ultralytics 8.3.1__tar.gz → 8.3.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (244) hide show
  1. {ultralytics-8.3.1 → ultralytics-8.3.3}/PKG-INFO +38 -38
  2. {ultralytics-8.3.1 → ultralytics-8.3.3}/README.md +37 -37
  3. {ultralytics-8.3.1 → ultralytics-8.3.3}/pyproject.toml +8 -8
  4. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_cuda.py +8 -0
  5. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/__init__.py +1 -1
  6. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/model.py +2 -3
  7. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/utils.py +1 -1
  8. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/build.py +0 -2
  9. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/streamlit_inference.py +3 -3
  10. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/__init__.py +48 -47
  11. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/benchmarks.py +2 -2
  12. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/checks.py +3 -2
  13. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/files.py +1 -1
  14. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/patches.py +1 -11
  15. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/plotting.py +29 -15
  16. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/torch_utils.py +1 -1
  17. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/PKG-INFO +38 -38
  18. {ultralytics-8.3.1 → ultralytics-8.3.3}/LICENSE +0 -0
  19. {ultralytics-8.3.1 → ultralytics-8.3.3}/setup.cfg +0 -0
  20. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/__init__.py +0 -0
  21. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/conftest.py +0 -0
  22. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_cli.py +0 -0
  23. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_engine.py +0 -0
  24. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_explorer.py +0 -0
  25. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_exports.py +0 -0
  26. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_integrations.py +0 -0
  27. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_python.py +0 -0
  28. {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_solutions.py +0 -0
  29. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/assets/bus.jpg +0 -0
  30. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/assets/zidane.jpg +0 -0
  31. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/__init__.py +0 -0
  32. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  33. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  34. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  35. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  36. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  37. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  38. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  39. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  40. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  41. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  42. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  43. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  44. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  45. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco.yaml +0 -0
  46. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  47. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  48. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  49. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  50. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  51. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  52. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  53. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  54. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  55. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  56. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  57. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/signature.yaml +0 -0
  58. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  59. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/xView.yaml +0 -0
  60. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/default.yaml +0 -0
  61. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  62. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  63. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  64. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  65. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  66. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  67. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  68. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  69. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  70. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  71. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  72. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  73. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  74. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  75. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  76. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  77. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  78. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  79. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  80. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  81. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  82. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  83. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  84. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  85. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  86. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  87. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  88. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  89. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  90. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  91. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  92. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  93. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  94. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  95. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  96. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  97. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  98. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  99. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  100. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  101. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  102. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  103. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  104. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  105. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  106. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  107. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  108. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/__init__.py +0 -0
  109. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/annotator.py +0 -0
  110. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/augment.py +0 -0
  111. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/base.py +0 -0
  112. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/build.py +0 -0
  113. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/converter.py +0 -0
  114. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/dataset.py +0 -0
  115. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/__init__.py +0 -0
  116. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/explorer.py +0 -0
  117. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/gui/__init__.py +0 -0
  118. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/gui/dash.py +0 -0
  119. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/utils.py +0 -0
  120. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/loaders.py +0 -0
  121. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/split_dota.py +0 -0
  122. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/utils.py +0 -0
  123. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/__init__.py +0 -0
  124. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/exporter.py +0 -0
  125. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/predictor.py +0 -0
  126. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/results.py +0 -0
  127. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/trainer.py +0 -0
  128. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/tuner.py +0 -0
  129. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/validator.py +0 -0
  130. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/__init__.py +0 -0
  131. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/auth.py +0 -0
  132. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/google/__init__.py +0 -0
