ultralytics 8.3.101__tar.gz → 8.3.102__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (269) hide show
  1. {ultralytics-8.3.101/ultralytics.egg-info → ultralytics-8.3.102}/PKG-INFO +1 -2
  2. {ultralytics-8.3.101 → ultralytics-8.3.102}/pyproject.toml +0 -1
  3. ultralytics-8.3.102/tests/test_solutions.py +167 -0
  4. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/__init__.py +1 -1
  5. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/exporter.py +20 -5
  6. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/hub/__init__.py +29 -2
  7. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/hub/google/__init__.py +18 -1
  8. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/fastsam/predict.py +12 -1
  9. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/nas/predict.py +21 -3
  10. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/rtdetr/val.py +26 -2
  11. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/amg.py +22 -1
  12. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/encoders.py +85 -4
  13. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/memory_attention.py +61 -3
  14. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/utils.py +108 -5
  15. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/utils/loss.py +38 -2
  16. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/utils/ops.py +15 -1
  17. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/classify/predict.py +11 -1
  18. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/classify/train.py +17 -1
  19. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/classify/val.py +82 -6
  20. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/detect/predict.py +20 -1
  21. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/model.py +55 -4
  22. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/obb/predict.py +16 -1
  23. ultralytics-8.3.102/ultralytics/models/yolo/obb/train.py +81 -0
  24. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/obb/val.py +87 -6
  25. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/pose/predict.py +18 -1
  26. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/pose/train.py +48 -3
  27. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/pose/val.py +113 -8
  28. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/segment/predict.py +27 -2
  29. ultralytics-8.3.102/ultralytics/models/yolo/segment/train.py +123 -0
  30. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/segment/val.py +10 -1
  31. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/world/train_world.py +29 -1
  32. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/yoloe/train.py +47 -3
  33. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/modules/activation.py +26 -3
  34. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/modules/block.py +89 -0
  35. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/modules/head.py +3 -92
  36. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/modules/utils.py +70 -4
  37. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/text_model.py +93 -17
  38. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/benchmarks.py +1 -1
  39. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/base.py +22 -5
  40. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/comet.py +93 -5
  41. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/dvc.py +64 -5
  42. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/neptune.py +25 -2
  43. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/tensorboard.py +30 -2
  44. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/wb.py +16 -1
  45. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/dist.py +35 -2
  46. ultralytics-8.3.102/ultralytics/utils/errors.py +43 -0
  47. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/patches.py +33 -5
  48. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/triton.py +16 -3
  49. {ultralytics-8.3.101 → ultralytics-8.3.102/ultralytics.egg-info}/PKG-INFO +1 -2
  50. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics.egg-info/requires.txt +0 -1
  51. ultralytics-8.3.101/tests/test_solutions.py +0 -103
  52. ultralytics-8.3.101/ultralytics/models/yolo/obb/train.py +0 -48
  53. ultralytics-8.3.101/ultralytics/models/yolo/segment/train.py +0 -65
  54. ultralytics-8.3.101/ultralytics/utils/errors.py +0 -22
  55. {ultralytics-8.3.101 → ultralytics-8.3.102}/LICENSE +0 -0
  56. {ultralytics-8.3.101 → ultralytics-8.3.102}/README.md +0 -0
  57. {ultralytics-8.3.101 → ultralytics-8.3.102}/setup.cfg +0 -0
  58. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/__init__.py +0 -0
  59. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/conftest.py +0 -0
  60. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/test_cli.py +0 -0
  61. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/test_cuda.py +0 -0
  62. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/test_engine.py +0 -0
  63. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/test_exports.py +0 -0
  64. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/test_integrations.py +0 -0
  65. {ultralytics-8.3.101 → ultralytics-8.3.102}/tests/test_python.py +0 -0
  66. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/assets/bus.jpg +0 -0
  67. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/assets/zidane.jpg +0 -0
  68. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/__init__.py +0 -0
  69. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  70. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  71. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  72. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  73. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  74. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  75. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  76. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  77. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  78. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  79. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  80. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  81. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  82. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/coco.yaml +0 -0
  83. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  84. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  85. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  86. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  87. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  88. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  89. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  90. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  91. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  92. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  93. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  94. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  95. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  96. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/signature.yaml +0 -0
  97. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  98. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/datasets/xView.yaml +0 -0
  99. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/default.yaml +0 -0
  100. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  101. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  102. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  103. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  104. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  105. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  106. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
  107. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
  108. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  109. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  110. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  111. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  112. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  113. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  114. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  115. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  116. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  117. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  118. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  119. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  120. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  121. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  122. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  123. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  124. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  125. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  126. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  127. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  128. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  129. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
