ultralytics 8.2.94__tar.gz → 8.2.96__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- {ultralytics-8.2.94/ultralytics.egg-info → ultralytics-8.2.96}/PKG-INFO +20 -26
- {ultralytics-8.2.94 → ultralytics-8.2.96}/README.md +19 -25
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/__init__.py +3 -2
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_python.py +40 -7
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/__init__.py +1 -1
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/results.py +85 -1
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/trainer.py +6 -5
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/validator.py +2 -1
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/tasks.py +4 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/parking_management.py +81 -111
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/checks.py +3 -2
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/torch_utils.py +8 -5
- {ultralytics-8.2.94 → ultralytics-8.2.96/ultralytics.egg-info}/PKG-INFO +20 -26
- {ultralytics-8.2.94 → ultralytics-8.2.96}/LICENSE +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/pyproject.toml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/setup.cfg +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/conftest.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_cli.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_cuda.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_engine.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_explorer.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_exports.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_integrations.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/tests/test_solutions.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/augment.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/base.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/build.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/converter.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/dataset.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/explorer/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/explorer/explorer.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/explorer/gui/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/explorer/gui/dash.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/explorer/utils.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/loaders.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/data/utils.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/exporter.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/model.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/engine/tuner.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/hub/auth.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/hub/google/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/hub/session.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/hub/utils.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/nas/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/build.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/blocks.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/memory_attention.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/modules/utils.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/sam/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/detect/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/detect/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/model.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/obb/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/obb/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/pose/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/pose/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/segment/predict.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/segment/val.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/autobackend.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/modules/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/modules/activation.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/modules/block.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/modules/head.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/solutions/streamlit_inference.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/benchmarks.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/downloads.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/files.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/loss.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/metrics.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/ops.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/patches.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/plotting.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics.egg-info/SOURCES.txt +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.2.94 → ultralytics-8.2.96}/ultralytics.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
3
|
+
Version: 8.2.96
|
|
4
4
|
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -172,14 +172,25 @@ YOLOv8 may also be used directly in a Python environment, and accepts the same [
|
|
|
172
172
|
from ultralytics import YOLO
|
|
173
173
|
|
|
174
174
|
# Load a model
|
|
175
|
-
model = YOLO("yolov8n.
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
175
|
+
model = YOLO("yolov8n.pt")
|
|
176
|
+
|
|
177
|
+
# Train the model
|
|
178
|
+
train_results = model.train(
|
|
179
|
+
data="coco8.yaml", # path to dataset YAML
|
|
180
|
+
epochs=100, # number of training epochs
|
|
181
|
+
imgsz=640, # training image size
|
|
182
|
+
device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
# Evaluate model performance on the validation set
|
|
186
|
+
metrics = model.val()
|
|
187
|
+
|
|
188
|
+
# Perform object detection on an image
|
|
189
|
+
results = model("path/to/image.jpg")
|
|
190
|
+
results[0].show()
|
|
191
|
+
|
|
192
|
+
# Export the model to ONNX format
|
|
193
|
+
path = model.export(format="onnx") # return path to exported model
|
|
183
194
|
```
|
|
184
195
|
|
|
185
196
|
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
@@ -224,23 +235,6 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
224
235
|
|
|
225
236
|
</details>
|
|
226
237
|
|
|
227
|
-
<details><summary>Detection (Open Image V7)</summary>
|
|
228
|
-
|
|
229
|
-
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.
|
|
230
|
-
|
|
231
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
232
|
-
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
233
|
-
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
|
234
|
-
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
|
235
|
-
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
|
236
|
-
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
|
237
|
-
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
|
238
|
-
|
|
239
|
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
|
|
240
|
-
- **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
|
|
241
|
-
|
|
242
|
-
</details>
|
|
243
|
-
|
|
244
238
|
<details><summary>Segmentation (COCO)</summary>
|
|
245
239
|
|
|
246
240
|
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
|
|
@@ -87,14 +87,25 @@ YOLOv8 may also be used directly in a Python environment, and accepts the same [
|
|
|
87
87
|
from ultralytics import YOLO
|
|
88
88
|
|
|
89
89
|
# Load a model
|
|
90
|
-
model = YOLO("yolov8n.