  133. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/session.py +0 -0
  134. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/__init__.py +0 -0
  135. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/__init__.py +0 -0
  136. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/model.py +0 -0
  137. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/predict.py +0 -0
  138. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/utils.py +0 -0
  139. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/val.py +0 -0
  140. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/__init__.py +0 -0
  141. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/model.py +0 -0
  142. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/predict.py +0 -0
  143. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/val.py +0 -0
  144. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/__init__.py +0 -0
  145. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/model.py +0 -0
  146. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/predict.py +0 -0
  147. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/train.py +0 -0
  148. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/val.py +0 -0
  149. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/__init__.py +0 -0
  150. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/amg.py +0 -0
  151. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/model.py +0 -0
  152. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/__init__.py +0 -0
  153. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/blocks.py +0 -0
  154. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/decoders.py +0 -0
  155. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/encoders.py +0 -0
  156. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  157. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/sam.py +0 -0
  158. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  159. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/transformer.py +0 -0
  160. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/utils.py +0 -0
  161. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/predict.py +0 -0
  162. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/utils/__init__.py +0 -0
  163. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/utils/loss.py +0 -0
  164. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/utils/ops.py +0 -0
  165. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/__init__.py +0 -0
  166. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/__init__.py +0 -0
  167. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/predict.py +0 -0
  168. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/train.py +0 -0
  169. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/val.py +0 -0
  170. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/__init__.py +0 -0
  171. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/predict.py +0 -0
  172. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/train.py +0 -0
  173. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/val.py +0 -0
  174. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/model.py +0 -0
  175. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/__init__.py +0 -0
  176. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/predict.py +0 -0
  177. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/train.py +0 -0
  178. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/val.py +0 -0
  179. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/__init__.py +0 -0
  180. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/predict.py +0 -0
  181. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/train.py +0 -0
  182. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/val.py +0 -0
  183. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/__init__.py +0 -0
  184. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/predict.py +0 -0
  185. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/train.py +0 -0
  186. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/val.py +0 -0
  187. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/world/__init__.py +0 -0
  188. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/world/train.py +0 -0
  189. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/world/train_world.py +0 -0
  190. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/__init__.py +0 -0
  191. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/autobackend.py +0 -0
  192. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/__init__.py +0 -0
  193. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/activation.py +0 -0
  194. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/block.py +0 -0
  195. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/conv.py +0 -0
  196. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/head.py +0 -0
  197. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/transformer.py +0 -0
  198. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/utils.py +0 -0
  199. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/tasks.py +0 -0
  200. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/__init__.py +0 -0
  201. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/ai_gym.py +0 -0
  202. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/analytics.py +0 -0
  203. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/distance_calculation.py +0 -0
  204. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/heatmap.py +0 -0
  205. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/object_counter.py +0 -0
  206. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/parking_management.py +0 -0
  207. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/queue_management.py +0 -0
  208. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/speed_estimation.py +0 -0
  209. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/__init__.py +0 -0
  210. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/basetrack.py +0 -0
  211. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/bot_sort.py +0 -0
  212. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/byte_tracker.py +0 -0
  213. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/track.py +0 -0
  214. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/__init__.py +0 -0
  215. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/gmc.py +0 -0
  216. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  217. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/matching.py +0 -0
  218. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/autobatch.py +0 -0
  219. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/__init__.py +0 -0
  220. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/base.py +0 -0
  221. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/clearml.py +0 -0
  222. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/comet.py +0 -0
  223. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/dvc.py +0 -0
  224. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/hub.py +0 -0
  225. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/mlflow.py +0 -0
  226. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/neptune.py +0 -0
  227. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/raytune.py +0 -0
  228. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  229. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/wb.py +0 -0
  230. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/dist.py +0 -0
  231. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/downloads.py +0 -0
  232. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/errors.py +0 -0
  233. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/instance.py +0 -0
  234. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/loss.py +0 -0
  235. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/metrics.py +0 -0
  236. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/ops.py +0 -0
  237. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/tal.py +0 -0
  238. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/triton.py +0 -0
  239. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/tuner.py +0 -0
  240. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/SOURCES.txt +0 -0
  241. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/dependency_links.txt +0 -0
  242. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/entry_points.txt +0 -0
  243. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/requires.txt +0 -0
  244. {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.1
3
+ Version: 8.3.3
4
4
  Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Ayush Chaurasia
6
6
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
@@ -214,11 +214,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
214
214
 
