ultralytics 8.3.1__tar.gz → 8.3.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- {ultralytics-8.3.1 → ultralytics-8.3.3}/PKG-INFO +38 -38
- {ultralytics-8.3.1 → ultralytics-8.3.3}/README.md +37 -37
- {ultralytics-8.3.1 → ultralytics-8.3.3}/pyproject.toml +8 -8
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_cuda.py +8 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/__init__.py +1 -1
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/model.py +2 -3
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/utils.py +1 -1
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/build.py +0 -2
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/streamlit_inference.py +3 -3
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/__init__.py +48 -47
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/benchmarks.py +2 -2
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/checks.py +3 -2
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/files.py +1 -1
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/patches.py +1 -11
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/plotting.py +29 -15
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/torch_utils.py +1 -1
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/PKG-INFO +38 -38
- {ultralytics-8.3.1 → ultralytics-8.3.3}/LICENSE +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/setup.cfg +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/conftest.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_cli.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_engine.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_explorer.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_exports.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_integrations.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_python.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/tests/test_solutions.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/augment.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/base.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/build.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/converter.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/dataset.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/explorer.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/gui/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/gui/dash.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/explorer/utils.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/loaders.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/data/utils.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/exporter.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/results.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/trainer.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/tuner.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/engine/validator.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/auth.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/google/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/hub/session.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/nas/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/blocks.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/memory_attention.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/modules/utils.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/sam/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/detect/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/model.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/obb/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/pose/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/predict.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/segment/val.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/autobackend.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/activation.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/block.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/head.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/nn/tasks.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/parking_management.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/downloads.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/loss.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/metrics.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/ops.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/SOURCES.txt +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.3.1 → ultralytics-8.3.3}/ultralytics.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.3.
|
|
3
|
+
Version: 8.3.3
|
|
4
4
|
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Ayush Chaurasia
|
|
6
6
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
@@ -214,11 +214,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
214
214
|
|
|
215
215
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
216
216
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
217
|
-
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.
|
|
218
|
-
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.
|
|
219
|
-
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.
|
|
220
|
-
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.
|
|
221
|
-
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.
|
|
217
|
+
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
|
|
218
|
+
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
|
|
219
|
+
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
|
|
220
|
+
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
|
|
221
|
+
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
|
|
222
222
|
|
|
223
223
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
224
224
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -231,28 +231,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
231
231
|
|
|
232
232
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
233
233
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
234
|
-
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.
|
|
235
|
-
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.
|
|
236
|
-
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.
|
|
237
|
-
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.
|
|
238
|
-
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.
|
|
234
|
+
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
|
|
235
|
+
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
|
|
236
|
+
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
|
|
237
|
+
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
|
|
238
|
+
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
|
|
239
239
|
|
|
240
240
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
241
241
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
242
242
|
|
|
243
243
|
</details>
|
|
244
244
|
|
|
245
|
+
<details><summary>Classification (ImageNet)</summary>
|
|
246
|
+
|
|
247
|
+
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
248
|
+
|
|
249
|
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
250
|
+
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
251
|
+
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
|
|
252
|
+
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
|
|
253
|
+
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
|
|
254
|
+
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
|
|
255
|
+
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
|
|
256
|
+
|
|
257
|
+
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
258
|
+
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
259
|
+
|
|
260
|
+
</details>
|
|
261
|
+
|
|
245
262
|
<details><summary>Pose (COCO)</summary>
|
|
246
263
|
|
|
247
264
|
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
|
|
248
265
|
|
|
249
266
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
250
267
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
251
|
-
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.
|
|
252
|
-
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.
|
|
253
|
-
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.
|
|
254
|
-
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.
|
|
255
|
-
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 |
|
|
268
|
+
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
|
|
269
|
+
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
|
|
270
|
+
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
|
|
271
|
+
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
|
|
272
|
+
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
|
|
256
273
|
|
|
257
274
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
258
275
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -265,34 +282,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
265
282
|
|
|
266
283
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
267
284
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
268
|
-
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.
|
|
269
|
-
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.
|
|
270
|
-
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.
|
|
271
|
-
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.
|
|
272
|
-
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.
