ultralytics 8.3.161__py3-none-any.whl → 8.3.162__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tests/conftest.py CHANGED
@@ -56,11 +56,11 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
56
56
  from ultralytics.utils import WEIGHTS_DIR
57
57
 
58
58
  # Remove files
59
- models = [path for x in ["*.onnx", "*.torchscript"] for path in WEIGHTS_DIR.rglob(x)]
59
+ models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
60
60
  for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript"] + models:
61
61
  Path(file).unlink(missing_ok=True)
62
62
 
63
63
  # Remove directories
64
- models = [path for x in ["*.mlpackage", "*_openvino_model"] for path in WEIGHTS_DIR.rglob(x)]
64
+ models = [path for x in {"*.mlpackage", "*_openvino_model"} for path in WEIGHTS_DIR.rglob(x)]
65
65
  for directory in [WEIGHTS_DIR / "path with spaces", TMP.parents[1] / ".pytest_cache", TMP] + models:
66
66
  shutil.rmtree(directory, ignore_errors=True)
tests/test_python.py CHANGED
@@ -204,7 +204,7 @@ def test_track_stream(model):
204
204
  @pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
205
205
  def test_val(task: str, model: str, data: str) -> None:
206
206
  """Test the validation mode of the YOLO model."""
207
- for plots in [True, False]: # Test both cases i.e. plots=True and plots=False
207
+ for plots in {True, False}: # Test both cases i.e. plots=True and plots=False
208
208
  metrics = YOLO(model).val(data=data, imgsz=32, plots=plots)
209
209
  metrics.to_df()
210
210
  metrics.to_csv()
@@ -390,7 +390,7 @@ def test_cfg_init():
390
390
  check_dict_alignment({"a": 1}, {"b": 2})
391
391
  copy_default_cfg()
392
392
  (Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False)
393
- [smart_value(x) for x in ["none", "true", "false"]]
393
+ [smart_value(x) for x in {"none", "true", "false"}]
394
394
 
395
395
 
396
396
  def test_utils_init():
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.161"
3
+ __version__ = "8.3.162"
4
4
 
5
5
  import os
6
6
 
@@ -1805,6 +1805,8 @@ class CopyPaste(BaseMixTransform):
1805
1805
  def _transform(self, labels1, labels2={}):
1806
1806
  """Apply Copy-Paste augmentation to combine objects from another image into the current image."""
1807
1807
  im = labels1["img"]
1808
+ if "mosaic_border" not in labels1:
1809
+ im = im.copy() # avoid modifying original non-mosaic image
1808
1810
  cls = labels1["cls"]
1809
1811
  h, w = im.shape[:2]
1810
1812
  instances = labels1.pop("instances")
@@ -496,7 +496,7 @@ def convert_dota_to_yolo_obb(dota_root_path: str):
496
496
  formatted_coords = [f"{coord:.6g}" for coord in normalized_coords]
497
497
  g.write(f"{class_idx} {' '.join(formatted_coords)}\n")
498
498
 
499
- for phase in ["train", "val"]:
499
+ for phase in {"train", "val"}:
500
500
  image_dir = dota_root_path / "images" / phase
501
501
  orig_label_dir = dota_root_path / "labels" / f"{phase}_original"
502
502
  save_dir = dota_root_path / "labels" / phase
@@ -684,7 +684,7 @@ def create_synthetic_coco_dataset():
684
684
  # Create synthetic images
685
685
  shutil.rmtree(dir / "labels" / "test2017", ignore_errors=True) # Remove test2017 directory as not needed
686
686
  with ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
687
- for subset in ["train2017", "val2017"]:
687
+ for subset in {"train2017", "val2017"}:
688
688
  subset_dir = dir / "images" / subset
689
689
  subset_dir.mkdir(parents=True, exist_ok=True)
690
690
 
@@ -295,7 +295,7 @@ def split_trainval(
295
295
  for r in rates:
296
296
  crop_sizes.append(int(crop_size / r))
297
297
  gaps.append(int(gap / r))
298
- for split in ["train", "val"]:
298
+ for split in {"train", "val"}:
299
299
  split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps)
300
300
 
301
301
 
@@ -100,6 +100,7 @@ from ultralytics.utils.checks import (
100
100
  check_is_path_safe,
101
101
  check_requirements,
102
102
  check_version,
103
+ is_intel,
103
104
  is_sudo_available,
104
105
  )
105
106
  from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
@@ -107,7 +108,7 @@ from ultralytics.utils.export import export_engine, export_onnx
107
108
  from ultralytics.utils.files import file_size, spaces_in_path
108
109
  from ultralytics.utils.ops import Profile, nms_rotated
109
110
  from ultralytics.utils.patches import arange_patch
110
- from ultralytics.utils.torch_utils import TORCH_1_13, get_cpu_info, get_latest_opset, select_device
111
+ from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device
111
112
 
