. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/hub/utils.py +1 -1
  8. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/predict.py +1 -0
  9. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/streamlit_inference.py +3 -3
  10. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/__init__.py +48 -47
  11. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/benchmarks.py +2 -2
  12. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/plotting.py +15 -12
  13. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/torch_utils.py +3 -1
  14. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics.egg-info/PKG-INFO +40 -39
  15. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics.egg-info/requires.txt +2 -1
  16. {ultralytics-8.3.2 → ultralytics-8.3.4}/LICENSE +0 -0
  17. {ultralytics-8.3.2 → ultralytics-8.3.4}/setup.cfg +0 -0
  18. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/__init__.py +0 -0
  19. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/conftest.py +0 -0
  20. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_cli.py +0 -0
  21. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_cuda.py +0 -0
  22. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_engine.py +0 -0
  23. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_explorer.py +0 -0
  24. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_exports.py +0 -0
  25. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_integrations.py +0 -0
  26. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_python.py +0 -0
  27. {ultralytics-8.3.2 → ultralytics-8.3.4}/tests/test_solutions.py +0 -0
  28. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/assets/bus.jpg +0 -0
  29. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/assets/zidane.jpg +0 -0
  30. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/__init__.py +0 -0
  31. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  32. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  33. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  34. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  35. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  36. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  37. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  38. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  39. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  40. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  41. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  42. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  43. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  44. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/coco.yaml +0 -0
  45. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  46. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  47. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  48. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  49. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  50. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  51. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  52. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  53. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  54. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  55. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  56. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/signature.yaml +0 -0
  57. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  58. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/datasets/xView.yaml +0 -0
  59. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/default.yaml +0 -0
  60. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  61. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  62. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  63. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  64. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  65. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  66. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  67. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  68. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  69. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  70. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  71. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  72. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  73. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  74. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  75. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  76. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  77. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  78. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  79. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  80. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  81. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  82. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  83. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  84. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  85. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  86. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  87. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  88. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  89. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  90. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  91. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  92. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  93. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  94. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  95. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  96. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  97. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  98. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  99. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  100. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  101. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  102. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  103. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  104. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  105. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  106. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  107. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/__init__.py +0 -0
  108. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/annotator.py +0 -0
  109. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/augment.py +0 -0
  110. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/base.py +0 -0
  111. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/build.py +0 -0
  112. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/converter.py +0 -0
  113. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/dataset.py +0 -0
  114. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/explorer/__init__.py +0 -0
  115. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/explorer/explorer.py +0 -0
  116. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/explorer/gui/__init__.py +0 -0
  117. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/explorer/gui/dash.py +0 -0
  118. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/explorer/utils.py +0 -0
  119. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/loaders.py +0 -0
  120. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/split_dota.py +0 -0
  121. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/data/utils.py +0 -0
  122. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/__init__.py +0 -0
  123. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/model.py +0 -0
  124. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/predictor.py +0 -0
  125. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/results.py +0 -0
  126. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/tuner.py +0 -0
  127. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/engine/validator.py +0 -0
  128. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/hub/__init__.py +0 -0
  129. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/hub/auth.py +0 -0
  130. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/hub/google/__init__.py +0 -0
  131. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/hub/session.py +0 -0
  132. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/__init__.py +0 -0
  133. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/fastsam/__init__.py +0 -0
  134. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/fastsam/model.py +0 -0
  135. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/fastsam/predict.py +0 -0
  136. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/fastsam/utils.py +0 -0
  137. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/fastsam/val.py +0 -0
  138. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/nas/__init__.py +0 -0
  139. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/nas/model.py +0 -0
  140. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/nas/predict.py +0 -0
  141. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/nas/val.py +0 -0
  142. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/rtdetr/__init__.py +0 -0