  130. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
  131. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  132. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  133. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  134. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  135. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  136. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  137. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  138. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  139. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  140. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  141. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  142. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  143. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  144. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  145. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  146. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  147. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  148. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  149. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  150. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  151. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  152. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  153. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  154. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  155. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/solutions/default.yaml +0 -0
  156. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  157. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  158. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/__init__.py +0 -0
  159. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/annotator.py +0 -0
  160. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/augment.py +0 -0
  161. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/base.py +0 -0
  162. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/build.py +0 -0
  163. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/converter.py +0 -0
  164. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/dataset.py +0 -0
  165. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/loaders.py +0 -0
  166. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/split_dota.py +0 -0
  167. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/data/utils.py +0 -0
  168. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/__init__.py +0 -0
  169. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/model.py +0 -0
  170. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/predictor.py +0 -0
  171. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/results.py +0 -0
  172. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/trainer.py +0 -0
  173. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/tuner.py +0 -0
  174. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/engine/validator.py +0 -0
  175. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/hub/auth.py +0 -0
  176. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/hub/session.py +0 -0
  177. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/hub/utils.py +0 -0
  178. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/__init__.py +0 -0
  179. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/fastsam/__init__.py +0 -0
  180. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/fastsam/model.py +0 -0
  181. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/fastsam/utils.py +0 -0
  182. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/fastsam/val.py +0 -0
  183. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/nas/__init__.py +0 -0
  184. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/nas/model.py +0 -0
  185. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/nas/val.py +0 -0
  186. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/rtdetr/__init__.py +0 -0
  187. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/rtdetr/model.py +0 -0
  188. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/rtdetr/predict.py +0 -0
  189. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/rtdetr/train.py +0 -0
  190. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/__init__.py +0 -0
  191. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/build.py +0 -0
  192. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/model.py +0 -0
  193. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/__init__.py +0 -0
  194. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/blocks.py +0 -0
  195. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/decoders.py +0 -0
  196. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/sam.py +0 -0
  197. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  198. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/modules/transformer.py +0 -0
  199. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/sam/predict.py +0 -0
  200. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/utils/__init__.py +0 -0
  201. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/__init__.py +0 -0
  202. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/classify/__init__.py +0 -0
  203. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/detect/__init__.py +0 -0
  204. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/detect/train.py +0 -0
  205. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/detect/val.py +0 -0
  206. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/obb/__init__.py +0 -0
  207. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/pose/__init__.py +0 -0
  208. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/segment/__init__.py +0 -0
  209. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/world/__init__.py +0 -0
  210. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/world/train.py +0 -0
  211. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
  212. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/yoloe/predict.py +0 -0
  213. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/yoloe/train_seg.py +0 -0
  214. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/models/yolo/yoloe/val.py +0 -0
  215. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/__init__.py +0 -0
  216. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/autobackend.py +0 -0
  217. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/modules/__init__.py +0 -0
  218. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/modules/conv.py +0 -0
  219. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/modules/transformer.py +0 -0
  220. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/nn/tasks.py +0 -0
  221. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/__init__.py +0 -0
  222. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/ai_gym.py +0 -0
  223. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/analytics.py +0 -0
  224. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/distance_calculation.py +0 -0
  225. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/heatmap.py +0 -0
  226. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/instance_segmentation.py +0 -0
  227. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/object_blurrer.py +0 -0
  228. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/object_counter.py +0 -0
  229. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/object_cropper.py +0 -0
  230. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/parking_management.py +0 -0
  231. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/queue_management.py +0 -0
  232. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/region_counter.py +0 -0
  233. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/security_alarm.py +0 -0
  234. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/solutions.py +0 -0
  235. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/speed_estimation.py +0 -0
  236. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/streamlit_inference.py +0 -0
  237. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/trackzone.py +0 -0
  238. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/solutions/vision_eye.py +0 -0
  239. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/__init__.py +0 -0
  240. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/basetrack.py +0 -0
  241. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/bot_sort.py +0 -0