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
90
|
+
model = YOLO("yolov8n.pt")
|
|
91
|
+
|
|
92
|
+
# Train the model
|
|
93
|
+
train_results = model.train(
|
|
94
|
+
data="coco8.yaml", # path to dataset YAML
|
|
95
|
+
epochs=100, # number of training epochs
|
|
96
|
+
imgsz=640, # training image size
|
|
97
|
+
device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
# Evaluate model performance on the validation set
|
|
101
|
+
metrics = model.val()
|
|
102
|
+
|
|
103
|
+
# Perform object detection on an image
|
|
104
|
+
results = model("path/to/image.jpg")
|
|
105
|
+
results[0].show()
|
|
106
|
+
|
|
107
|
+
# Export the model to ONNX format
|
|
108
|
+
path = model.export(format="onnx") # return path to exported model
|
|
98
109
|
```
|
|
99
110
|
|
|
100
111
|
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
@@ -139,23 +150,6 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
139
150
|
|
|
140
151
|
</details>
|
|
141
152
|
|
|
142
|
-
<details><summary>Detection (Open Image V7)</summary>
|
|
143
|
-
|
|
144
|
-
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.
|
|
145
|
-
|
|
146
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
147
|
-
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
148
|
-
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
|
149
|
-
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
|
150
|
-
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
|
151
|
-
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
|
152
|
-
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
|
153
|
-
|
|
154
|
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
|
|
155
|
-
- **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
|
|
156
|
-
|
|
157
|
-
</details>
|
|
158
|
-
|
|
159
153
|
<details><summary>Segmentation (COCO)</summary>
|
|
160
154
|
|
|
161
155
|
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
|
-
from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks
|
|
3
|
+
from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks
|
|
4
4
|
|
|
5
5
|
# Constants used in tests
|
|
6
6
|
MODEL = WEIGHTS_DIR / "path with spaces" / "yolov8n.pt" # test spaces in path
|
|
7
7
|
CFG = "yolov8n.yaml"
|
|
8
8
|
SOURCE = ASSETS / "bus.jpg"
|
|
9
|
+
SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
|
|
9
10
|
TMP = (ROOT / "../tests/tmp").resolve() # temp directory for test files
|
|
10
|
-
IS_TMP_WRITEABLE = is_dir_writeable(TMP)
|
|
11
11
|
CUDA_IS_AVAILABLE = checks.cuda_is_available()
|
|
12
12
|
CUDA_DEVICE_COUNT = checks.cuda_device_count()
|
|
13
13
|
|
|
@@ -15,6 +15,7 @@ __all__ = (
|
|
|
15
15
|
"MODEL",
|
|
16
16
|
"CFG",
|
|
17
17
|
"SOURCE",
|
|
18
|
+
"SOURCES_LIST",
|
|
18
19
|
"TMP",
|
|
19
20
|
"IS_TMP_WRITEABLE",
|
|
20
21
|
"CUDA_IS_AVAILABLE",
|
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
3
|
import contextlib
|
|
4
|
+
import csv
|
|
4
5
|
import urllib
|
|
5
6
|
from copy import copy
|
|
6
7
|
from pathlib import Path
|
|
@@ -12,7 +13,7 @@ import torch
|
|
|
12
13
|
import yaml
|
|
13
14
|
from PIL import Image
|
|
14
15
|
|
|
15
|
-
from tests import CFG,
|
|
16
|
+
from tests import CFG, MODEL, SOURCE, SOURCES_LIST, TMP
|
|
16
17
|
from ultralytics import RTDETR, YOLO
|
|
17
18
|
from ultralytics.cfg import MODELS, TASK2DATA, TASKS
|
|
18
19
|
from ultralytics.data.build import load_inference_source
|
|
@@ -26,11 +27,14 @@ from ultralytics.utils import (
|
|
|
26
27
|
WEIGHTS_DIR,
|
|
27
28
|
WINDOWS,
|
|
28
29
|
checks,
|
|
30
|
+
is_dir_writeable,
|
|
29
31
|
is_github_action_running,
|
|
30
32
|
)
|
|
31
33
|
from ultralytics.utils.downloads import download
|
|
32
34
|
from ultralytics.utils.torch_utils import TORCH_1_9
|
|
33
35
|
|
|
36
|
+
IS_TMP_WRITEABLE = is_dir_writeable(TMP) # WARNING: must be run once tests start as TMP does not exist on tests/init
|
|
37
|
+
|
|
34
38
|
|
|
35
39
|
def test_model_forward():
|
|
36
40
|
"""Test the forward pass of the YOLO model."""