|
|
285
|
+
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
|
|
286
|
+
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
|
|
287
|
+
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
|
|
288
|
+
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
|
|
289
|
+
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
|
|
273
290
|
|
|
274
291
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
275
292
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
276
293
|
|
|
277
294
|
</details>
|
|
278
295
|
|
|
279
|
-
<details><summary>Classification (ImageNet)</summary>
|
|
280
|
-
|
|
281
|
-
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
282
|
-
|
|
283
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
284
|
-
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
285
|
-
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
|
|
286
|
-
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
|
|
287
|
-
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
|
|
288
|
-
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
|
|
289
|
-
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
|
|
290
|
-
|
|
291
|
-
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
292
|
-
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
293
|
-
|
|
294
|
-
</details>
|
|
295
|
-
|
|
296
296
|
## <div align="center">Integrations</div>
|
|
297
297
|
|
|
298
298
|
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
|
@@ -126,11 +126,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
126
126
|
|
|
127
127
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
128
128
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
129
|
-
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.
|
|
130
|
-
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.
|
|
131
|
-
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.
|
|
132
|
-
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.
|
|
133
|
-
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.
|
|
129
|
+
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
|
|
130
|
+
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
|
|
131
|
+
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
|
|
132
|
+
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
|
|
133
|
+
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
|
|
134
134
|
|
|
135
135
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
136
136
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -143,28 +143,45 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
143
143
|
|
|
144
144
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
145
145
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
146
|
-
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.
|
|
147
|
-
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.
|
|
148
|
-
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.
|
|
149
|
-
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.
|
|
150
|
-
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.
|
|
146
|
+
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
|
|
147
|
+
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
|
|
148
|
+
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
|
|
149
|
+
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
|
|
150
|
+
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
|
|
151
151
|
|
|
152
152
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
153
153
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
154
154
|
|
|
155
155
|
</details>
|
|
156
156
|
|
|
157
|
+
<details><summary>Classification (ImageNet)</summary>
|
|
158
|
+
|
|
159
|
+
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
160
|
+
|
|
161
|
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
162
|
+
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
163
|
+
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
|
|
164
|
+
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
|
|
165
|
+
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
|
|
166
|
+
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
|
|
167
|
+
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
|
|
168
|
+
|
|
169
|
+
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
170
|
+
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
171
|
+
|
|
172
|
+
</details>
|
|
173
|
+
|
|
157
174
|
<details><summary>Pose (COCO)</summary>
|
|
158
175
|
|
|
159
176
|
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
|
|
160
177
|
|
|
161
178
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
162
179
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
163
|
-
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.
|
|
164
|
-
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.
|
|
165
|
-
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.
|
|
166
|
-
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.
|
|
167
|
-
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 |
|
|
180
|
+
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
|
|
181
|
+
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
|
|
182
|
+
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
|
|
183
|
+
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
|
|
184
|
+
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
|
|
168
185
|
|
|
169
186
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
170
187
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -177,34 +194,17 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