  242. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/byte_tracker.py +0 -0
  243. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/track.py +0 -0
  244. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/utils/__init__.py +0 -0
  245. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/utils/gmc.py +0 -0
  246. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  247. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/trackers/utils/matching.py +0 -0
  248. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/__init__.py +0 -0
  249. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/autobatch.py +0 -0
  250. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/__init__.py +0 -0
  251. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/clearml.py +0 -0
  252. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/hub.py +0 -0
  253. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/mlflow.py +0 -0
  254. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/callbacks/raytune.py +0 -0
  255. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/checks.py +0 -0
  256. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/downloads.py +0 -0
  257. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/files.py +0 -0
  258. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/instance.py +0 -0
  259. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/loss.py +0 -0
  260. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/metrics.py +0 -0
  261. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/ops.py +0 -0
  262. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/plotting.py +0 -0
  263. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/tal.py +0 -0
  264. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/torch_utils.py +0 -0
  265. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics/utils/tuner.py +0 -0
  266. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics.egg-info/SOURCES.txt +0 -0
  267. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics.egg-info/dependency_links.txt +0 -0
  268. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics.egg-info/entry_points.txt +0 -0
  269. {ultralytics-8.3.101 → ultralytics-8.3.102}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.101
3
+ Version: 8.3.102
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -56,7 +56,6 @@ Requires-Dist: coverage[toml]; extra == "dev"
56
56
  Requires-Dist: mkdocs>=1.6.0; extra == "dev"
57
57
  Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
58
58
  Requires-Dist: mkdocstrings[python]; extra == "dev"
59
- Requires-Dist: mkdocs-redirects; extra == "dev"
60
59
  Requires-Dist: mkdocs-ultralytics-plugin>=0.1.17; extra == "dev"
61
60
  Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
62
61
  Provides-Extra: export
@@ -89,7 +89,6 @@ dev = [
89
89
  "mkdocs>=1.6.0",
90
90
  "mkdocs-material>=9.5.9",
91
91
  "mkdocstrings[python]",
92
- "mkdocs-redirects", # 301 redirects
93
92
  "mkdocs-ultralytics-plugin>=0.1.17", # for meta descriptions and images, dates and authors
94
93
  "mkdocs-macros-plugin>=1.0.5" # duplicating content (i.e. export tables) in multiple places
95
94
  ]
@@ -0,0 +1,167 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Tests Ultralytics Solutions: https://docs.ultralytics.com/solutions/,
4
+ # including every solution excluding DistanceCalculation and Security Alarm System.
5
+
6
+ import cv2
7
+ import pytest
8
+
9
+ from tests import TMP
10
+ from ultralytics import solutions
11
+ from ultralytics.utils import ASSETS_URL
12
+ from ultralytics.utils.downloads import safe_download
13
+
14
+ # Pre-defined arguments values
15
+ SHOW = False
16
+ DEMO_VIDEO = "solutions_ci_demo.mp4" # for all the solutions, except workout, object cropping and parking management
17
+ CROP_VIDEO = "decelera_landscape_min.mov" # for object cropping solution
18
+ POSE_VIDEO = "solution_ci_pose_demo.mp4" # only for workouts monitoring solution
19
+ PARKING_VIDEO = "solution_ci_parking_demo.mp4" # only for parking management solution
20
+ PARKING_AREAS_JSON = "solution_ci_parking_areas.json" # only for parking management solution
21
+ PARKING_MODEL = "solutions_ci_parking_model.pt" # only for parking management solution
22
+ MODEL_FILE = "yolo11n.pt" # model file used for solutions, except parking management and instance segmentation
23
+ REGION = [(20, 400), (1080, 400), (1080, 360), (20, 360)] # for object counting, speed estimation and queue management
24
+
25
+ # Test configs for each solution : (name, class, needs_frame_count, video, kwargs)
26
+ SOLUTIONS = [
27
+ (
28
+ "ObjectCounter",
29
+ solutions.ObjectCounter,
30
+ False,
31
+ DEMO_VIDEO,
32
+ {"region": REGION, "model": MODEL_FILE, "show": SHOW},
33
+ ),
34
+ (
35
+ "Heatmap",
36
+ solutions.Heatmap,
37
+ False,
38
+ DEMO_VIDEO,
39
+ {"colormap": cv2.COLORMAP_PARULA, "model": MODEL_FILE, "show": SHOW, "region": None},
40
+ ),
41
+ (
42
+ "HeatmapWithRegion",
43
+ solutions.Heatmap,
44
+ False,
45
+ DEMO_VIDEO,
46
+ {"colormap": cv2.COLORMAP_PARULA, "region": REGION, "model": MODEL_FILE, "show": SHOW},
47
+ ),
48
+ (
49
+ "SpeedEstimator",
50
+ solutions.SpeedEstimator,
51
+ False,
52
+ DEMO_VIDEO,
53
+ {"region": REGION, "model": MODEL_FILE, "show": SHOW},
54
+ ),
55
+ (
56
+ "QueueManager",
57
+ solutions.QueueManager,
58
+ False,
59
+ DEMO_VIDEO,
60
+ {"region": REGION, "model": MODEL_FILE, "show": SHOW},
61
+ ),
62
+ (
63
+ "LineAnalytics",
64
+ solutions.Analytics,
65
+ True,
66
+ DEMO_VIDEO,
67
+ {"analytics_type": "line", "model": MODEL_FILE, "show": SHOW},
68
+ ),
69
+ (
70
+ "PieAnalytics",
71
+ solutions.Analytics,
72
+ True,
73
+ DEMO_VIDEO,
74
+ {"analytics_type": "pie", "model": MODEL_FILE, "show": SHOW},
75
+ ),
76
+ (
77
+ "BarAnalytics",
78
+ solutions.Analytics,
79
+ True,
80
+ DEMO_VIDEO,
81
+ {"analytics_type": "bar", "model": MODEL_FILE, "show": SHOW},
82
+ ),
83
+ (
84
+ "AreaAnalytics",
85
+ solutions.Analytics,
86
+ True,
87
+ DEMO_VIDEO,
88
+ {"analytics_type": "area", "model": MODEL_FILE, "show": SHOW},
89
+ ),
90
+ ("TrackZone", solutions.TrackZone, False, DEMO_VIDEO, {"region": REGION, "model": MODEL_FILE, "show": SHOW}),
91
+ (
92
+ "ObjectCropper",
93
+ solutions.ObjectCropper,
94
+ False,
95
+ CROP_VIDEO,
96
+ {"crop_dir": str(TMP / "cropped-detections"), "model": MODEL_FILE, "show": SHOW},
97
+ ),
98
+ (
99
+ "ObjectBlurrer",
100
+ solutions.ObjectBlurrer,
101
+ False,
102
+ DEMO_VIDEO,
103
+ {"blur_ratio": 0.5, "model": MODEL_FILE, "show": SHOW},
104
+ ),
105
+ (
106
+ "InstanceSegmentation",
107
+ solutions.InstanceSegmentation,
108
+ False,
109
+ DEMO_VIDEO,
110
+ {"model": "yolo11n-seg.pt", "show": SHOW},
111
+ ),
112
+ ("VisionEye", solutions.VisionEye, False, DEMO_VIDEO, {"model": MODEL_FILE, "show": SHOW}),
113
+ (
114
+ "RegionCounter",
115
+ solutions.RegionCounter,
116
+ False,
117
+ DEMO_VIDEO,
118
+ {"region": REGION, "model": MODEL_FILE, "show": SHOW},
119
+ ),
120
+ ("AIGym", solutions.AIGym, False, POSE_VIDEO, {"kpts": [6, 8, 10], "show": SHOW}),
121
+ (
122
+ "ParkingManager",
123
+ solutions.ParkingManagement,
124
+ False,
125
+ PARKING_VIDEO,
126
+ {"model": str(TMP / PARKING_MODEL), "show": SHOW, "json_file": str(TMP / PARKING_AREAS_JSON)},
127
+ ),
128
+ (
129
+ "StreamlitInference",
130
+ solutions.Inference,
131
+ False,
132
+ None, # streamlit application don't require video file
133
+ {}, # streamlit application don't accept arguments
134
+ ),
135
+ ]
136
+
137
+
138
+ def process_video(solution, video_path, needs_frame_count=False):
139
+ """Process video with solution, feeding frames and optional frame count."""
140
+ cap = cv2.VideoCapture(video_path)
141
+ assert cap.isOpened(), f"Error reading video file {video_path}"
142
+
143
+ frame_count = 0
144
+ while cap.isOpened():
145
+ success, im0 = cap.read()
146
+ if not success:
147
+ break
148
+ frame_count += 1
149
+ im_copy = im0.copy()
150
+ args = [im_copy, frame_count] if needs_frame_count else [im_copy]
151
+ _ = solution(*args)
152
+
153
+ cap.release()
154
+
155
+
156
+ @pytest.mark.slow
157
+ @pytest.mark.parametrize("name, solution_class, needs_frame_count, video, kwargs", SOLUTIONS)
158
+ def test_solution(name, solution_class, needs_frame_count, video, kwargs):
159
+ """Test individual Ultralytics solution."""
160
+ safe_download(url=f"{ASSETS_URL}/{video}", dir=TMP)
161
+ if name == "ParkingManager":
162
+ safe_download(url=f"{ASSETS_URL}/{PARKING_AREAS_JSON}", dir=TMP)
163
+ safe_download(url=f"{ASSETS_URL}/{PARKING_MODEL}", dir=TMP)
164
+ solution = solution_class(**kwargs)
165
+ solution.inference() if name == "StreamlitInference" else process_video(
166
+ solution, str(TMP / video), needs_frame_count
167
+ )
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.101"
3
+ __version__ = "8.3.102"
4
4
 