215
215
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
216
216
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
217
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
218
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
219
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
220
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
221
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
217
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
218
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
219
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
220
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
221
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
222
222
 
223
223
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
224
224
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -231,28 +231,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
231
231
 
232
232
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
233
233
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
234
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
235
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
236
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
237
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
238
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
234
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
235
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
236
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
237
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
238
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
239
239
 
240
240
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
241
241
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
242
242
 
243
243
  </details>
244
244
 
245
+ <details><summary>Classification (ImageNet)</summary>
246
+
247
+ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
248
+
249
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
250
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
251
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
252
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
253
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
254
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
255
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
256
+
257
+ - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
258
+ - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
259
+
260
+ </details>
261
+
245
262
  <details><summary>Pose (COCO)</summary>
246
263
 
247
264
  See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
248
265
 
249
266
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
250
267
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
251
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
252
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
253
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
254
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
255
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
268
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
269
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
270
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
271
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
272
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
256
273
 
257
274
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
258
275
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -265,34 +282,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
265
282
 
266
283
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
267
284
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
268
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
269
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
270
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
271
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
272
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
285
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
286
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
287
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
288
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
289
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
273
290
 
274
291
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
275
292
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
276
293
 
277
294
  </details>
278
295
 
279
- <details><summary>Classification (ImageNet)</summary>
280
-
281
- See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
282
-
283
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
284
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
285
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
286
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
287
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
288
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
289
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
290
-
291
- - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
292
- - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
293
-
294
- </details>
295
-
296
296
  ## <div align="center">Integrations</div>
297
297
 
298
298
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
@@ -126,11 +126,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
126
126
 
127
127
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
128
128
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
129
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
130
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
131
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
132
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
133
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
129
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
130
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
131
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
132
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
133
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
134
134
 
135
135
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
136
136
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -143,28 +143,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
143
143
 
144
144
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
145
145
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
146
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
147
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
148
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
149
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
150
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
146
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
147
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
148
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
149
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
150
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
151
151
 
152
152
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
153
153
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
154
154
 
155
155
  </details>
156
156
 
157
+ <details><summary>Classification (ImageNet)</summary>
158
+
159
+ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
160
+
161
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
162
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
163
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
164
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
165
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
166
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
167
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
168
+
169
+ - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
170
+ - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
171
+
172
+ </details>
173
+
157
174
  <details><summary>Pose (COCO)</summary>
158
175
 
159
176
  See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
160
177
 
161
178
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
162
179
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
163
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
164
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
165
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
166
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
167
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
180
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
181
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
182
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
183
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
184
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
168
185
 
169
186
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
170
187
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -177,34 +194,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
177
194
 
178
195
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
179
196
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
180
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
181
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
182
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
183
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
184
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
197
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
198
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
199
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
200
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
201
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
185
202
 
186
203
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
187
204
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
188
205
 
189
206
  </details>
190
207
 
191
- <details><summary>Classification (ImageNet)</summary>
192
-
193
- See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
194
-
195
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
196
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
197
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
198
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
199
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
200
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
201
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
202
-
203
- - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
204
- - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
205
-
206
- </details>
207
-
208
208
  ## <div align="center">Integrations</div>
209
209
 
210
210
  Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
@@ -32,12 +32,12 @@ requires-python = ">=3.8"
32
32
  license = { "text" = "AGPL-3.0" }
33
33
  keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "YOLOv9", "YOLOv10", "YOLO11", "HUB", "Ultralytics"]
34
34
  authors = [
35
- { name = "Glenn Jocher", email = "glenn.jocher@ultralytics.com"},
36
- { name = "Jing Qiu", email = "jing.qiu@ultralytics.com"},
37
- { name = "Ayush Chaurasia" }
35
+ { name = "Glenn Jocher", email = "glenn.jocher@ultralytics.com" },
36
+ { name = "Jing Qiu", email = "jing.qiu@ultralytics.com" },
37
+ { name = "Ayush Chaurasia" },
38
38
  ]
39
39
  maintainers = [
40
- { name = "Ultralytics", email = "hello@ultralytics.com" }
40
+ { name = "Ultralytics", email = "hello@ultralytics.com" },
41
41
  ]
42
42
  classifiers = [
43
43
  "Development Status :: 4 - Beta",
@@ -70,7 +70,7 @@ dependencies = [
70
70
  "requests>=2.23.0",
71
71
  "scipy>=1.4.1",
72
72
  "torch>=1.8.0",
73
- "torch>=1.8.0,!=2.4.0; sys_platform == 'win32'", # Windows CPU errors w/ 2.4.0 https://github.com/ultralytics/ultralytics/issues/15049
73
+ "torch>=1.8.0,!=2.4.0; sys_platform == 'win32'", # Windows CPU errors w/ 2.4.0 https://github.com/ultralytics/ultralytics/issues/15049
74
74
  "torchvision>=0.9.0",
75
75
  "tqdm>=4.64.0", # progress bars
76
76
  "psutil", # system utilization
@@ -101,8 +101,8 @@ export = [
101
101
  "openvino>=2024.0.0", # OpenVINO export
102
102
  "tensorflow>=2.0.0", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
103
103
  "tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
104
- "tensorstore>=0.1.63; platform_machine == 'aarch64' and python_version >= '3.9'", # for TF Raspberry Pi exports
105
- "keras", # not installed automatically by tensorflow>=2.16
104
+ "tensorstore>=0.1.63; platform_machine == 'aarch64' and python_version >= '3.9'", # for TF Raspberry Pi exports
105
+ "keras", # not installed automatically by tensorflow>=2.16
106
106
  "flatbuffers>=23.5.26,<100; platform_machine == 'aarch64'", # update old 'flatbuffers' included inside tensorflow package
107
107
  "numpy==1.23.5; platform_machine == 'aarch64'", # fix error: `np.bool` was a deprecated alias for the builtin `bool` when using TensorRT models on NVIDIA Jetson
108
108
  "h5py!=3.11.0; platform_machine == 'aarch64'", # fix h5py build issues due to missing aarch64 wheels in 3.11 release
@@ -129,7 +129,7 @@ extra = [
129
129
  "Source" = "https://github.com/ultralytics/ultralytics"
130
130
  "Documentation" = "https://docs.ultralytics.com"
131
131
  "Bug Reports" = "https://github.com/ultralytics/ultralytics/issues"
132
- "Changelog" = "https://github.com/ultralytics/ultralytics/releases"
132
+ "Changelog" = "https://github.com/ultralytics/ultralytics/releases"
133
133
 