177
194
|
|
|
178
195
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
179
196
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
180
|
-
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.
|
|
181
|
-
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.
|
|
182
|
-
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.
|
|
183
|
-
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.
|
|
184
|
-
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.
|
|
197
|
+
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
|
|
198
|
+
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
|
|
199
|
+
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
|
|
200
|
+
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
|
|
201
|
+
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
|
|
185
202
|
|
|
186
203
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
187
204
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
188
205
|
|
|
189
206
|
</details>
|
|
190
207
|
|
|
191
|
-
<details><summary>Classification (ImageNet)</summary>
|
|
192
|
-
|
|
193
|
-
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
194
|
-
|
|
195
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
196
|
-
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
197
|
-
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
|
|
198
|
-
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
|
|
199
|
-
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
|
|
200
|
-
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
|
|
201
|
-
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
|
|
202
|
-
|
|
203
|
-
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
204
|
-
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
205
|
-
|
|
206
|
-
</details>
|
|
207
|
-
|
|
208
208
|
## <div align="center">Integrations</div>
|
|
209
209
|
|
|
210
210
|
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
|
@@ -32,12 +32,12 @@ requires-python = ">=3.8"
|
|
|
32
32
|
license = { "text" = "AGPL-3.0" }
|
|
33
33
|
keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "YOLOv9", "YOLOv10", "YOLO11", "HUB", "Ultralytics"]
|
|
34
34
|
authors = [
|
|
35
|
-
{ name = "Glenn Jocher", email = "glenn.jocher@ultralytics.com"},
|
|
36
|
-
{ name = "Jing Qiu", email = "jing.qiu@ultralytics.com"},
|
|
37
|
-
{ name = "Ayush Chaurasia" }
|
|
35
|
+
{ name = "Glenn Jocher", email = "glenn.jocher@ultralytics.com" },
|
|
36
|
+
{ name = "Jing Qiu", email = "jing.qiu@ultralytics.com" },
|
|
37
|
+
{ name = "Ayush Chaurasia" },
|
|
38
38
|
]
|
|
39
39
|
maintainers = [
|
|
40
|
-
{ name = "Ultralytics", email = "hello@ultralytics.com" }
|
|
40
|
+
{ name = "Ultralytics", email = "hello@ultralytics.com" },
|
|
41
41
|
]
|
|
42
42
|
classifiers = [
|
|
43
43
|
"Development Status :: 4 - Beta",
|
|
@@ -70,7 +70,7 @@ dependencies = [
|
|
|
70
70
|
"requests>=2.23.0",
|
|
71
71
|
"scipy>=1.4.1",
|
|
72
72
|
"torch>=1.8.0",
|
|
73
|
-
"torch>=1.8.0,!=2.4.0; sys_platform == 'win32'",
|
|
73
|
+
"torch>=1.8.0,!=2.4.0; sys_platform == 'win32'", # Windows CPU errors w/ 2.4.0 https://github.com/ultralytics/ultralytics/issues/15049
|
|
74
74
|
"torchvision>=0.9.0",
|
|
75
75
|
"tqdm>=4.64.0", # progress bars
|
|
76
76
|
"psutil", # system utilization
|
|
@@ -101,8 +101,8 @@ export = [
|
|
|
101
101
|
"openvino>=2024.0.0", # OpenVINO export
|
|
102
102
|
"tensorflow>=2.0.0", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
|
|
103
103
|
"tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
|
|
104
|
-
"tensorstore>=0.1.63; platform_machine == 'aarch64' and python_version >= '3.9'",
|
|
105
|
-
"keras",
|
|
104
|
+
"tensorstore>=0.1.63; platform_machine == 'aarch64' and python_version >= '3.9'", # for TF Raspberry Pi exports
|
|
105
|
+
"keras", # not installed automatically by tensorflow>=2.16
|
|
106
106
|
"flatbuffers>=23.5.26,<100; platform_machine == 'aarch64'", # update old 'flatbuffers' included inside tensorflow package
|
|
107
107
|
"numpy==1.23.5; platform_machine == 'aarch64'", # fix error: `np.bool` was a deprecated alias for the builtin `bool` when using TensorRT models on NVIDIA Jetson
|
|
108
108
|
"h5py!=3.11.0; platform_machine == 'aarch64'", # fix h5py build issues due to missing aarch64 wheels in 3.11 release
|
|
@@ -129,7 +129,7 @@ extra = [
|
|
|
129
129
|
"Source" = "https://github.com/ultralytics/ultralytics"
|
|
130
130
|
"Documentation" = "https://docs.ultralytics.com"
|
|
131
131
|
"Bug Reports" = "https://github.com/ultralytics/ultralytics/issues"
|
|
132
|
-
"Changelog" = "https://github.com/ultralytics/ultralytics/releases"
|
|
132
|
+
"Changelog" = "https://github.com/ultralytics/ultralytics/releases"
|
|
133
133
|
|
|
134
134
|
[project.scripts]
|
|
135
135
|
yolo = "ultralytics.cfg:entrypoint"
|
|
@@ -10,6 +10,7 @@ from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
|
|
|
10
10
|
from ultralytics import YOLO
|
|
11
11
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
|
12
12
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR
|
|
13
|
+
from ultralytics.utils.checks import check_amp
|
|
13
14
|
|
|
14
15
|
|
|
15
16
|
def test_checks():
|
|
@@ -18,6 +19,13 @@ def test_checks():
|
|
|
18
19
|
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
|
|
19
20
|
|
|
20
21
|
|
|
22
|
+
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
23
|
+
def test_amp():
|
|
24
|
+
"""Test AMP training checks."""