5
5
  import os
6
6
 
@@ -115,18 +115,32 @@ def export_formats():
115
115
  ["PyTorch", "-", ".pt", True, True, []],
116
116
  ["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize", "nms"]],
117
117
  ["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify", "nms"]],
118
- ["OpenVINO", "openvino", "_openvino_model", True, False, ["batch", "dynamic", "half", "int8", "nms"]],
119
- ["TensorRT", "engine", ".engine", False, True, ["batch", "dynamic", "half", "int8", "simplify", "nms"]],
118
+ [
119
+ "OpenVINO",
120
+ "openvino",
121
+ "_openvino_model",
122
+ True,
123
+ False,
124
+ ["batch", "dynamic", "half", "int8", "nms", "fraction"],
125
+ ],
126
+ [
127
+ "TensorRT",
128
+ "engine",
129
+ ".engine",
130
+ False,
131
+ True,
132
+ ["batch", "dynamic", "half", "int8", "simplify", "nms", "fraction"],
133
+ ],
120
134
  ["CoreML", "coreml", ".mlpackage", True, False, ["batch", "half", "int8", "nms"]],
121
135
  ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras", "nms"]],
122
136
  ["TensorFlow GraphDef", "pb", ".pb", True, True, ["batch"]],
123
- ["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8", "nms"]],
137
+ ["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8", "nms", "fraction"]],
124
138
  ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False, []],
125
139
  ["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8", "nms"]],
126
140
  ["PaddlePaddle", "paddle", "_paddle_model", True, True, ["batch"]],
127
141
  ["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
128
142
  ["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
129
- ["IMX", "imx", "_imx_model", True, True, ["int8"]],
143
+ ["IMX", "imx", "_imx_model", True, True, ["int8", "fraction"]],
130
144
  ["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name"]],
131
145
  ]
132
146
  return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
@@ -144,7 +158,7 @@ def validate_args(format, passed_args, valid_args):
144
158
  Raises:
145
159
  AssertionError: If an unsupported argument is used, or if the format lacks supported argument listings.
146
160
  """
147
- export_args = ["half", "int8", "dynamic", "keras", "nms", "batch"]
161
+ export_args = ["half", "int8", "dynamic", "keras", "nms", "batch", "fraction"]
148
162
 