112
113
 
113
114
  def export_formats():
@@ -372,9 +373,9 @@ class Exporter:
372
373
  raise SystemError("TF.js exports are not currently supported on ARM64 Linux")
373
374
  # Recommend OpenVINO if export and Intel CPU
374
375
  if SETTINGS.get("openvino_msg"):
375
- if "intel" in get_cpu_info().lower():
376
+ if is_intel():
376
377
  LOGGER.info(
377
- "💡 ProTip: Export to OpenVINO format for best performance on Intel CPUs."
378
+ "💡 ProTip: Export to OpenVINO format for best performance on Intel hardware."
378
379
  " Learn more at https://docs.ultralytics.com/integrations/openvino/"
379
380
  )
380
381
  SETTINGS["openvino_msg"] = False
@@ -948,7 +949,7 @@ class Exporter:
948
949
  "tf_keras", # required by 'onnx2tf' package
949
950
  "sng4onnx>=1.0.1", # required by 'onnx2tf' package
950
951
  "onnx_graphsurgeon>=0.3.26", # required by 'onnx2tf' package
951
- "ai-edge-litert>=1.2.0", # required by 'onnx2tf' package
952
+ "ai-edge-litert>=1.2.0,<1.4.0", # required by 'onnx2tf' package
952
953
  "onnx>=1.12.0,<1.18.0",
953
954
  "onnx2tf>=1.26.3",
954
955
  "onnxslim>=0.1.56",
@@ -21,10 +21,10 @@ import time
21
21
  from typing import Dict, List, Optional
22
22
 
23
23
  import numpy as np
24
- import torch
25
24
 
26
25
  from ultralytics.cfg import get_cfg, get_save_dir
27
26
  from ultralytics.utils import DEFAULT_CFG, LOGGER, YAML, callbacks, colorstr, remove_colorstr
27
+ from ultralytics.utils.patches import torch_load
28
28
  from ultralytics.utils.plotting import plot_tune_results
29
29
 
30
30
 
@@ -198,7 +198,7 @@ class Tuner:
198
198
  cmd = [*launch, "train", *(f"{k}={v}" for k, v in train_args.items())]
199
199
  return_code = subprocess.run(cmd, check=True).returncode
200
200
  ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt")
201
- metrics = torch.load(ckpt_file)["train_metrics"]
201
+ metrics = torch_load(ckpt_file)["train_metrics"]
202
202
  assert return_code == 0, "training failed"
203
203
 
204
204
  except Exception as e:
@@ -8,6 +8,7 @@ import torch
8
8
  from ultralytics.engine.model import Model
9
9
  from ultralytics.utils import DEFAULT_CFG_DICT
10
10
  from ultralytics.utils.downloads import attempt_download_asset
11
+ from ultralytics.utils.patches import torch_load
11
12
  from ultralytics.utils.torch_utils import model_info
12
13
 
13
14
  from .predict import NASPredictor
@@ -56,7 +57,7 @@ class NAS(Model):
56
57
 
57
58
  suffix = Path(weights).suffix
58
59
  if suffix == ".pt":
59
- self.model = torch.load(attempt_download_asset(weights))
60
+ self.model = torch_load(attempt_download_asset(weights))
60
61
  elif suffix == "":
61
62
  self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
62
63
 
@@ -931,7 +931,7 @@ class TinyViT(nn.Module):
931
931
  if layer.downsample is not None:
932
932
  layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1]))
933
933
  assert i == depth
934
- for m in [self.norm_head, self.head]:
934
+ for m in {self.norm_head, self.head}:
935
935
  m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
936
936
 
937
937
  for k, p in self.named_parameters():
@@ -71,7 +71,7 @@ class DetectionValidator(BaseValidator):
71
71
  """
72
72
  batch["img"] = batch["img"].to(self.device, non_blocking=True)
73
73
  batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
74
- for k in ["batch_idx", "cls", "bboxes"]:
74
+ for k in {"batch_idx", "cls", "bboxes"}:
75
75
  batch[k] = batch[k].to(self.device)
76
76
 
77
77
  return batch
@@ -153,7 +153,7 @@ class WorldTrainer(DetectionTrainer):
153
153
  cache_path = cache_dir / f"text_embeddings_{model.replace(':', '_').replace('/', '_')}.pt"
154
154
  if cache_path.exists():
155
155
  LOGGER.info(f"Reading existed cache from '{cache_path}'")
156
- txt_map = torch.load(cache_path)
156
+ txt_map = torch.load(cache_path, map_location=self.device)
157
157
  if sorted(txt_map.keys()) == sorted(texts):
158
158
  return txt_map
159
159
  LOGGER.info(f"Caching text embeddings to '{cache_path}'")
@@ -1,9 +1,11 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
+ from pathlib import Path
4
+
3
5
  from ultralytics.data import YOLOConcatDataset, build_grounding, build_yolo_dataset
4
6
  from ultralytics.data.utils import check_det_dataset
5
7
  from ultralytics.models.yolo.world import WorldTrainer
6
- from ultralytics.utils import DEFAULT_CFG, LOGGER
8
+ from ultralytics.utils import DATASETS_DIR, DEFAULT_CFG, LOGGER
7
9
  from ultralytics.utils.torch_utils import de_parallel
8
10
 