|
|
25
|
+
model = YOLO("yolo11n.pt").model.cuda()
|
|
26
|
+
assert check_amp(model)
|
|
27
|
+
|
|
28
|
+
|
|
21
29
|
@pytest.mark.slow
|
|
22
30
|
@pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
|
|
23
31
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
@@ -377,7 +377,7 @@ class Model(nn.Module):
|
|
|
377
377
|
self.model.load(weights)
|
|
378
378
|
return self
|
|
379
379
|
|
|
380
|
-
def save(self, filename: Union[str, Path] = "saved_model.pt"
|
|
380
|
+
def save(self, filename: Union[str, Path] = "saved_model.pt") -> None:
|
|
381
381
|
"""
|
|
382
382
|
Saves the current model state to a file.
|
|
383
383
|
|
|
@@ -386,7 +386,6 @@ class Model(nn.Module):
|
|
|
386
386
|
|
|
387
387
|
Args:
|
|
388
388
|
filename (Union[str, Path]): The name of the file to save the model to.
|
|
389
|
-
use_dill (bool): Whether to try using dill for serialization if available.
|
|
390
389
|
|
|
391
390
|
Raises:
|
|
392
391
|
AssertionError: If the model is not a PyTorch model.
|
|
@@ -408,7 +407,7 @@ class Model(nn.Module):
|
|
|
408
407
|
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
|
|
409
408
|
"docs": "https://docs.ultralytics.com",
|
|
410
409
|
}
|
|
411
|
-
torch.save({**self.ckpt, **updates}, filename
|
|
410
|
+
torch.save({**self.ckpt, **updates}, filename)
|
|
412
411
|
|
|
413
412
|
def info(self, detailed: bool = False, verbose: bool = True):
|
|
414
413
|
"""
|
|
@@ -170,7 +170,7 @@ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbos
|
|
|
170
170
|
class Events:
|
|
171
171
|
"""
|
|
172
172
|
A class for collecting anonymous event analytics. Event analytics are enabled when sync=True in settings and
|
|
173
|
-
disabled when sync=False. Run 'yolo settings' to see and update settings
|
|
173
|
+
disabled when sync=False. Run 'yolo settings' to see and update settings.
|
|
174
174
|
|
|
175
175
|
Attributes:
|
|
176
176
|
url (str): The URL to send anonymous events.
|
|
@@ -23,13 +23,13 @@ def inference(model=None):
|
|
|
23
23
|
# Main title of streamlit application
|
|
24
24
|
main_title_cfg = """<div><h1 style="color:#FF64DA; text-align:center; font-size:40px;
|
|
25
25
|
font-family: 'Archivo', sans-serif; margin-top:-50px;margin-bottom:20px;">
|
|
26
|
-
Ultralytics
|
|
26
|
+
Ultralytics YOLO Streamlit Application
|
|
27
27
|
</h1></div>"""
|
|
28
28
|
|
|
29
29
|
# Subtitle of streamlit application
|
|
30
30
|
sub_title_cfg = """<div><h4 style="color:#042AFF; text-align:center;
|
|
31
31
|
font-family: 'Archivo', sans-serif; margin-top:-15px; margin-bottom:50px;">
|
|
32
|
-
Experience real-time object detection on your webcam with the power of Ultralytics
|
|
32
|
+
Experience real-time object detection on your webcam with the power of Ultralytics YOLO! 🚀</h4>
|
|
33
33
|
</div>"""
|
|
34
34
|
|
|
35
35
|
# Set html page configuration
|
|
@@ -67,7 +67,7 @@ def inference(model=None):
|
|
|
67
67
|
vid_file_name = 0
|
|
68
68
|
|
|
69
69
|
# Add dropdown menu for model selection
|
|
70
|
-
available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("
|
|
70
|
+
available_models = [x.replace("yolo", "YOLO") for x in GITHUB_ASSETS_STEMS if x.startswith("yolo11")]
|
|
71
71
|
if model:
|
|
72
72
|
available_models.insert(0, model.split(".pt")[0]) # insert model without suffix as *.pt is added later
|
|
73
73
|
|
|
@@ -111,6 +111,7 @@ torch.set_printoptions(linewidth=320, precision=4, profile="default")
|
|
|
111
111
|
np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5
|
|
112
112
|
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
|
113
113
|
os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads
|
|
114
|
+
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" # for deterministic training to avoid CUDA warning
|
|
114
115
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warnings in Colab
|
|
115
116
|
os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings
|
|
116
117
|
os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs
|
|
@@ -970,7 +971,7 @@ def threaded(func):
|
|
|
970
971
|
def set_sentry():
|
|
971
972
|
"""
|
|
972
973
|
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
|
|
973
|
-
sync=True in settings. Run 'yolo settings' to see and update settings
|
|
974
|
+
sync=True in settings. Run 'yolo settings' to see and update settings.