149
163
  assert valid_args is not None, f"ERROR ❌️ valid arguments for '{format}' not listed."
150
164
  custom = {"batch": 1, "data": None, "device": None} # exporter defaults
@@ -493,6 +507,7 @@ class Exporter:
493
507
  dataset = YOLODataset(
494
508
  data[self.args.split or "val"],
495
509
  data=data,
510
+ fraction=self.args.fraction,
496
511
  task=self.model.task,
497
512
  imgsz=self.imgsz[0],
498
513
  augment=False,
@@ -96,7 +96,21 @@ def export_fmts_hub():
96
96
 
97
97
 
98
98
  def export_model(model_id: str = "", format: str = "torchscript"):
99
- """Export a model to the specified format."""
99
+ """
100
+ Export a model to a specified format for deployment via the Ultralytics HUB API.
101
+
102
+ Args:
103
+ model_id (str): The ID of the model to export. An empty string will use the default model.
104
+ format (str): The format to export the model to. Must be one of the supported formats returned by
105
+ export_fmts_hub().
106
+
107
+ Raises:
108
+ AssertionError: If the specified format is not supported or if the export request fails.
109
+
110
+ Examples:
111
+ >>> from ultralytics import hub
112
+ >>> hub.export_model(model_id="your_model_id", format="torchscript")
113
+ """
100
114
  assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}"
101
115
  r = requests.post(
102
116
  f"{HUB_API_ROOT}/v1/models/{model_id}/export", json={"format": format}, headers={"x-api-key": Auth().api_key}
@@ -106,7 +120,20 @@ def export_model(model_id: str = "", format: str = "torchscript"):
106
120
 
107
121
 
108
122
  def get_export(model_id: str = "", format: str = "torchscript"):
109
- """Get an exported model dictionary with download URL."""
123
+ """
124
+ Retrieve an exported model in the specified format from Ultralytics HUB using the model ID.
125
+
126
+ Args:
127
+ model_id (str): The ID of the model to retrieve from Ultralytics HUB.
128
+ format (str): The export format to retrieve. Must be one of the supported formats returned by export_fmts_hub().
129
+
130
+ Raises:
131
+ AssertionError: If the specified format is not supported or if the API request fails.
132
+
133
+ Examples:
134
+ >>> from ultralytics import hub
135
+ >>> hub.get_export(model_id="your_model_id", format="torchscript")
136
+ """
110
137
  assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}"
111
138
  r = requests.post(
112
139
  f"{HUB_API_ROOT}/get-export",
@@ -83,7 +83,24 @@ class GCPRegions:
83
83
 
84
84
  @staticmethod
85
85
  def _ping_region(region: str, attempts: int = 1) -> Tuple[str, float, float, float, float]:
86
- """Pings a specified GCP region and returns latency statistics: mean, min, max, and standard deviation."""
86
+ """
87
+ Ping a specified GCP region and measure network latency statistics.
88
+
89
+ Args:
90
+ region (str): The GCP region identifier to ping (e.g., 'us-central1').
91
+ attempts (int): Number of ping attempts to make for calculating statistics.
92
+
93
+ Returns:
94
+ region (str): The GCP region identifier that was pinged.
95
+ mean_latency (float): Mean latency in milliseconds, or infinity if all pings failed.
96
+ min_latency (float): Minimum latency in milliseconds, or infinity if all pings failed.
97
+ max_latency (float): Maximum latency in milliseconds, or infinity if all pings failed.
98
+ std_dev (float): Standard deviation of latencies in milliseconds, or infinity if all pings failed.
99
+
100
+ Examples:
101
+ >>> region, mean, min_lat, max_lat, std = GCPRegions._ping_region("us-central1", attempts=3)
102
+ >>> print(f"Region {region} has mean latency: {mean:.2f}ms")
103
+ """
87
104
  url = f"https://{region}-docker.pkg.dev"
88
105
  latencies = []
89
106
  for _ in range(attempts):
@@ -33,7 +33,18 @@ class FastSAMPredictor(SegmentationPredictor):
33
33
  """
34
34
 
35
35
  def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
36
- """Initialize the FastSAMPredictor with configuration and callbacks."""
36
+ """
37
+ Initialize the FastSAMPredictor with configuration and callbacks.
38
+
39
+ This initializes a predictor specialized for Fast SAM (Segment Anything Model) segmentation tasks. The predictor
40
+ extends SegmentationPredictor with custom post-processing for mask prediction and non-maximum suppression
41
+ optimized for single-class segmentation.
42
+
43
+ Args:
44
+ cfg (dict): Configuration for the predictor. Defaults to Ultralytics DEFAULT_CFG.
45
+ overrides (dict, optional): Configuration overrides.
46
+ _callbacks (list, optional): List of callback functions.
47
+ """
37
48
  super().__init__(cfg, overrides, _callbacks)
38
49
  self.prompts = {}
39
50
 