9
11
 
@@ -136,7 +138,7 @@ class WorldTrainerFromScratch(WorldTrainer):
136
138
  if d.get("minival") is None: # for lvis dataset
137
139
  continue
138
140
  d["minival"] = str(d["path"] / d["minival"])
139
- for s in ["train", "val"]:
141
+ for s in {"train", "val"}:
140
142
  final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]]
141
143
  # save grounding data if there's one
142
144
  grounding_data = data_yaml[s].get("grounding_data")
@@ -145,8 +147,14 @@ class WorldTrainerFromScratch(WorldTrainer):
145
147
  grounding_data = grounding_data if isinstance(grounding_data, list) else [grounding_data]
146
148
  for g in grounding_data:
147
149
  assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
150
+ for k in {"img_path", "json_file"}:
151
+ path = Path(g[k])
152
+ if not path.exists() and not path.is_absolute():
153
+ g[k] = str((DATASETS_DIR / g[k]).resolve()) # path relative to DATASETS_DIR
148
154
  final_data[s] += grounding_data
149
- data["val"] = data["val"][0] # assign the first val dataset as currently only one validation set is supported
155
+ # assign the first val dataset as currently only one validation set is supported
156
+ data["val"] = data["val"][0]
157
+ final_data["val"] = final_data["val"][0]
150
158
  # NOTE: to make training work properly, set `nc` and `names`
151
159
  final_data["nc"] = data["val"]["nc"]
152
160
  final_data["names"] = data["val"]["names"]
@@ -217,7 +217,7 @@ class YOLOETrainerFromScratch(YOLOETrainer, WorldTrainerFromScratch):
217
217
  cache_path = cache_dir / f"text_embeddings_{model.replace(':', '_').replace('/', '_')}.pt"
218
218
  if cache_path.exists():
219
219
  LOGGER.info(f"Reading existed cache from '{cache_path}'")
220
- txt_map = torch.load(cache_path)
220
+ txt_map = torch.load(cache_path, map_location=self.device)
221
221
  if sorted(txt_map.keys()) == sorted(texts):
222
222
  return txt_map
223
223
  LOGGER.info(f"Caching text embeddings to '{cache_path}'")
ultralytics/nn/tasks.py CHANGED
@@ -80,6 +80,7 @@ from ultralytics.utils.loss import (
80
80
  v8SegmentationLoss,
81
81
  )
82
82
  from ultralytics.utils.ops import make_divisible
83
+ from ultralytics.utils.patches import torch_load
83
84
  from ultralytics.utils.plotting import feature_visualization
84
85
  from ultralytics.utils.torch_utils import (
85
86
  fuse_conv_and_bn,
@@ -1441,9 +1442,9 @@ def torch_safe_load(weight, safe_only=False):
1441
1442
  safe_pickle.Unpickler = SafeUnpickler
1442
1443
  safe_pickle.load = lambda file_obj: SafeUnpickler(file_obj).load()
1443
1444
  with open(file, "rb") as f:
1444
- ckpt = torch.load(f, pickle_module=safe_pickle)
1445
+ ckpt = torch_load(f, pickle_module=safe_pickle)
1445
1446
  else:
1446
- ckpt = torch.load(file, map_location="cpu")
1447
+ ckpt = torch_load(file, map_location="cpu")
1447
1448
 
1448
1449
  except ModuleNotFoundError as e: # e.name is missing module name
1449
1450
  if e.name == "models":
@@ -1469,7 +1470,7 @@ def torch_safe_load(weight, safe_only=False):
1469
1470
  f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolo11n.pt'"
1470
1471
  )
1471
1472
  check_requirements(e.name) # install missing module
1472
- ckpt = torch.load(file, map_location="cpu")
1473
+ ckpt = torch_load(file, map_location="cpu")
1473
1474
 
1474
1475
  if not isinstance(ckpt, dict):
1475
1476
  # File is likely a YOLO instance saved with i.e. torch.save(model, "saved_model.pt")
@@ -115,7 +115,7 @@ class BaseSolution:
115
115
  self.device = self.CFG["device"]
116
116
 
117
117
  self.track_add_args = { # Tracker additional arguments for advance configuration
118
- k: self.CFG[k] for k in ["iou", "conf", "device", "max_det", "half", "tracker"]
118
+ k: self.CFG[k] for k in {"iou", "conf", "device", "max_det", "half", "tracker"}
119
119
  } # verbose must be passed to track method; setting it False in YOLO still logs the track information.
120
120
 