  143. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/rtdetr/model.py +0 -0
  144. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/rtdetr/predict.py +0 -0
  145. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/rtdetr/train.py +0 -0
  146. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/rtdetr/val.py +0 -0
  147. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/__init__.py +0 -0
  148. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/amg.py +0 -0
  149. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/build.py +0 -0
  150. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/model.py +0 -0
  151. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/__init__.py +0 -0
  152. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/blocks.py +0 -0
  153. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/decoders.py +0 -0
  154. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/encoders.py +0 -0
  155. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  156. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/sam.py +0 -0
  157. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  158. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/transformer.py +0 -0
  159. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/sam/modules/utils.py +0 -0
  160. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/utils/__init__.py +0 -0
  161. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/utils/loss.py +0 -0
  162. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/utils/ops.py +0 -0
  163. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/__init__.py +0 -0
  164. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/classify/__init__.py +0 -0
  165. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/classify/predict.py +0 -0
  166. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/classify/train.py +0 -0
  167. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/classify/val.py +0 -0
  168. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/detect/__init__.py +0 -0
  169. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/detect/predict.py +0 -0
  170. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/detect/train.py +0 -0
  171. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/detect/val.py +0 -0
  172. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/model.py +0 -0
  173. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/obb/__init__.py +0 -0
  174. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/obb/predict.py +0 -0
  175. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/obb/train.py +0 -0
  176. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/obb/val.py +0 -0
  177. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/pose/__init__.py +0 -0
  178. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/pose/predict.py +0 -0
  179. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/pose/train.py +0 -0
  180. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/pose/val.py +0 -0
  181. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/segment/__init__.py +0 -0
  182. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/segment/predict.py +0 -0
  183. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/segment/train.py +0 -0
  184. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/segment/val.py +0 -0
  185. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/world/__init__.py +0 -0
  186. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/world/train.py +0 -0
  187. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/models/yolo/world/train_world.py +0 -0
  188. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/__init__.py +0 -0
  189. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/autobackend.py +0 -0
  190. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/modules/__init__.py +0 -0
  191. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/modules/activation.py +0 -0
  192. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/modules/block.py +0 -0
  193. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/modules/conv.py +0 -0
  194. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/modules/head.py +0 -0
  195. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/modules/transformer.py +0 -0
  196. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/modules/utils.py +0 -0
  197. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/nn/tasks.py +0 -0
  198. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/__init__.py +0 -0
  199. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/ai_gym.py +0 -0
  200. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/analytics.py +0 -0
  201. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/distance_calculation.py +0 -0
  202. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/heatmap.py +0 -0
  203. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/object_counter.py +0 -0
  204. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/parking_management.py +0 -0
  205. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/queue_management.py +0 -0
  206. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/solutions/speed_estimation.py +0 -0
  207. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/__init__.py +0 -0
  208. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/basetrack.py +0 -0
  209. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/bot_sort.py +0 -0
  210. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/byte_tracker.py +0 -0
  211. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/track.py +0 -0
  212. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/utils/__init__.py +0 -0
  213. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/utils/gmc.py +0 -0
  214. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  215. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/trackers/utils/matching.py +0 -0
  216. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/autobatch.py +0 -0
  217. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/__init__.py +0 -0
  218. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/base.py +0 -0
  219. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/clearml.py +0 -0
  220. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/comet.py +0 -0
  221. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/dvc.py +0 -0
  222. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/hub.py +0 -0
  223. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/mlflow.py +0 -0
  224. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/neptune.py +0 -0
  225. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/raytune.py +0 -0
  226. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  227. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/callbacks/wb.py +0 -0
  228. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/checks.py +0 -0
  229. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/dist.py +0 -0
  230. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/downloads.py +0 -0
  231. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/errors.py +0 -0
  232. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/files.py +0 -0
  233. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/instance.py +0 -0
  234. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/loss.py +0 -0
  235. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/metrics.py +0 -0
  236. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/ops.py +0 -0
  237. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/patches.py +0 -0
  238. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/tal.py +0 -0
  239. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/triton.py +0 -0
  240. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics/utils/tuner.py +0 -0
  241. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics.egg-info/SOURCES.txt +0 -0
  242. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics.egg-info/dependency_links.txt +0 -0
  243. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics.egg-info/entry_points.txt +0 -0
  244. {ultralytics-8.3.2 → ultralytics-8.3.4}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.2
3
+ Version: 8.3.4
4
4
  Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Ayush Chaurasia
6
6
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
@@ -33,7 +33,7 @@ Classifier: Operating System :: Microsoft :: Windows
33
33
  Requires-Python: >=3.8
34
34
  Description-Content-Type: text/markdown
35
35
  License-File: LICENSE
36
- Requires-Dist: numpy<2.0.0,>=1.23.0
36
+ Requires-Dist: numpy>=1.23.0
37
37
  Requires-Dist: matplotlib>=3.3.0
38
38
  Requires-Dist: opencv-python>=4.6.0
39
39
  Requires-Dist: pillow>=7.1.2
@@ -64,6 +64,7 @@ Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
64
64
  Provides-Extra: export
65
65
  Requires-Dist: onnx>=1.12.0; extra == "export"
66
66
  Requires-Dist: coremltools>=7.0; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
67
+ Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
67
68
  Requires-Dist: openvino>=2024.0.0; extra == "export"
68
69
  Requires-Dist: tensorflow>=2.0.0; extra == "export"
69
70
  Requires-Dist: tensorflowjs>=3.9.0; extra == "export"
@@ -214,11 +215,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
214
215
 