@@ -33,8 +33,26 @@ class NASPredictor(DetectionPredictor):
33
33
  """
34
34
 
35
35
  def postprocess(self, preds_in, img, orig_imgs):
36
- """Postprocess predictions and returns a list of Results objects."""
37
- # Convert boxes from xyxy to xywh format and concatenate with class scores
36
+ """
37
+ Postprocess NAS model predictions to generate final detection results.
38
+
39
+ This method takes raw predictions from a YOLO NAS model, converts bounding box formats, and applies
40
+ post-processing operations to generate the final detection results compatible with Ultralytics
41
+ result visualization and analysis tools.
42
+
43
+ Args:
44
+ preds_in (list): Raw predictions from the NAS model, typically containing bounding boxes and class scores.
45
+ img (torch.Tensor): Input image tensor that was fed to the model, with shape (B, C, H, W).
46
+ orig_imgs (list | torch.Tensor | np.ndarray): Original images before preprocessing, used for scaling
47
+ coordinates back to original dimensions.
48
+
49
+ Returns:
50
+ (list): List of Results objects containing the processed predictions for each image in the batch.
51
+
52
+ Examples:
53
+ >>> predictor = NAS("yolo_nas_s").predictor
54
+ >>> results = predictor.postprocess(raw_preds, img, orig_imgs)
55
+ """
38
56
  boxes = ops.xyxy2xywh(preds_in[0][0])
39
- preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
57
+ preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # concatenate with class scores
40
58
  return super().postprocess(preds, img, orig_imgs)
@@ -19,11 +19,35 @@ class RTDETRDataset(YOLODataset):
19
19
  """
20
20
 
21
21
  def __init__(self, *args, data=None, **kwargs):
22
- """Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
22
+ """
23
+ Initialize the RTDETRDataset class by inheriting from the YOLODataset class.
24
+
25
+ This constructor sets up a dataset specifically optimized for the RT-DETR (Real-Time DEtection and TRacking)
26
+ model, building upon the base YOLODataset functionality.
27
+
28
+ Args:
29
+ *args (Any): Variable length argument list passed to the parent YOLODataset class.
30
+ data (Dict | None): Dictionary containing dataset information. If None, default values will be used.
31
+ **kwargs (Any): Additional keyword arguments passed to the parent YOLODataset class.
32
+ """
23
33
  super().__init__(*args, data=data, **kwargs)
24
34
 
25
35
  def load_image(self, i, rect_mode=False):
26
- """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
36
+ """
37
+ Load one image from dataset index 'i'.
38
+
39
+ Args:
40
+ i (int): Index of the image to load.
41
+ rect_mode (bool, optional): Whether to use rectangular mode for batch inference.
42
+
43
+ Returns:
44
+ im (numpy.ndarray): The loaded image.
45
+ resized_hw (tuple): Height and width of the resized image with shape (2,).
46
+
47
+ Examples:
48
+ >>> dataset = RTDETRDataset(...)
49
+ >>> image, hw = dataset.load_image(0)
50
+ """
27
51
  return super().load_image(i=i, rect_mode=rect_mode)
28
52
 
29
53
  def build_transforms(self, hyp=None):
@@ -22,7 +22,28 @@ def is_box_near_crop_edge(
22
22
 
23
23
 
24
24
  def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
25
- """Yields batches of data from input arguments with specified batch size for efficient processing."""
25
+ """
26
+ Yield batches of data from input arguments with specified batch size for efficient processing.
27
+
28
+ This function takes a batch size and any number of iterables, then yields batches of elements from those
29
+ iterables. All input iterables must have the same length.
30
+
31
+ Args:
32
+ batch_size (int): Size of each batch to yield.
33
+ *args (Any): Variable length input iterables to batch. All iterables must have the same length.
34
+
35
+ Yields:
36
+ (List[Any]): A list of batched elements from each input iterable.
37
+
38
+ Examples:
39
+ >>> data = [1, 2, 3, 4, 5]
40
+ >>> labels = ["a", "b", "c", "d", "e"]
41
+ >>> for batch in batch_iterator(2, data, labels):
42
+ ... print(batch)
43
+ [[1, 2], ['a', 'b']]
44
+ [[3, 4], ['c', 'd']]
45
+ [[5], ['e']]
46
+ """
26
47
  assert args and all(len(a) == len(args[0]) for a in args), "Batched iteration must have same-size inputs."
27
48
  n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
28
49
  for b in range(n_batches):
@@ -386,7 +386,24 @@ class MemoryEncoder(nn.Module):
386
386
  out_dim,
387
387
  in_dim=256, # in_dim of pix_feats
388
388
  ):
389
- """Initialize the MemoryEncoder for encoding pixel features and masks into memory representations."""
389
+ """
390
+ Initialize the MemoryEncoder for encoding pixel features and masks into memory representations.
391
+
392
+ This encoder processes pixel-level features and masks, fusing them to generate encoded memory representations
393
+ suitable for downstream tasks in image segmentation models like SAM (Segment Anything Model).
394
+
395
+ Args:
396
+ out_dim (int): Output dimension of the encoded features.
397
+ in_dim (int): Input dimension of the pixel features. Default is 256.
398
+
399
+ Examples:
400
+ >>> encoder = MemoryEncoder(out_dim=256, in_dim=256)
401
+ >>> pix_feat = torch.randn(1, 256, 64, 64)
402
+ >>> masks = torch.randn(1, 1, 64, 64)
403
+ >>> encoded_feat, pos = encoder(pix_feat, masks)
404
+ >>> print(encoded_feat.shape, pos.shape)
405
+ torch.Size([1, 256, 64, 64]) torch.Size([1, 128, 64, 64])
406
+ """
390
407
  super().__init__()
391
408
 