121
121
  if is_cli and self.CFG["source"] is None:
@@ -25,7 +25,7 @@ import torch
25
25
  import tqdm
26
26
 
27
27
  from ultralytics import __version__
28
- from ultralytics.utils.patches import imread, imshow, imwrite, torch_load, torch_save # for patches
28
+ from ultralytics.utils.patches import imread, imshow, imwrite, torch_save # for patches
29
29
 
30
30
  # PyTorch Multi-GPU DDP Constants
31
31
  RANK = int(os.getenv("RANK", -1))
@@ -1593,7 +1593,6 @@ TESTS_RUNNING = is_pytest_running() or is_github_action_running()
1593
1593
  set_sentry()
1594
1594
 
1595
1595
  # Apply monkey patches
1596
- torch.load = torch_load
1597
1596
  torch.save = torch_save
1598
1597
  if WINDOWS:
1599
1598
  # Apply cv2 patches for non-ASCII and non-UTF characters in image paths
@@ -896,6 +896,27 @@ def is_rockchip():
896
896
  return False
897
897
 
898
898
 
899
+ def is_intel():
900
+ """
901
+ Check if the system has Intel hardware (CPU or GPU).
902
+
903
+ Returns:
904
+ (bool): True if Intel hardware is detected, False otherwise.
905
+ """
906
+ from ultralytics.utils.torch_utils import get_cpu_info
907
+
908
+ # Check CPU
909
+ if "intel" in get_cpu_info().lower():
910
+ return True
911
+
912
+ # Check GPU via xpu-smi
913
+ try:
914
+ result = subprocess.run(["xpu-smi", "discovery"], capture_output=True, text=True, timeout=5)
915
+ return "intel" in result.stdout.lower()
916
+ except (subprocess.TimeoutExpired, FileNotFoundError, subprocess.SubprocessError):
917
+ return False
918
+
919
+
899
920
  def is_sudo_available() -> bool:
900
921
  """
901
922
  Check if the sudo command is available in the environment.
@@ -488,7 +488,7 @@ class ConfusionMatrix(DataExportMixin):
488
488
  if ticklabels != "auto":
489
489
  ax.set_xticklabels(ticklabels, fontsize=tick_fontsize, rotation=90, ha="center")
490
490
  ax.set_yticklabels(ticklabels, fontsize=tick_fontsize)
491
- for s in ["left", "right", "bottom", "top", "outline"]:
491
+ for s in {"left", "right", "bottom", "top", "outline"}:
492
492
  if s != "outline":
493
493
  ax.spines[s].set_visible(False) # Confusion matrix plot don't have outline
494
494
  cbar.ax.spines[s].set_visible(False)
@@ -1006,6 +1006,7 @@ class DetMetrics(SimpleClass, DataExportMixin):
1006
1006
  save_dir=save_dir,
1007
1007
  names=self.names,
1008
1008
  on_plot=on_plot,
1009
+ prefix="Box",
1009
1010
  )[2:]
1010
1011
  self.box.nc = len(self.names)
1011
1012
  self.box.update(results)
@@ -1135,7 +1136,7 @@ class SegmentMetrics(DetMetrics):
1135
1136
  Returns:
1136
1137
  (Dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
1137
1138
  """
1138
- stats = DetMetrics.process(self, on_plot=on_plot) # process box stats
1139
+ stats = DetMetrics.process(self, save_dir, plot, on_plot=on_plot) # process box stats
1139
1140
  results_mask = ap_per_class(
1140
1141
  stats["tp_m"],
1141
1142
  stats["conf"],
@@ -1270,7 +1271,7 @@ class PoseMetrics(DetMetrics):
1270
1271
  Returns:
1271
1272
  (Dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
1272
1273
  """
1273
- stats = DetMetrics.process(self, on_plot=on_plot) # process box stats
1274
+ stats = DetMetrics.process(self, save_dir, plot, on_plot=on_plot) # process box stats
1274
1275
  results_pose = ap_per_class(
1275
1276
  stats["tp_p"],
1276
1277
  stats["conf"],
@@ -90,7 +90,6 @@ def imshow(winname: str, mat: np.ndarray) -> None:
90
90
 
91
91
 
92
92
  # PyTorch functions ----------------------------------------------------------------------------------------------------
93
- _torch_load = torch.load # copy to avoid recursion errors
94
93
  _torch_save = torch.save
95
94
 
96
95
 
@@ -116,7 +115,7 @@ def torch_load(*args, **kwargs):
116
115
  if TORCH_1_13 and "weights_only" not in kwargs:
117
116
  kwargs["weights_only"] = False
118
117
 
119
- return _torch_load(*args, **kwargs)
118
+ return torch.load(*args, **kwargs)
120
119
 