215
216
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
216
217
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
217
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
218
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
219
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
220
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
221
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
218
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
219
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
220
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
221
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
222
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
222
223
 
223
224
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
224
225
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -231,28 +232,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
231
232
 
232
233
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
233
234
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
234
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
235
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
236
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
237
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
238
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
235
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
236
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
237
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
238
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
239
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
239
240
 
240
241
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
241
242
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
242
243
 
243
244
  </details>
244
245
 
246
+ <details><summary>Classification (ImageNet)</summary>
247
+
248
+ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
249
+
250
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
251
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
252
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
253
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
254
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
255
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
256
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
257
+
258
+ - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
259
+ - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
260
+
261
+ </details>
262
+
245
263
  <details><summary>Pose (COCO)</summary>
246
264
 
247
265
  See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
248
266
 
249
267
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
250
268
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
251
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
252
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
253
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
254
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
255
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
269
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
270
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
271
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
272
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
273
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
256
274
 
257
275
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
258
276
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -265,34 +283,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
265
283
 
266
284
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
267
285
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
268
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
269
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
270
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
271
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
272
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
286
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
287
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
288
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
289
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
290
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
273
291
 
274
292
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
275
293
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
276
294
 
277
295
  </details>
278
296
 
279
- <details><summary>Classification (ImageNet)</summary>
280
-
281
- See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
282
-
283
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
284
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
285
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
286
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
287
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
288
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
289
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
290
-
291
- - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
292
- - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
293
-
294
- </details>
295
-
296
297
  ## <div align="center">Integrations</div>
297
298
 
298
299
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
@@ -126,11 +126,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
126
126
 
127
127
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
128
128
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
129
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
130
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
131
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
132
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
133
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
129
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
130
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
131
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
132
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
133
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
134
134
 
135
135
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
136
136
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -143,28 +143,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
143
143
 
144
144
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
145
145
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
146
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
147
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
148
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
149
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
150
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
146
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
147
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
148
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
149
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
150
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
151
151
 
152
152
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
153
153
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
154
154
 
155
155
  </details>
156
156
 
157
+ <details><summary>Classification (ImageNet)</summary>
158
+
159
+ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
160
+
161
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
162
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
163
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
164
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
165
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
166
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
167
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
168
+
169
+ - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
170
+ - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
171
+
172
+ </details>
173
+
157
174
  <details><summary>Pose (COCO)</summary>
158
175
 
159
176
  See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
160
177
 
161
178
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
162
179
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
163
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
164
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
165
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
166
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
167
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
180
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
181
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
182
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
183
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
184
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
168
185
 
169
186
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
170
187
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -177,34 +194,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
177
194
 
178
195
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
179
196
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
180
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
181
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
182
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
183
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
184
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
197
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
198
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
199
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
200
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
201
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
185
202
 
186
203
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
187
204
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
188
205
 
189
206
  </details>
190
207
 
191
- <details><summary>Classification (ImageNet)</summary>
192
-
193
- See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
194
-
195
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
196
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
197
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
198
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
199
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
200
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
201
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
202
-
203
- - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
204
- - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
205
-
206
- </details>
207
-
208
208
  ## <div align="center">Integrations</div>
209
209
 
210
210
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
@@ -32,12 +32,12 @@ requires-python = ">=3.8"
32
32
  license = { "text" = "AGPL-3.0" }
33
33
  keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "YOLOv9", "YOLOv10", "YOLO11", "HUB", "Ultralytics"]
34
34
  authors = [
35
- { name = "Glenn Jocher", email = "glenn.jocher@ultralytics.com"},
36
- { name = "Jing Qiu", email = "jing.qiu@ultralytics.com"},
37
- { name = "Ayush Chaurasia" }
35
+ { name = "Glenn Jocher", email = "glenn.jocher@ultralytics.com" },
36
+ { name = "Jing Qiu", email = "jing.qiu@ultralytics.com" },
37
+ { name = "Ayush Chaurasia" },
38
38
  ]
39
39
  maintainers = [
40
- { name = "Ultralytics", email = "hello@ultralytics.com" }
40
+ { name = "Ultralytics", email = "hello@ultralytics.com" },
41
41
  ]
42
42
  classifiers = [
43
43
  "Development Status :: 4 - Beta",
@@ -62,7 +62,7 @@ classifiers = [
62
62
 