134
134
  [project.scripts]
135
135
  yolo = "ultralytics.cfg:entrypoint"
@@ -10,6 +10,7 @@ from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
10
10
  from ultralytics import YOLO
11
11
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
12
12
  from ultralytics.utils import ASSETS, WEIGHTS_DIR
13
+ from ultralytics.utils.checks import check_amp
13
14
 
14
15
 
15
16
  def test_checks():
@@ -18,6 +19,13 @@ def test_checks():
18
19
  assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
19
20
 
20
21
 
22
+ @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
23
+ def test_amp():
24
+ """Test AMP training checks."""
25
+ model = YOLO("yolo11n.pt").model.cuda()
26
+ assert check_amp(model)
27
+
28
+
21
29
  @pytest.mark.slow
22
30
  @pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
23
31
  @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.1"
3
+ __version__ = "8.3.3"
4
4
 
5
5
  import os
6
6
 
@@ -377,7 +377,7 @@ class Model(nn.Module):
377
377
  self.model.load(weights)
378
378
  return self
379
379
 
380
- def save(self, filename: Union[str, Path] = "saved_model.pt", use_dill=True) -> None:
380
+ def save(self, filename: Union[str, Path] = "saved_model.pt") -> None:
381
381
  """
382
382
  Saves the current model state to a file.
383
383
 
@@ -386,7 +386,6 @@ class Model(nn.Module):
386
386
 
387
387
  Args:
388
388
  filename (Union[str, Path]): The name of the file to save the model to.
389
- use_dill (bool): Whether to try using dill for serialization if available.
390
389
 
391
390
  Raises:
392
391
  AssertionError: If the model is not a PyTorch model.
@@ -408,7 +407,7 @@ class Model(nn.Module):
408
407
  "license": "AGPL-3.0 License (https://ultralytics.com/license)",
409
408
  "docs": "https://docs.ultralytics.com",
410
409
  }
411
- torch.save({**self.ckpt, **updates}, filename, use_dill=use_dill)
410
+ torch.save({**self.ckpt, **updates}, filename)
412
411
 
413
412
  def info(self, detailed: bool = False, verbose: bool = True):
414
413
  """
@@ -170,7 +170,7 @@ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbos
170
170
  class Events:
171
171
  """
172
172
  A class for collecting anonymous event analytics. Event analytics are enabled when sync=True in settings and
173
- disabled when sync=False. Run 'yolo settings' to see and update settings YAML file.
173
+ disabled when sync=False. Run 'yolo settings' to see and update settings.
174
174
 