|
|
@@ -70,11 +74,37 @@ def test_model_profile():
|
|
|
70
74
|
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
|
71
75
|
def test_predict_txt():
|
|
72
76
|
"""Tests YOLO predictions with file, directory, and pattern sources listed in a text file."""
|
|
73
|
-
|
|
74
|
-
with open(
|
|
75
|
-
for
|
|
76
|
-
f.write(f"{
|
|
77
|
-
|
|
77
|
+
file = TMP / "sources_multi_row.txt"
|
|
78
|
+
with open(file, "w") as f:
|
|
79
|
+
for src in SOURCES_LIST:
|
|
80
|
+
f.write(f"{src}\n")
|
|
81
|
+
results = YOLO(MODEL)(source=file, imgsz=32)
|
|
82
|
+
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
@pytest.mark.skipif(True, reason="disabled for testing")
|
|
86
|
+
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
|
87
|
+
def test_predict_csv_multi_row():
|
|
88
|
+
"""Tests YOLO predictions with sources listed in multiple rows of a CSV file."""
|
|
89
|
+
file = TMP / "sources_multi_row.csv"
|
|
90
|
+
with open(file, "w", newline="") as f:
|
|
91
|
+
writer = csv.writer(f)
|
|
92
|
+
writer.writerow(["source"])
|
|
93
|
+
writer.writerows([[src] for src in SOURCES_LIST])
|
|
94
|
+
results = YOLO(MODEL)(source=file, imgsz=32)
|
|
95
|
+
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
@pytest.mark.skipif(True, reason="disabled for testing")
|
|
99
|
+
@pytest.mark.skipif(not IS_TMP_WRITEABLE, reason="directory is not writeable")
|
|
100
|
+
def test_predict_csv_single_row():
|
|
101
|
+
"""Tests YOLO predictions with sources listed in a single row of a CSV file."""
|
|
102
|
+
file = TMP / "sources_single_row.csv"
|
|
103
|
+
with open(file, "w", newline="") as f:
|
|
104
|
+
writer = csv.writer(f)
|
|
105
|
+
writer.writerow(SOURCES_LIST)
|
|
106
|
+
results = YOLO(MODEL)(source=file, imgsz=32)
|
|
107
|
+
assert len(results) == 7 # 1 + 2 + 2 + 2 = 7 images
|
|
78
108
|
|
|
79
109
|
|
|
80
110
|
@pytest.mark.parametrize("model_name", MODELS)
|
|
@@ -239,7 +269,10 @@ def test_results(model):
|
|
|
239
269
|
r = r.to(device="cpu", dtype=torch.float32)
|
|
240
270
|
r.save_txt(txt_file=TMP / "runs/tests/label.txt", save_conf=True)
|
|
241
271
|
r.save_crop(save_dir=TMP / "runs/tests/crops/")
|
|
242
|
-
r.
|
|
272
|
+
r.to_json(normalize=True)
|
|
273
|
+
r.to_df(decimals=3)
|
|
274
|
+
r.to_csv()
|
|
275
|
+
r.to_xml()
|
|
243
276
|
r.plot(pil=True)
|
|
244
277
|
r.plot(conf=True, boxes=True)
|
|
245
278
|
print(r, len(r), r.path) # print after methods
|
|
@@ -14,6 +14,7 @@ import torch
|
|
|
14
14
|
|
|
15
15
|
from ultralytics.data.augment import LetterBox
|
|
16
16
|
from ultralytics.utils import LOGGER, SimpleClass, ops
|
|
17
|
+
from ultralytics.utils.checks import check_requirements
|
|
17
18
|
from ultralytics.utils.plotting import Annotator, colors, save_one_box
|
|
18
19
|
from ultralytics.utils.torch_utils import smart_inference_mode
|
|
19
20
|
|
|
@@ -818,7 +819,90 @@ class Results(SimpleClass):
|
|
|
818
819
|
|
|
819
820
|
return results
|
|
820
821
|
|
|
822
|
+
def to_df(self, normalize=False, decimals=5):
|
|
823
|
+
"""
|
|
824
|
+
Converts detection results to a Pandas Dataframe.