121
120
 
122
121
  def torch_save(*args, **kwargs):
@@ -610,8 +610,8 @@ def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
610
610
  ax[3].hist2d(x["width"], x["height"], bins=50, cmap=subplot_3_4_color)
611
611
  ax[3].set_xlabel("width")
612
612
  ax[3].set_ylabel("height")
613
- for a in [0, 1, 2, 3]:
614
- for s in ["top", "right", "left", "bottom"]:
613
+ for a in {0, 1, 2, 3}:
614
+ for s in {"top", "right", "left", "bottom"}:
615
615
  ax[a].spines[s].set_visible(False)
616
616
 
617
617
  fname = save_dir / "labels.jpg"
@@ -30,6 +30,7 @@ from ultralytics.utils import (
30
30
  colorstr,
31
31
  )
32
32
  from ultralytics.utils.checks import check_version
33
+ from ultralytics.utils.patches import torch_load
33
34
 
34
35
  # Version checks (all default to version>=min_version)
35
36
  TORCH_1_9 = check_version(torch.__version__, "1.9.0")
@@ -724,7 +725,7 @@ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: Dict[
724
725
  >>> strip_optimizer(f)
725
726
  """
726
727
  try:
727
- x = torch.load(f, map_location=torch.device("cpu"))
728
+ x = torch_load(f, map_location=torch.device("cpu"))
728
729
  assert isinstance(x, dict), "checkpoint is not a Python dictionary"
729
730
  assert "model" in x, "'model' missing from checkpoint"
730
731
  except Exception as e:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.161
3
+ Version: 8.3.162
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -79,6 +79,14 @@ Requires-Dist: hub-sdk>=0.0.12; extra == "extra"
79
79
  Requires-Dist: ipython; extra == "extra"
80
80
  Requires-Dist: albumentations>=1.4.6; extra == "extra"
81
81
  Requires-Dist: faster-coco-eval>=1.6.7; extra == "extra"
82
+ Provides-Extra: typing
83
+ Requires-Dist: pandas-stubs; extra == "typing"
84
+ Requires-Dist: scipy-stubs; extra == "typing"
85
+ Requires-Dist: types-pillow; extra == "typing"
86
+ Requires-Dist: types-psutil; extra == "typing"
87
+ Requires-Dist: types-pyyaml; extra == "typing"
88
+ Requires-Dist: types-requests; extra == "typing"
89
+ Requires-Dist: types-shapely; extra == "typing"
82
90
  Dynamic: license-file
83
91
 