175
175
  Attributes:
176
176
  url (str): The URL to send anonymous events.
@@ -210,8 +210,6 @@ def _build_sam(
210
210
  state_dict = torch.load(f)
211
211
  sam.load_state_dict(state_dict)
212
212
  sam.eval()
213
- # sam.load_state_dict(torch.load(checkpoint), strict=True)
214
- # sam.eval()
215
213
  return sam
216
214
 
217
215
 
@@ -23,13 +23,13 @@ def inference(model=None):
23
23
  # Main title of streamlit application
24
24
  main_title_cfg = """<div><h1 style="color:#FF64DA; text-align:center; font-size:40px;
25
25
  font-family: 'Archivo', sans-serif; margin-top:-50px;margin-bottom:20px;">
26
- Ultralytics YOLOv8 Streamlit Application
26
+ Ultralytics YOLO Streamlit Application
27
27
  </h1></div>"""
28
28
 
29
29
  # Subtitle of streamlit application
30
30
  sub_title_cfg = """<div><h4 style="color:#042AFF; text-align:center;
31
31
  font-family: 'Archivo', sans-serif; margin-top:-15px; margin-bottom:50px;">
32
- Experience real-time object detection on your webcam with the power of Ultralytics YOLOv8! 🚀</h4>
32
+ Experience real-time object detection on your webcam with the power of Ultralytics YOLO! 🚀</h4>
33
33
  </div>"""
34
34
 
35
35
  # Set html page configuration
@@ -67,7 +67,7 @@ def inference(model=None):
67
67
  vid_file_name = 0
68
68
 
69
69
  # Add dropdown menu for model selection
70
- available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolov8")]
70
+ available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolo11")]
71
71
  if model:
72
72
  available_models.insert(0, model.split(".pt")[0]) # insert model without suffix as *.pt is added later
73
73
 
@@ -111,6 +111,7 @@ torch.set_printoptions(linewidth=320, precision=4, profile="default")
111
111
  np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5
112
112
  cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
113
113
  os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads
114
+ os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" # for deterministic training to avoid CUDA warning
114
115
  os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warnings in Colab
115
116
  os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings
116
117
  os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs
@@ -970,7 +971,7 @@ def threaded(func):
970
971
  def set_sentry():
971
972
  """
972
973
  Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
973
- sync=True in settings. Run 'yolo settings' to see and update settings YAML file.
974
+ sync=True in settings. Run 'yolo settings' to see and update settings.
974
975
 
975
976
  Conditions required to send errors (ALL conditions must be met or no errors will be reported):
976
977
  - sentry_sdk package is installed
@@ -982,36 +983,11 @@ def set_sentry():
982
983
  - online environment
983
984
  - CLI used to run package (checked with 'yolo' as the name of the main CLI command)
984
985
 
985
- The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
986
- exceptions and to exclude events with 'out of memory' in their exception message.
986
+ The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError exceptions and to exclude
987
+ events with 'out of memory' in their exception message.
987
988
 
988
989
  Additionally, the function sets custom tags and user information for Sentry events.
989
990
  """
990
-
991
- def before_send(event, hint):
992
- """
993
- Modify the event before sending it to Sentry based on specific exception types and messages.
994
-
995
- Args:
996
- event (dict): The event dictionary containing information about the error.
997
- hint (dict): A dictionary containing additional information about the error.
998
-
999
- Returns:
1000
- dict: The modified event or None if the event should not be sent to Sentry.
1001
- """
1002
- if "exc_info" in hint:
1003
- exc_type, exc_value, tb = hint["exc_info"]
1004
- if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
1005
- return None # do not send event
1006
-
1007
- event["tags"] = {
1008
- "sys_argv": ARGV[0],
1009
- "sys_argv_name": Path(ARGV[0]).name,
1010
- "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
1011
- "os": ENVIRONMENT,
1012
- }
1013
- return event
1014
-
1015
991
  if (
1016
992
  SETTINGS["sync"]
1017
993
  and RANK in {-1, 0}
@@ -1027,8 +1003,32 @@ def set_sentry():
1027
1003
  except ImportError:
1028
1004
  return
1029
1005
 