|
|
825
|
+
|
|
826
|
+
This method converts the detection results into Pandas Dataframe format. It includes information
|
|
827
|
+
about detected objects such as bounding boxes, class names, confidence scores, and optionally
|
|
828
|
+
segmentation masks and keypoints.
|
|
829
|
+
|
|
830
|
+
Args:
|
|
831
|
+
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
|
832
|
+
If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
|
|
833
|
+
decimals (int): Number of decimal places to round the output values to. Defaults to 5.
|
|
834
|
+
|
|
835
|
+
Returns:
|
|
836
|
+
(DataFrame): A Pandas Dataframe containing all the information in results in an organized way.
|
|
837
|
+
|
|
838
|
+
Examples:
|
|
839
|
+
>>> results = model("path/to/image.jpg")
|
|
840
|
+
>>> df_result = results[0].to_df()
|
|
841
|
+
>>> print(df_result)
|
|
842
|
+
"""
|
|
843
|
+
import pandas as pd
|
|
844
|
+
|
|
845
|
+
return pd.DataFrame(self.summary(normalize=normalize, decimals=decimals))
|
|
846
|
+
|
|
847
|
+
def to_csv(self, normalize=False, decimals=5, *args, **kwargs):
|
|
848
|
+
"""
|
|
849
|
+
Converts detection results to a CSV format.
|
|
850
|
+
|
|
851
|
+
This method serializes the detection results into a CSV format. It includes information
|
|
852
|
+
about detected objects such as bounding boxes, class names, confidence scores, and optionally
|
|
853
|
+
segmentation masks and keypoints.
|
|
854
|
+
|
|
855
|
+
Args:
|
|
856
|
+
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
|
857
|
+
If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
|
|
858
|
+
decimals (int): Number of decimal places to round the output values to. Defaults to 5.
|
|
859
|
+
*args (Any): Variable length argument list to be passed to pandas.DataFrame.to_csv().
|
|
860
|
+
**kwargs (Any): Arbitrary keyword arguments to be passed to pandas.DataFrame.to_csv().
|
|
861
|
+
|
|
862
|
+
|
|
863
|
+
Returns:
|
|
864
|
+
(str): CSV containing all the information in results in an organized way.
|
|
865
|
+
|
|
866
|
+
Examples:
|
|
867
|
+
>>> results = model("path/to/image.jpg")
|
|
868
|
+
>>> csv_result = results[0].to_csv()
|
|
869
|
+
>>> print(csv_result)
|
|
870
|
+
"""
|
|
871
|
+
return self.to_df(normalize=normalize, decimals=decimals).to_csv(*args, **kwargs)
|
|
872
|
+
|
|
873
|
+
def to_xml(self, normalize=False, decimals=5, *args, **kwargs):
|
|
874
|
+
"""
|
|
875
|
+
Converts detection results to XML format.
|
|
876
|
+
|
|
877
|
+
This method serializes the detection results into an XML format. It includes information
|
|
878
|
+
about detected objects such as bounding boxes, class names, confidence scores, and optionally
|
|
879
|
+
segmentation masks and keypoints.
|
|
880
|
+
|
|
881
|
+
Args:
|
|
882
|
+
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
|
883
|
+
If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
|
|
884
|
+
decimals (int): Number of decimal places to round the output values to. Defaults to 5.
|
|
885
|
+
*args (Any): Variable length argument list to be passed to pandas.DataFrame.to_xml().