63
63
  # Required dependencies ------------------------------------------------------------------------------------------------
64
64
  dependencies = [
65
- "numpy>=1.23.0,<2.0.0", # temporary patch for compat errors https://github.com/ultralytics/yolov5/actions/runs/9538130424/job/26286956354
65
+ "numpy>=1.23.0", # temporary patch for compat errors https://github.com/ultralytics/yolov5/actions/runs/9538130424/job/26286956354
66
66
  "matplotlib>=3.3.0",
67
67
  "opencv-python>=4.6.0",
68
68
  "pillow>=7.1.2",
@@ -70,7 +70,7 @@ dependencies = [
70
70
  "requests>=2.23.0",
71
71
  "scipy>=1.4.1",
72
72
  "torch>=1.8.0",
73
- "torch>=1.8.0,!=2.4.0; sys_platform == 'win32'", # Windows CPU errors w/ 2.4.0 https://github.com/ultralytics/ultralytics/issues/15049
73
+ "torch>=1.8.0,!=2.4.0; sys_platform == 'win32'", # Windows CPU errors w/ 2.4.0 https://github.com/ultralytics/ultralytics/issues/15049
74
74
  "torchvision>=0.9.0",
75
75
  "tqdm>=4.64.0", # progress bars
76
76
  "psutil", # system utilization
@@ -98,11 +98,12 @@ dev = [
98
98
  export = [
99
99
  "onnx>=1.12.0", # ONNX export
100
100
  "coremltools>=7.0; platform_system != 'Windows' and python_version <= '3.11'", # CoreML supported on macOS and Linux
101
+ "scikit-learn>=1.3.2; platform_system != 'Windows' and python_version <= '3.11'", # CoreML k-means quantization
101
102
  "openvino>=2024.0.0", # OpenVINO export
102
103
  "tensorflow>=2.0.0", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
103
104
  "tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
104
- "tensorstore>=0.1.63; platform_machine == 'aarch64' and python_version >= '3.9'", # for TF Raspberry Pi exports
105
- "keras", # not installed automatically by tensorflow>=2.16
105
+ "tensorstore>=0.1.63; platform_machine == 'aarch64' and python_version >= '3.9'", # for TF Raspberry Pi exports
106
+ "keras", # not installed automatically by tensorflow>=2.16
106
107
  "flatbuffers>=23.5.26,<100; platform_machine == 'aarch64'", # update old 'flatbuffers' included inside tensorflow package
107
108
  "numpy==1.23.5; platform_machine == 'aarch64'", # fix error: `np.bool` was a deprecated alias for the builtin `bool` when using TensorRT models on NVIDIA Jetson
108
109
  "h5py!=3.11.0; platform_machine == 'aarch64'", # fix h5py build issues due to missing aarch64 wheels in 3.11 release
@@ -129,7 +130,7 @@ extra = [
129
130
  "Source" = "https://github.com/ultralytics/ultralytics"
130
131
  "Documentation" = "https://docs.ultralytics.com"
131
132
  "Bug Reports" = "https://github.com/ultralytics/ultralytics/issues"
132
- "Changelog" = "https://github.com/ultralytics/ultralytics/releases"
133
+ "Changelog" = "https://github.com/ultralytics/ultralytics/releases"
133
134
 
134
135
  [project.scripts]
135
136
  yolo = "ultralytics.cfg:entrypoint"
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.2"
3
+ __version__ = "8.3.4"
4
4
 
5
5
  import os
6
6
 
@@ -178,6 +178,16 @@ class Exporter:
178
178
  if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
179
179
  fmt = "coreml"
180
180
  fmts = tuple(export_formats()["Argument"][1:]) # available export formats
181
+ if fmt not in fmts:
182
+ import difflib
183
+
184
+ # Get the closest match if format is invalid
185
+ matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match
186
+ if matches:
187
+ LOGGER.warning(f"WARNING ⚠️ Invalid export format='{fmt}', updating to format='{matches[0]}'")
188
+ fmt = matches[0]
189
+ else:
190
+ raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
181
191
  flags = [x == fmt for x in fmts]
182
192
  if sum(flags) != 1:
183
193
  raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
@@ -12,7 +12,7 @@ import os
12
12
  import subprocess
13
13
  import time
14
14
  import warnings
15
- from copy import deepcopy
15
+ from copy import copy, deepcopy
16
16
  from datetime import datetime, timedelta
17
17
  from pathlib import Path
18
18
 