|
|
974
975
|
|
|
975
976
|
Conditions required to send errors (ALL conditions must be met or no errors will be reported):
|
|
976
977
|
- sentry_sdk package is installed
|
|
@@ -982,36 +983,11 @@ def set_sentry():
|
|
|
982
983
|
- online environment
|
|
983
984
|
- CLI used to run package (checked with 'yolo' as the name of the main CLI command)
|
|
984
985
|
|
|
985
|
-
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
|
|
986
|
-
|
|
986
|
+
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError exceptions and to exclude
|
|
987
|
+
events with 'out of memory' in their exception message.
|
|
987
988
|
|
|
988
989
|
Additionally, the function sets custom tags and user information for Sentry events.
|
|
989
990
|
"""
|
|
990
|
-
|
|
991
|
-
def before_send(event, hint):
|
|
992
|
-
"""
|
|
993
|
-
Modify the event before sending it to Sentry based on specific exception types and messages.
|
|
994
|
-
|
|
995
|
-
Args:
|
|
996
|
-
event (dict): The event dictionary containing information about the error.
|
|
997
|
-
hint (dict): A dictionary containing additional information about the error.
|
|
998
|
-
|
|
999
|
-
Returns:
|
|
1000
|
-
dict: The modified event or None if the event should not be sent to Sentry.
|
|
1001
|
-
"""
|
|
1002
|
-
if "exc_info" in hint:
|
|
1003
|
-
exc_type, exc_value, tb = hint["exc_info"]
|
|
1004
|
-
if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
|
|
1005
|
-
return None # do not send event
|
|
1006
|
-
|
|
1007
|
-
event["tags"] = {
|
|
1008
|
-
"sys_argv": ARGV[0],
|
|
1009
|
-
"sys_argv_name": Path(ARGV[0]).name,
|
|
1010
|
-
"install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
|
|
1011
|
-
"os": ENVIRONMENT,
|
|
1012
|
-
}
|
|
1013
|
-
return event
|
|
1014
|
-
|
|
1015
991
|
if (
|
|
1016
992
|
SETTINGS["sync"]
|
|
1017
993
|
and RANK in {-1, 0}
|
|
@@ -1027,8 +1003,32 @@ def set_sentry():
|
|
|
1027
1003
|
except ImportError:
|
|
1028
1004
|
return
|
|
1029
1005
|
|
|
1006
|
+
def before_send(event, hint):
|
|
1007
|
+
"""
|
|
1008
|
+
Modify the event before sending it to Sentry based on specific exception types and messages.
|
|
1009
|
+
|
|
1010
|
+
Args:
|
|
1011
|
+
event (dict): The event dictionary containing information about the error.
|
|
1012
|
+
hint (dict): A dictionary containing additional information about the error.
|
|
1013
|
+
|
|
1014
|
+
Returns:
|
|
1015
|
+
dict: The modified event or None if the event should not be sent to Sentry.