|
|
886
|
+
**kwargs (Any): Arbitrary keyword arguments to be passed to pandas.DataFrame.to_xml().
|
|
887
|
+
|
|
888
|
+
Returns:
|
|
889
|
+
(str): An XML string containing all the information in results in an organized way.
|
|
890
|
+
|
|
891
|
+
Examples:
|
|
892
|
+
>>> results = model("path/to/image.jpg")
|
|
893
|
+
>>> xml_result = results[0].to_xml()
|
|
894
|
+
>>> print(xml_result)
|
|
895
|
+
"""
|
|
896
|
+
check_requirements("lxml")
|
|
897
|
+
df = self.to_df(normalize=normalize, decimals=decimals)
|
|
898
|
+
return '<?xml version="1.0" encoding="utf-8"?>\n<root></root>' if df.empty else df.to_xml(*args, **kwargs)
|
|
899
|
+
|
|
821
900
|
def tojson(self, normalize=False, decimals=5):
|
|
901
|
+
"""Deprecated version of to_json()."""
|
|
902
|
+
LOGGER.warning("WARNING ⚠️ 'result.tojson()' is deprecated, replace with 'result.to_json()'.")
|
|
903
|
+
return self.to_json(normalize, decimals)
|
|
904
|
+
|
|
905
|
+
def to_json(self, normalize=False, decimals=5):
|
|
822
906
|
"""
|
|
823
907
|
Converts detection results to JSON format.
|
|
824
908
|
|
|
@@ -836,7 +920,7 @@ class Results(SimpleClass):
|
|
|
836
920
|
|
|
837
921
|
Examples:
|
|
838
922
|
>>> results = model("path/to/image.jpg")
|
|
839
|
-
>>> json_result = results[0].
|
|
923
|
+
>>> json_result = results[0].to_json()
|
|
840
924
|
>>> print(json_result)
|
|
841
925
|
|
|
842
926
|
Notes:
|
|
@@ -668,13 +668,14 @@ class BaseTrainer:
|
|
|
668
668
|
|
|
669
669
|
def final_eval(self):
|
|
670
670
|
"""Performs final evaluation and validation for object detection YOLO model."""
|
|
671
|
+
ckpt = {}
|
|
671
672
|
for f in self.last, self.best:
|
|
672
673
|
if f.exists():
|
|
673
|
-
|
|
674
|
-
|
|
675
|
-
|
|
676
|
-
|
|
677
|
-
|
|
674
|
+
if f is self.last:
|
|
675
|
+
ckpt = strip_optimizer(f)
|
|
676
|
+
elif f is self.best:
|
|
677
|
+
k = "train_results" # update best.pt train_metrics from last.pt
|
|
678
|
+
strip_optimizer(f, updates={k: ckpt[k]} if k in ckpt else None)
|
|
678
679
|
LOGGER.info(f"\nValidating {f}...")
|
|
679
680
|
self.validator.args.plots = self.args.plots
|
|
680
681
|
self.metrics = self.validator(model=f)
|
|
@@ -110,7 +110,8 @@ class BaseValidator:
|
|
|
110
110
|
if self.training:
|
|
111
111
|
self.device = trainer.device
|
|
112
112
|
self.data = trainer.data
|
|
113
|
-
|
|
113
|
+
# force FP16 val during training
|
|
114
|
+
self.args.half = self.device.type != "cpu" and trainer.amp
|
|
114
115
|
model = trainer.ema.ema or trainer.model
|
|
115
116
|
model = model.half() if self.args.half else model.float()
|
|
116
117
|
# self.model = model
|
|
@@ -759,6 +759,10 @@ class SafeClass:
|
|
|
759
759
|
"""Initialize SafeClass instance, ignoring all arguments."""
|
|
760
760
|
pass
|
|
761
761
|
|
|
762
|
+
def __call__(self, *args, **kwargs):
|
|
763
|
+
"""Run SafeClass instance, ignoring all arguments."""
|
|
764
|
+
pass
|
|
765
|
+
|
|
762
766
|
|
|
763
767
|
class SafeUnpickler(pickle.Unpickler):
|
|
764
768
|
"""Custom Unpickler that replaces unknown classes with SafeClass."""
|