@@ -749,7 +749,7 @@ class BaseTrainer:
749
749
  self.train_loader.dataset.mosaic = False
750
750
  if hasattr(self.train_loader.dataset, "close_mosaic"):
751
751
  LOGGER.info("Closing dataloader mosaic")
752
- self.train_loader.dataset.close_mosaic(hyp=self.args)
752
+ self.train_loader.dataset.close_mosaic(hyp=copy(self.args))
753
753
 
754
754
  def build_optimizer(self, model, name="auto", lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5):
755
755
  """
@@ -170,7 +170,7 @@ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbos
170
170
  class Events:
171
171
  """
172
172
  A class for collecting anonymous event analytics. Event analytics are enabled when sync=True in settings and
173
- disabled when sync=False. Run 'yolo settings' to see and update settings YAML file.
173
+ disabled when sync=False. Run 'yolo settings' to see and update settings.
174
174
 
175
175
  Attributes:
176
176
  url (str): The URL to send anonymous events.
@@ -196,6 +196,7 @@ class Predictor(BasePredictor):
196
196
  bboxes = self.prompts.pop("bboxes", bboxes)
197
197
  points = self.prompts.pop("points", points)
198
198
  masks = self.prompts.pop("masks", masks)
199
+ labels = self.prompts.pop("labels", labels)
199
200
 
200
201
  if all(i is None for i in [bboxes, points, masks]):
201
202
  return self.generate(im, *args, **kwargs)
@@ -23,13 +23,13 @@ def inference(model=None):
23
23
  # Main title of streamlit application
24
24
  main_title_cfg = """<div><h1 style="color:#FF64DA; text-align:center; font-size:40px;
25
25
  font-family: 'Archivo', sans-serif; margin-top:-50px;margin-bottom:20px;">
26
- Ultralytics YOLOv8 Streamlit Application
26
+ Ultralytics YOLO Streamlit Application
27
27
  </h1></div>"""
28
28
 
29
29
  # Subtitle of streamlit application
30
30
  sub_title_cfg = """<div><h4 style="color:#042AFF; text-align:center;
31
31
  font-family: 'Archivo', sans-serif; margin-top:-15px; margin-bottom:50px;">
32
- Experience real-time object detection on your webcam with the power of Ultralytics YOLOv8! 🚀</h4>
32
+ Experience real-time object detection on your webcam with the power of Ultralytics YOLO! 🚀</h4>
33
33
  </div>"""
34
34
 
35
35
  # Set html page configuration
@@ -67,7 +67,7 @@ def inference(model=None):
67
67
  vid_file_name = 0
68
68
 
69
69
  # Add dropdown menu for model selection
70
- available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolov8")]
70
+ available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolo11")]
71
71
  if model:
72
72
  available_models.insert(0, model.split(".pt")[0]) # insert model without suffix as *.pt is added later
73
73
 
@@ -971,7 +971,7 @@ def threaded(func):
971
971
  def set_sentry():
972
972
  """
973
973
  Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
974
- sync=True in settings. Run 'yolo settings' to see and update settings YAML file.
974
+ sync=True in settings. Run 'yolo settings' to see and update settings.
975
975
 
976
976
  Conditions required to send errors (ALL conditions must be met or no errors will be reported):
977
977
  - sentry_sdk package is installed
@@ -983,36 +983,11 @@ def set_sentry():
983
983
  - online environment
984
984
  - CLI used to run package (checked with 'yolo' as the name of the main CLI command)
985
985
 
986
- The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
987
- exceptions and to exclude events with 'out of memory' in their exception message.
986
+ The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError exceptions and to exclude
987
+ events with 'out of memory' in their exception message.
988
988
 
989
989
  Additionally, the function sets custom tags and user information for Sentry events.
990
990
  """
991
-
992
- def before_send(event, hint):
993
- """
994
- Modify the event before sending it to Sentry based on specific exception types and messages.
995
-
996
- Args:
997
- event (dict): The event dictionary containing information about the error.
998
- hint (dict): A dictionary containing additional information about the error.
999
-
1000
- Returns:
1001
- dict: The modified event or None if the event should not be sent to Sentry.
1002
- """
1003
- if "exc_info" in hint:
1004
- exc_type, exc_value, tb = hint["exc_info"]
1005
- if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
1006
- return None # do not send event
1007
-
1008
- event["tags"] = {
1009
- "sys_argv": ARGV[0],
1010
- "sys_argv_name": Path(ARGV[0]).name,
1011
- "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
1012
- "os": ENVIRONMENT,
1013
- }
1014
- return event
1015
-
1016
991
  if (
1017
992
  SETTINGS["sync"]
1018
993
  and RANK in {-1, 0}
@@ -1028,9 +1003,34 @@ def set_sentry():
1028
1003
  except ImportError:
1029
1004
  return
1030
1005
 