84
92
  <div align="center">
@@ -1,13 +1,13 @@
1
1
  tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
2
- tests/conftest.py,sha256=JjgKSs36ZaGmmtqGmAapmFSoFF1YwyV3IZsOgqt2IVM,2593
2
+ tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
3
3
  tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
4
4
  tests/test_cuda.py,sha256=-nQsfF3lGfqLm6cIeu_BCiXqLj7HzpL7R1GzPEc6z2I,8128
5
5
  tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
6
6
  tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
7
7
  tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
8
- tests/test_python.py,sha256=b8vSSJx2iq59sSaIbnPe6sQ5CRyANVoy0ZaR6iQuqCA,27907
8
+ tests/test_python.py,sha256=JJu-69IfuUf1dLK7Ko9elyPONiQ1yu7yhapMVIAt_KI,27907
9
9
  tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
10
- ultralytics/__init__.py,sha256=W7njVgOtDaS2k2-WZMYQVMYB5uby9LMlSjgo6Lq1Ey0,730
10
+ ultralytics/__init__.py,sha256=mghg3KP-MAGasMWYrfuWs4NQuSHe4GXzeqmSc_T9E0k,730
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=VIpPHImhjb0XLJquGZrG_LBGZchtOtBSXR7HYTYV2GU,39602
@@ -105,26 +105,26 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
105
105
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
106
106
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
107
107
  ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
108
- ultralytics/data/augment.py,sha256=jyEXZ1TqJFIdz_oqecsDa4gKDCMC71RGiMJh3kQV9G0,129378
108
+ ultralytics/data/augment.py,sha256=elMnIEubT1ywhH0tbppLbWW4dEs3-n5vnm8U8TzsDEw,129493
109
109
  ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
110
110
  ultralytics/data/build.py,sha256=13gPxCJIZRjgcNh7zbzanCgtyK6_oZM0ho9KQhHcM6c,11153
111
- ultralytics/data/converter.py,sha256=e4FgGV3DsxrdNVe8-nS8MclSYtlDrbePxyDeZ3rhqFU,27134
111
+ ultralytics/data/converter.py,sha256=dExElV0vWd4EmDtZaFMC0clEmLdjRDIdFiXf01PUvQA,27134
112
112
  ultralytics/data/dataset.py,sha256=0VjzciGleGGF_XN5fEnS3c5UT0r533HMmQ9DfEQ_lA4,36463
113
113
  ultralytics/data/loaders.py,sha256=kTGO1P-HntpQk078i1ASyXYckDx9Z7Pe7o1YbePcjC4,31657
114
114
  ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
115
- ultralytics/data/split_dota.py,sha256=RJHxwOX2Z9CfSX_h7L7mO-aLQ4Ap_ZpZanQdno10oSA,12893
115
+ ultralytics/data/split_dota.py,sha256=rr-lLpTUVaFZMggV_fUYZdFVIJk_zbbSOpgB_Qp50_M,12893
116
116
  ultralytics/data/utils.py,sha256=fJqVJkjaub-xT0cB1o40Hl1WIH1ljKINT0SJaJyZse4,36637
117
117
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
118
118
  ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
119
119
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
120
120
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
121
121
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
122
- ultralytics/engine/exporter.py,sha256=j9Yr03besifwA96jvGS-3HJv4iCnAkXQd89j1oW9pWM,73273
122
+ ultralytics/engine/exporter.py,sha256=oz6jsQbYapyc29Bw1DTQuDbk_RnOKphlVeLrCwQehs4,73261
123
123
  ultralytics/engine/model.py,sha256=FmLwiKuItVNgoyXhAvesUnD3UeHBzCVzGHDrqB8J4ms,53453
124
124
  ultralytics/engine/predictor.py,sha256=88zrgZP91ehwdeGl8BM_cQ_caeuwKIPDy3OzxcRBjTU,22474
125
125
  ultralytics/engine/results.py,sha256=rLQlttkgPudiV0u0d6Xy5hKKr1x3SJL1zrXA5W5vw7Y,71999
126
126
  ultralytics/engine/trainer.py,sha256=28FeqASvQRxCaK96SXDM-BfPJjqy5KNiWhf8v6GXTug,39785
127
- ultralytics/engine/tuner.py,sha256=4ue7JbMFQp7JcWhhwCAY-b-xZsjm5VKVlPFDUTyxt_8,12789
127
+ ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
128
128
  ultralytics/engine/validator.py,sha256=qftJUomb4A-6rSThtST3TccEbc_zTmzovCBBCSpYm3k,16671
129
129
  ultralytics/hub/__init__.py,sha256=ulPtceI3hqud03mvqoXccBaa1e4nveYwC9cddyuBUlo,6599
130
130
  ultralytics/hub/auth.py,sha256=5uMPzZt8aO-YsnEWADzc1qBUt9c30RTIfrGo5SWTrv4,6271
@@ -138,7 +138,7 @@ ultralytics/models/fastsam/predict.py,sha256=G-o8hs8W5XmqSN5G37zi6q9FglFnZSbD6qH
138
138
  ultralytics/models/fastsam/utils.py,sha256=yuCXB4CVjRx8lDf61DP8B6qMx7TVf7AynQvdWREeFco,884
139
139
  ultralytics/models/fastsam/val.py,sha256=oLxB8vBKTfiT7eBbTzvpqq_xNSvDOjGdP1J7egHGsCA,2041
140
140
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
141
- ultralytics/models/nas/model.py,sha256=kQeF3mkVHLLsoTL9F32CrYITNsdbTrYF6lEgHclhKN0,3824
141
+ ultralytics/models/nas/model.py,sha256=CStfE5x08uPIJ-wY_8NYVmVlWiom5oTF9kT6jIKM5Sc,3873