392
409
  self.mask_downsampler = MaskDownSampler(kernel_size=3, stride=2, padding=1)
@@ -453,7 +470,26 @@ class ImageEncoder(nn.Module):
453
470
  neck: nn.Module,
454
471
  scalp: int = 0,
455
472
  ):
456
- """Initialize the ImageEncoder with trunk and neck networks for feature extraction and refinement."""
473
+ """
474
+ Initialize the ImageEncoder with trunk and neck networks for feature extraction and refinement.
475
+
476
+ This encoder combines a trunk network for feature extraction with a neck network for feature refinement
477
+ and positional encoding generation. It can optionally discard the lowest resolution features.
478
+
479
+ Args:
480
+ trunk (nn.Module): The trunk network for initial feature extraction.
481
+ neck (nn.Module): The neck network for feature refinement and positional encoding generation.
482
+ scalp (int): Number of lowest resolution feature levels to discard.
483
+
484
+ Examples:
485
+ >>> trunk = SomeTrunkNetwork()
486
+ >>> neck = SomeNeckNetwork()
487
+ >>> encoder = ImageEncoder(trunk, neck, scalp=1)
488
+ >>> image = torch.randn(1, 3, 224, 224)
489
+ >>> output = encoder(image)
490
+ >>> print(output.keys())
491
+ dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
492
+ """
457
493
  super().__init__()
458
494
  self.trunk = trunk
459
495
  self.neck = neck
@@ -681,7 +717,34 @@ class Hiera(nn.Module):
681
717
  ),
682
718
  return_interm_layers=True, # return feats from every stage
683
719
  ):
684
- """Initialize the Hiera model, configuring its hierarchical vision transformer architecture."""
720
+ """
721
+ Initialize a Hiera model, a hierarchical vision transformer for efficient multiscale feature extraction.
722
+
723
+ Hiera is a hierarchical vision transformer architecture designed for efficient multiscale feature extraction
724
+ in image processing tasks. It uses a series of transformer blocks organized into stages, with optional
725
+ pooling and global attention mechanisms.
726
+
727
+ Args:
728
+ embed_dim (int): Initial embedding dimension for the model.
729
+ num_heads (int): Initial number of attention heads.
730
+ drop_path_rate (float): Stochastic depth rate.
731
+ q_pool (int): Number of query pooling stages.
732
+ q_stride (Tuple[int, int]): Downsampling stride between stages.
733
+ stages (Tuple[int, ...]): Number of blocks per stage.
734
+ dim_mul (float): Dimension multiplier factor at stage transitions.
735
+ head_mul (float): Head multiplier factor at stage transitions.
736
+ window_pos_embed_bkg_spatial_size (Tuple[int, int]): Spatial size for window positional embedding background.
737
+ window_spec (Tuple[int, ...]): Window sizes for each stage when not using global attention.
738
+ global_att_blocks (Tuple[int, ...]): Indices of blocks that use global attention.
739
+ return_interm_layers (bool): Whether to return intermediate layer outputs.
740
+
741
+ Examples:
742
+ >>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
743
+ >>> input_tensor = torch.randn(1, 3, 224, 224)
744
+ >>> output_features = model(input_tensor)
745
+ >>> for feat in output_features:
746
+ ... print(feat.shape)
747
+ """
685
748
  super().__init__()
686
749
 
687
750
  assert len(stages) == len(window_spec)
@@ -756,7 +819,25 @@ class Hiera(nn.Module):
756
819
  return pos_embed
757
820
 