1006
+ def before_send(event, hint):
1007
+ """
1008
+ Modify the event before sending it to Sentry based on specific exception types and messages.
1009
+
1010
+ Args:
1011
+ event (dict): The event dictionary containing information about the error.
1012
+ hint (dict): A dictionary containing additional information about the error.
1013
+
1014
+ Returns:
1015
+ dict: The modified event or None if the event should not be sent to Sentry.
1016
+ """
1017
+ if "exc_info" in hint:
1018
+ exc_type, exc_value, _ = hint["exc_info"]
1019
+ if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
1020
+ return None # do not send event
1021
+
1022
+ event["tags"] = {
1023
+ "sys_argv": ARGV[0],
1024
+ "sys_argv_name": Path(ARGV[0]).name,
1025
+ "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
1026
+ "os": ENVIRONMENT,
1027
+ }
1028
+ return event
1029
+
1031
1030
  sentry_sdk.init(
1032
- dsn="https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016",
1031
+ dsn="https://888e5a0778212e1d0314c37d4b9aae5d@o4504521589325824.ingest.us.sentry.io/4504521592406016",
1033
1032
  debug=False,
1033
+ auto_enabling_integrations=False,
1034
1034
  traces_sample_rate=1.0,
1035
1035
  release=__version__,
1036
1036
  environment="production", # 'dev' or 'production'
@@ -1170,25 +1170,26 @@ class SettingsManager(JSONDict):
1170
1170
  self.file = Path(file)
1171
1171
  self.version = version
1172
1172
  self.defaults = {
1173
- "settings_version": version,
1174
- "datasets_dir": str(datasets_root / "datasets"),
1175
- "weights_dir": str(root / "weights"),
1176
- "runs_dir": str(root / "runs"),
1177
- "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
1178
- "sync": True,
1179
- "api_key": "",
1180
- "openai_api_key": "",
1181
- "clearml": True, # integrations
1182
- "comet": True,
1183
- "dvc": True,
1184
- "hub": True,
1185
- "mlflow": True,
1186
- "neptune": True,
1187
- "raytune": True,
1188
- "tensorboard": True,
1189
- "wandb": True,
1190
- "vscode_msg": True,
1173
+ "settings_version": version, # Settings schema version
1174
+ "datasets_dir": str(datasets_root / "datasets"), # Datasets directory
1175
+ "weights_dir": str(root / "weights"), # Model weights directory
1176
+ "runs_dir": str(root / "runs"), # Experiment runs directory
1177
+ "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash
1178
+ "sync": True, # Enable synchronization
1179
+ "api_key": "", # Ultralytics API Key
1180
+ "openai_api_key": "", # OpenAI API Key
1181
+ "clearml": True, # ClearML integration
1182
+ "comet": True, # Comet integration
1183
+ "dvc": True, # DVC integration
1184
+ "hub": True, # Ultralytics HUB integration
1185
+ "mlflow": True, # MLflow integration
1186
+ "neptune": True, # Neptune integration
1187
+ "raytune": True, # Ray Tune integration
1188
+ "tensorboard": True, # TensorBoard logging
1189
+ "wandb": True, # Weights & Biases logging
1190
+ "vscode_msg": True, # VSCode messaging
1191
1191
  }
1192
+
1192
1193
  self.help_msg = (
1193
1194
  f"\nView Ultralytics Settings with 'yolo settings' or at '{self.file}'"
1194
1195
  "\nUpdate Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. "
@@ -536,8 +536,8 @@ class ProfileModels:
536
536
  """Generates a table row string with model performance metrics including inference times and model details."""
537
537
  layers, params, gradients, flops = model_info
538
538
  return (
539
- f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± "
540
- f"{t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |"
539
+ f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.1f}±{t_onnx[1]:.1f} ms | {t_engine[0]:.1f}±"
540
+ f"{t_engine[1]:.1f} ms | {params / 1e6:.1f} | {flops:.1f} |"
541
541
  )
542
542
 
543
543
  @staticmethod