142
142
  ultralytics/models/nas/predict.py,sha256=J4UT7nwi_h63lJ3a_gYac-Ws8wFYingZINxMqSoaX5E,2706
143
143
  ultralytics/models/nas/val.py,sha256=QUTE3zuhJLVqmDGd2n7iSSk7X6jKZCRxufFkBbyxYYo,1548
144
144
  ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
@@ -157,7 +157,7 @@ ultralytics/models/sam/modules/decoders.py,sha256=-1fhBO47hA-3CzkU-PzkCK4Nsi_VJ_
157
157
  ultralytics/models/sam/modules/encoders.py,sha256=f1cdGdmQ_3Vt7MKxMVNIgvEvYmVR8lM1uVocNnrrYrU,37392
158
158
  ultralytics/models/sam/modules/memory_attention.py,sha256=UNUbVyF8m6NIdhGOvTAwb_lS6x_Had8Ek3OP5JJqcQU,13539
159
159
  ultralytics/models/sam/modules/sam.py,sha256=LUNmH-1iFPLnl7qzLeLpRqgc82_b8xKNCszDo272rrM,55684
160
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=Iwr72WdeM-n1Pd9olluFRxhM3f9IORewPbxyzTEPelc,42241
160
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=lmUIeZ9-3M-C3YmJBs13W6t__dzeJloOl0qFR9Ll8ew,42241
161
161
  ultralytics/models/sam/modules/transformer.py,sha256=dIcq1UyCRYIhTPeetVpdjRcqR_b_a5AkkYo-L3Cq6hE,14747
162
162
  ultralytics/models/sam/modules/utils.py,sha256=0qxBCh4tTzXNT10-BiKbqH6QDjzhkmLz2OiVG7gQfww,16021
163
163
  ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
@@ -172,7 +172,7 @@ ultralytics/models/yolo/classify/val.py,sha256=YakPxBVZCd85Kp4wFKx8KH6JJFiU7nkFS
172
172
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
173
173
  ultralytics/models/yolo/detect/predict.py,sha256=ySUsdIf8dw00bzWhcxN1jZwLWKPRT2M7-N7TNL3o4zo,5387
174
174
  ultralytics/models/yolo/detect/train.py,sha256=HlaCoHJ6Y2TpCXXWabMRZApAYqBvjuM_YQJUV5JYCvw,9907
175
- ultralytics/models/yolo/detect/val.py,sha256=Yhs7SdS8O_4_61N_ZxzGaEfm4tnpEzIRV5XcMsrI-e4,20485
175
+ ultralytics/models/yolo/detect/val.py,sha256=qA3Jq4JDZ-sSAy0JMQcz2ncmhLqLRUughMNYLZ1YifE,20485
176
176
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
177
177
  ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
178
178
  ultralytics/models/yolo/obb/train.py,sha256=bnYFAMur7Uvbw5Dc09-S2ge7B05iGX-t37Ksgc0ef6g,3921
@@ -186,16 +186,16 @@ ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHr
186
186
  ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65rK-QH9mtNIw,3802
187
187
  ultralytics/models/yolo/segment/val.py,sha256=AnvY0O7HhD5xZ2BE2artLTAVW4SNmHbVopBJsYRcmk8,12328
188
188
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
189
- ultralytics/models/yolo/world/train.py,sha256=karlbEdkfAh08ZzYj9nXOiqLsRq5grsbV-XDv3yl6GQ,7819
190
- ultralytics/models/yolo/world/train_world.py,sha256=WYcBzOrCEwqrjmgLnIa-33n5NOI-5MqCJYGHrixFcJk,8950
189
+ ultralytics/models/yolo/world/train.py,sha256=wBKnSC-TvrKWM1Taxqwo13XcwGHwwAXzNYV1tmqcOpc,7845
190
+ ultralytics/models/yolo/world/train_world.py,sha256=OLS1ofDSfMBsEG07PjEMruvbaXzNEWs07FpPowHVffs,9306
191
191
  ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
192
192
  ultralytics/models/yolo/yoloe/predict.py,sha256=TAcT6fiWbV-jOewu9hx_shGI10VLF_6oSPf7jfatBWo,7041
193
- ultralytics/models/yolo/yoloe/train.py,sha256=H1Z5yzcYklyfIkT0xR35qq3f7CxmeG2jUhWhbVyE6RA,14060
193
+ ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
194
194
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
195
195
  ultralytics/models/yolo/yoloe/val.py,sha256=yebPkxwKKt__cY05Zbh1YXg4_BKzzpcDc3Cv3FJ5SAA,9769
196
196
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
197
197
  ultralytics/nn/autobackend.py,sha256=n-2ADzX3Y2MRE8nHFeVvFCJFJP9rCbkkNbcufPZ24dE,41532
198
- ultralytics/nn/tasks.py,sha256=aCXYmWan2LTznH3i_-2OwMagG3ZwnVL1gjKtY-3oShM,72456
198
+ ultralytics/nn/tasks.py,sha256=vw_TNacAv-RN24rusFzKuYL6qRBD7cve8EpB7gOlU_8,72505
199
199
  ultralytics/nn/text_model.py,sha256=cYwD-0el4VeToDBP4iPFOQGqyEQatJOBHrVyONL3K_s,15282
200
200
  ultralytics/nn/modules/__init__.py,sha256=2nY0X69Z5DD5SWt6v3CUTZa5gXSzC9TQr3VTVqhyGho,3158
201
201
  ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
@@ -219,7 +219,7 @@ ultralytics/solutions/queue_management.py,sha256=u0VFzRqa0OxIWY7xXItsXEm073CzkQG
219
219
  ultralytics/solutions/region_counter.py,sha256=j6f5VAaE1JWGdWOecZpWMFp6yF1GdCnHjftN6CRybjQ,5967
220
220
  ultralytics/solutions/security_alarm.py,sha256=U6FTbg3cthKLfWeLunsFhOJvB6GGmwYDDxZ3K0GCx-Q,6351
221
221