758
821
  def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
759
- """Perform forward pass through Hiera model, extracting multiscale features from input images."""
822
+ """
823
+ Perform forward pass through Hiera model, extracting multiscale features from input images.
824
+
825
+ Args:
826
+ x (torch.Tensor): Input tensor with shape (B, C, H, W) representing a batch of images.
827
+
828
+ Returns:
829
+ (List[torch.Tensor]): List of feature maps at different scales, each with shape (B, C_i, H_i, W_i), where
830
+ C_i is the channel dimension and H_i, W_i are the spatial dimensions at scale i. The list is ordered
831
+ from highest resolution (fine features) to lowest resolution (coarse features) if return_interm_layers
832
+ is True, otherwise contains only the final output.
833
+
834
+ Examples:
835
+ >>> model = Hiera(embed_dim=96, num_heads=1, stages=(2, 3, 16, 3))
836
+ >>> input_tensor = torch.randn(1, 3, 224, 224)
837
+ >>> output_features = model(input_tensor)
838
+ >>> for feat in output_features:
839
+ ... print(feat.shape)
840
+ """
760
841
  x = self.patch_embed(x)
761
842
  # x: (B, H, W, C)
762
843
 
@@ -60,7 +60,17 @@ class MemoryAttentionLayer(nn.Module):
60
60
  pos_enc_at_cross_attn_keys: bool = True,
61
61
  pos_enc_at_cross_attn_queries: bool = False,
62
62
  ):
63
- """Initialize a memory attention layer with self-attention, cross-attention, and feedforward components."""
63
+ """
64
+ Initialize a memory attention layer with self-attention, cross-attention, and feedforward components.
65
+
66
+ Args:
67
+ d_model (int): Dimensionality of the model.
68
+ dim_feedforward (int): Dimensionality of the feedforward network.
69
+ dropout (float): Dropout rate for regularization.
70
+ pos_enc_at_attn (bool): Whether to add positional encoding at attention.
71
+ pos_enc_at_cross_attn_keys (bool): Whether to add positional encoding to cross-attention keys.
72
+ pos_enc_at_cross_attn_queries (bool): Whether to add positional encoding to cross-attention queries.
73
+ """
64
74
  super().__init__()
65
75
  self.d_model = d_model
66
76
  self.dim_feedforward = dim_feedforward
@@ -183,7 +193,31 @@ class MemoryAttention(nn.Module):
183
193
  num_layers: int,
184
194
  batch_first: bool = True, # Do layers expect batch first input?
185
195
  ):
186
- """Initialize MemoryAttention with specified layers and normalization for sequential data processing."""
196
+ """
197
+ Initialize MemoryAttention with specified layers and normalization for sequential data processing.
198
+
199
+ This class implements a multi-layer attention mechanism that combines self-attention and cross-attention
200
+ for processing sequential data, particularly useful in transformer-like architectures.
201
+
202
+ Args:
203
+ d_model (int): The dimension of the model's hidden state.
204
+ pos_enc_at_input (bool): Whether to apply positional encoding at the input.
205
+ layer (nn.Module): The attention layer to be used in the module.
206
+ num_layers (int): The number of attention layers.
207
+ batch_first (bool): Whether the input tensors are in batch-first format.
208
+
209
+ Examples:
210
+ >>> d_model = 256
211
+ >>> layer = MemoryAttentionLayer(d_model)
212
+ >>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
213
+ >>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
214
+ >>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
215
+ >>> curr_pos = torch.randn(10, 32, d_model)
216
+ >>> memory_pos = torch.randn(20, 32, d_model)
217
+ >>> output = attention(curr, memory, curr_pos, memory_pos)
218
+ >>> print(output.shape)
219
+ torch.Size([10, 32, 256])
220
+ """
187
221
  super().__init__()
188
222
  self.d_model = d_model
189
223
  self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])
@@ -200,7 +234,31 @@ class MemoryAttention(nn.Module):
200
234
  memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
201
235
  num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
202
236
  ) -> torch.Tensor:
203
- """Process inputs through attention layers, applying self and cross-attention with positional encoding."""
237
+ """
238
+ Process inputs through attention layers, applying self and cross-attention with positional encoding.
239
+
240
+ Args:
241
+ curr (torch.Tensor): Self-attention input tensor, representing the current state.
242
+ memory (torch.Tensor): Cross-attention input tensor, representing memory information.
243
+ curr_pos (Optional[Tensor]): Positional encoding for self-attention inputs.
244
+ memory_pos (Optional[Tensor]): Positional encoding for cross-attention inputs.
245
+ num_obj_ptr_tokens (int): Number of object pointer tokens to exclude from rotary position embedding.
246
+
247
+ Returns:
248
+ (torch.Tensor): Processed output tensor after applying attention layers and normalization.
249
+
250
+ Examples:
251
+ >>> d_model = 256
252
+ >>> layer = MemoryAttentionLayer(d_model)
253
+ >>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
254
+ >>> curr = torch.randn(10, 32, d_model) # (seq_len, batch_size, d_model)
255
+ >>> memory = torch.randn(20, 32, d_model) # (mem_len, batch_size, d_model)
256
+ >>> curr_pos = torch.randn(10, 32, d_model)
257
+ >>> memory_pos = torch.randn(20, 32, d_model)
258
+ >>> output = attention(curr, memory, curr_pos, memory_pos)
259
+ >>> print(output.shape)
260
+ torch.Size([10, 32, 256])
261
+ """
204
262
  if isinstance(curr, list):
205
263
  assert isinstance(curr_pos, list)
206
264
  assert len(curr) == len(curr_pos) == 1