1006
+ def before_send(event, hint):
1007
+ """
1008
+ Modify the event before sending it to Sentry based on specific exception types and messages.
1009
+
1010
+ Args:
1011
+ event (dict): The event dictionary containing information about the error.
1012
+ hint (dict): A dictionary containing additional information about the error.
1013
+
1014
+ Returns:
1015
+ dict: The modified event or None if the event should not be sent to Sentry.
1016
+ """
1017
+ if "exc_info" in hint:
1018
+ exc_type, exc_value, _ = hint["exc_info"]
1019
+ if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
1020
+ return None # do not send event
1021
+
1022
+ event["tags"] = {
1023
+ "sys_argv": ARGV[0],
1024
+ "sys_argv_name": Path(ARGV[0]).name,
1025
+ "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
1026
+ "os": ENVIRONMENT,
1027
+ }
1028
+ return event
1029
+
1030
1030
  sentry_sdk.init(
1031
- dsn="https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016",
1031
+ dsn="https://888e5a0778212e1d0314c37d4b9aae5d@o4504521589325824.ingest.us.sentry.io/4504521592406016",
1032
1032
  debug=False,
1033
1033
  traces_sample_rate=1.0,
1034
1034
  release=__version__,
@@ -1169,25 +1169,26 @@ class SettingsManager(JSONDict):
1169
1169
  self.file = Path(file)
1170
1170
  self.version = version
1171
1171
  self.defaults = {
1172
- "settings_version": version,
1173
- "datasets_dir": str(datasets_root / "datasets"),
1174
- "weights_dir": str(root / "weights"),
1175
- "runs_dir": str(root / "runs"),
1176
- "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
1177
- "sync": True,
1178
- "api_key": "",
1179
- "openai_api_key": "",
1180
- "clearml": True, # integrations
1181
- "comet": True,
1182
- "dvc": True,
1183
- "hub": True,
1184
- "mlflow": True,
1185
- "neptune": True,
1186
- "raytune": True,
1187
- "tensorboard": True,
1188
- "wandb": True,
1189
- "vscode_msg": True,
1172
+ "settings_version": version, # Settings schema version
1173
+ "datasets_dir": str(datasets_root / "datasets"), # Datasets directory
1174
+ "weights_dir": str(root / "weights"), # Model weights directory
1175
+ "runs_dir": str(root / "runs"), # Experiment runs directory
1176
+ "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash
1177
+ "sync": True, # Enable synchronization
1178
+ "api_key": "", # Ultralytics API Key
1179
+ "openai_api_key": "", # OpenAI API Key
1180
+ "clearml": True, # ClearML integration
1181
+ "comet": True, # Comet integration
1182
+ "dvc": True, # DVC integration
1183
+ "hub": True, # Ultralytics HUB integration
1184
+ "mlflow": True, # MLflow integration
1185
+ "neptune": True, # Neptune integration
1186
+ "raytune": True, # Ray Tune integration
1187
+ "tensorboard": True, # TensorBoard logging
1188
+ "wandb": True, # Weights & Biases logging
1189
+ "vscode_msg": True, # VSCode messaging
1190
1190
  }
1191
+
1191
1192
  self.help_msg = (
1192
1193
  f"\nView Ultralytics Settings with 'yolo settings' or at '{self.file}'"
1193
1194
  "\nUpdate Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. "
@@ -536,8 +536,8 @@ class ProfileModels:
536
536
  """Generates a table row string with model performance metrics including inference times and model details."""
537
537
  layers, params, gradients, flops = model_info
538
538
  return (
539
- f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± "
540
- f"{t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |"
539
+ f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.1f}±{t_onnx[1]:.1f} ms | {t_engine[0]:.1f}±"
540
+ f"{t_engine[1]:.1f} ms | {params / 1e6:.1f} | {flops:.1f} |"
541
541
  )
542
542
 
543
543
  @staticmethod
@@ -657,9 +657,10 @@ def check_amp(model):
657
657
  def amp_allclose(m, im):
658
658
  """All close FP32 vs AMP results."""
659
659
  batch = [im] * 8
660
- a = m(batch, imgsz=128, device=device, verbose=False)[0].boxes.data # FP32 inference
660
+ imgsz = max(256, int(model.stride.max() * 4)) # max stride P5-32 and P6-64
661
+ a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # FP32 inference
661
662
  with autocast(enabled=True):
662
- b = m(batch, imgsz=128, device=device, verbose=False)[0].boxes.data # AMP inference
663
+ b = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # AMP inference
663
664
  del m
664
665
  return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
665
666