  ultralytics/solutions/similarity_search.py,sha256=H9MPf8F5AvVfmb9hnng0FrIOTbLU_I-CkVHGpC81CE0,9496
222
- ultralytics/solutions/solutions.py,sha256=2FyT3v6SpNisHvbTs96Z3jhzyl3Y72yds8R6CpnVhp4,37318
222
+ ultralytics/solutions/solutions.py,sha256=KtoSUSxM4s-Ti5EAzT21pItuv70qlIOH6ymJP95Gl-E,37318
223
223
  ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
224
224
  ultralytics/solutions/streamlit_inference.py,sha256=SqL-YxU3RCxCKscH2AYUTkmJknilV9jCCco6ufqsFk4,10501
225
225
  ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
@@ -234,11 +234,11 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
234
234
  ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
235
235
  ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
236
236
  ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
237
- ultralytics/utils/__init__.py,sha256=oJZ1o2L2R-EHepFbe_9bAzyiLi3Rd3Cv6gJmgO5jNfc,59437
237
+ ultralytics/utils/__init__.py,sha256=2xXw_PdASHKkAuOu3eaShJVqisQtFkF8nw5FyMuDUCQ,59401
238
238
  ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
239
239
  ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
240
240
  ultralytics/utils/benchmarks.py,sha256=GlsR6SvD3qlus2hVj7SqSNErsejBlIxO0Y7hMc_cWHw,31041
241
- ultralytics/utils/checks.py,sha256=PPVmxfxoHuC4YR7i56uklCKXFAPnltzbHHCxUwERjUQ,34100
241
+ ultralytics/utils/checks.py,sha256=mkDl_BTLZyjfhYbFVSG6xYmxhB2s7wsQ62ugnhspqOc,34707
242
242
  ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
243
243
  ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkgc,22080
244
244
  ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
@@ -246,12 +246,12 @@ ultralytics/utils/export.py,sha256=0gG_GZNRqHcORJbjQq_1MXEHc3UEfzPAdpOl2X5VoDc,1
246
246
  ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
247
247
  ultralytics/utils/instance.py,sha256=s97d-GXSSCluu-My2DFLAubdk_hf44BuVQ6OCROBrMc,18550
248
248
  ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
249
- ultralytics/utils/metrics.py,sha256=llNqzrACnbWS0qWt5aCudQyBMN8LpVpMsr6Wq0HL4Zc,62167
249
+ ultralytics/utils/metrics.py,sha256=3nQsz3rAm8n65iqikRzU30Pd2x20FY60ZlWrCMv5ZYk,62225
250
250
  ultralytics/utils/ops.py,sha256=Jkh80ujyi0XDQwNqCUYyomH8NQ145AH9doMUS8Vt8GE,34545
251
- ultralytics/utils/patches.py,sha256=P2uQy7S4RzSHBfwJEXJsjyuRUluaaUusiVU84lV3moQ,6577
252
- ultralytics/utils/plotting.py,sha256=SCpG5DHZUPlFUsu72kNH3DYGpsjgkd3eIZ9-QTllY88,47171
251
+ ultralytics/utils/patches.py,sha256=tBAsNo_RyoFLL9OAzVuJmuoDLUJIPuTMByBYyblGG1A,6517
252
+ ultralytics/utils/plotting.py,sha256=LO-iR-k1UewV5vt4xXDUIirdmNEZdpfiQvLyIWqINPg,47171
253
253
  ultralytics/utils/tal.py,sha256=aXawOnhn8ni65tJWIW-PYqWr_TRvltbHBjrTo7o6lDQ,20924
254
- ultralytics/utils/torch_utils.py,sha256=iIAjf2g4hikzBeHvKN-EQK8QFlC_QtWWRuYQuBF2zIk,39184
254
+ ultralytics/utils/torch_utils.py,sha256=D76Pvmw5OKh-vd4aJkOMO0dSLbM5WzGr7Hmds54hPEk,39233
255
255
  ultralytics/utils/triton.py,sha256=M7qe4RztiADBJQEWQKaIQsp94ERFJ_8_DUHDR6TXEOM,5410
256
256
  ultralytics/utils/tuner.py,sha256=bHr09Fz-0-t0ei55gX5wJh-obyiAQoicP7HUVM2I8qA,6826
257
257
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
@@ -265,9 +265,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
265
265
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
266
266
  ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
267
267
  ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
268
- ultralytics-8.3.161.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
269
- ultralytics-8.3.161.dist-info/METADATA,sha256=X4Swh-1CGw2srVG6nT4NaAnS0Taiz9RrdQbvVq5cJjw,37222
270
- ultralytics-8.3.161.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
- ultralytics-8.3.161.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
- ultralytics-8.3.161.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
- ultralytics-8.3.161.dist-info/RECORD,,
268
+ ultralytics-8.3.162.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
269
+ ultralytics-8.3.162.dist-info/METADATA,sha256=FVyaNE5gD0l3PqFA1ZmpXu1W_AnhrGttVey3N0zCH0w,37576
270
+ ultralytics-8.3.162.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
+ ultralytics-8.3.162.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
+ ultralytics-8.3.162.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
+ ultralytics-8.3.162.dist-info/RECORD,,