|
|
1016
|
+
"""
|
|
1017
|
+
if "exc_info" in hint:
|
|
1018
|
+
exc_type, exc_value, _ = hint["exc_info"]
|
|
1019
|
+
if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value):
|
|
1020
|
+
return None # do not send event
|
|
1021
|
+
|
|
1022
|
+
event["tags"] = {
|
|
1023
|
+
"sys_argv": ARGV[0],
|
|
1024
|
+
"sys_argv_name": Path(ARGV[0]).name,
|
|
1025
|
+
"install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
|
|
1026
|
+
"os": ENVIRONMENT,
|
|
1027
|
+
}
|
|
1028
|
+
return event
|
|
1029
|
+
|
|
1030
1030
|
sentry_sdk.init(
|
|
1031
|
-
dsn="https://
|
|
1031
|
+
dsn="https://888e5a0778212e1d0314c37d4b9aae5d@o4504521589325824.ingest.us.sentry.io/4504521592406016",
|
|
1032
1032
|
debug=False,
|
|
1033
1033
|
traces_sample_rate=1.0,
|
|
1034
1034
|
release=__version__,
|
|
@@ -1169,25 +1169,26 @@ class SettingsManager(JSONDict):
|
|
|
1169
1169
|
self.file = Path(file)
|
|
1170
1170
|
self.version = version
|
|
1171
1171
|
self.defaults = {
|
|
1172
|
-
"settings_version": version,
|
|
1173
|
-
"datasets_dir": str(datasets_root / "datasets"),
|
|
1174
|
-
"weights_dir": str(root / "weights"),
|
|
1175
|
-
"runs_dir": str(root / "runs"),
|
|
1176
|
-
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
|
|
1177
|
-
"sync": True,
|
|
1178
|
-
"api_key": "",
|
|
1179
|
-
"openai_api_key": "",
|
|
1180
|
-
"clearml": True, #
|
|
1181
|
-
"comet": True,
|
|
1182
|
-
"dvc": True,
|
|
1183
|
-
"hub": True,
|
|
1184
|
-
"mlflow": True,
|
|
1185
|
-
"neptune": True,
|
|
1186
|
-
"raytune": True,
|
|
1187
|
-
"tensorboard": True,
|
|
1188
|
-
"wandb": True,
|
|
1189
|
-
"vscode_msg": True,
|
|
1172
|
+
"settings_version": version, # Settings schema version
|
|
1173
|
+
"datasets_dir": str(datasets_root / "datasets"), # Datasets directory
|
|
1174
|
+
"weights_dir": str(root / "weights"), # Model weights directory
|
|
1175
|
+
"runs_dir": str(root / "runs"), # Experiment runs directory
|
|
1176
|
+
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash
|
|
1177
|
+
"sync": True, # Enable synchronization
|
|
1178
|
+
"api_key": "", # Ultralytics API Key
|
|
1179
|
+
"openai_api_key": "", # OpenAI API Key
|
|
1180
|
+
"clearml": True, # ClearML integration
|
|
1181
|
+
"comet": True, # Comet integration
|
|
1182
|
+
"dvc": True, # DVC integration
|
|
1183
|
+
"hub": True, # Ultralytics HUB integration
|
|
1184
|
+
"mlflow": True, # MLflow integration
|
|
1185
|
+
"neptune": True, # Neptune integration
|
|
1186
|
+
"raytune": True, # Ray Tune integration
|
|
1187
|
+
"tensorboard": True, # TensorBoard logging
|
|
1188
|
+
"wandb": True, # Weights & Biases logging
|
|
1189
|
+
"vscode_msg": True, # VSCode messaging
|
|
1190
1190
|
}
|
|
1191
|
+
|
|
1191
1192
|
self.help_msg = (
|
|
1192
1193
|
f"\nView Ultralytics Settings with 'yolo settings' or at '{self.file}'"
|
|
1193
1194
|
"\nUpdate Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. "
|
|
@@ -536,8 +536,8 @@ class ProfileModels:
|
|
|
536
536
|
"""Generates a table row string with model performance metrics including inference times and model details."""
|
|
537
537
|
layers, params, gradients, flops = model_info
|
|
538
538
|
return (
|
|
539
|
-
f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.
|
|
540
|
-
f"{t_engine[1]:.
|
|
539
|
+
f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.1f}±{t_onnx[1]:.1f} ms | {t_engine[0]:.1f}±"
|
|
540
|
+
f"{t_engine[1]:.1f} ms | {params / 1e6:.1f} | {flops:.1f} |"
|
|
541
541
|
)
|
|
542
542
|
|
|
543
543
|
@staticmethod
|
|
@@ -657,9 +657,10 @@ def check_amp(model):
|
|
|
657
657
|
def amp_allclose(m, im):
|
|
658
658
|
"""All close FP32 vs AMP results."""
|
|
659
659
|
batch = [im] * 8
|
|
660
|
-
|
|
660
|
+
imgsz = max(256, int(model.stride.max() * 4)) # max stride P5-32 and P6-64
|
|
661
|
+
a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # FP32 inference
|
|
661
662
|
with autocast(enabled=True):
|
|
662
|
-
b = m(batch, imgsz=
|
|
663
|
+
b = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # AMP inference
|
|
663
664
|
del m
|
|
664
665
|
return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
|
|
665
666
|
|