ultralytics 8.2.93__tar.gz → 8.2.94__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- {ultralytics-8.2.93/ultralytics.egg-info → ultralytics-8.2.94}/PKG-INFO +10 -10
- {ultralytics-8.2.93 → ultralytics-8.2.94}/README.md +7 -7
- {ultralytics-8.2.93 → ultralytics-8.2.94}/pyproject.toml +2 -2
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_cli.py +1 -1
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/__init__.py +1 -1
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/trainer.py +28 -14
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/predict.py +7 -5
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/plotting.py +55 -1
- {ultralytics-8.2.93 → ultralytics-8.2.94/ultralytics.egg-info}/PKG-INFO +10 -10
- {ultralytics-8.2.93 → ultralytics-8.2.94}/LICENSE +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/setup.cfg +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/conftest.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_cuda.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_engine.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_explorer.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_exports.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_integrations.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_python.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/tests/test_solutions.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/augment.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/base.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/build.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/converter.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/dataset.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/explorer/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/explorer/explorer.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/explorer/gui/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/explorer/gui/dash.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/explorer/utils.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/loaders.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/data/utils.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/exporter.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/model.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/results.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/tuner.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/engine/validator.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/hub/auth.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/hub/google/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/hub/session.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/hub/utils.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/nas/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/build.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/blocks.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/memory_attention.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/sam/modules/utils.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/detect/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/detect/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/model.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/obb/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/obb/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/pose/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/pose/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/segment/predict.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/segment/val.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/autobackend.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/modules/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/modules/activation.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/modules/block.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/modules/head.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/nn/tasks.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/parking_management.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/solutions/streamlit_inference.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/benchmarks.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/checks.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/downloads.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/files.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/loss.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/metrics.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/ops.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/patches.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/torch_utils.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics.egg-info/SOURCES.txt +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics.egg-info/top_level.txt +0 -0
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
4
|
-
Summary: Ultralytics
|
|
3
|
+
Version: 8.2.94
|
|
4
|
+
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
7
7
|
License: AGPL-3.0
|
|
8
8
|
Project-URL: Bug Reports, https://github.com/ultralytics/ultralytics/issues
|
|
9
9
|
Project-URL: Funding, https://ultralytics.com
|
|
10
10
|
Project-URL: Source, https://github.com/ultralytics/ultralytics/
|
|
11
|
-
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,HUB,Ultralytics
|
|
11
|
+
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,HUB,Ultralytics
|
|
12
12
|
Classifier: Development Status :: 4 - Beta
|
|
13
13
|
Classifier: Intended Audience :: Developers
|
|
14
14
|
Classifier: Intended Audience :: Education
|
|
@@ -132,7 +132,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|
|
132
132
|
|
|
133
133
|
## <div align="center">Documentation</div>
|
|
134
134
|
|
|
135
|
-
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
|
|
135
|
+
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
|
|
136
136
|
|
|
137
137
|
<details open>
|
|
138
138
|
<summary>Install</summary>
|
|
@@ -145,7 +145,7 @@ Pip install the ultralytics package including all [requirements](https://github.
|
|
|
145
145
|
pip install ultralytics
|
|
146
146
|
```
|
|
147
147
|
|
|
148
|
-
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
|
|
148
|
+
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
|
|
149
149
|
|
|
150
150
|
[](https://anaconda.org/conda-forge/ultralytics) [](https://hub.docker.com/r/ultralytics/ultralytics)
|
|
151
151
|
|
|
@@ -162,7 +162,7 @@ YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` co
|
|
|
162
162
|
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
163
163
|
```
|
|
164
164
|
|
|
165
|
-
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
|
|
165
|
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
|
166
166
|
|
|
167
167
|
### Python
|
|
168
168
|
|
|
@@ -182,7 +182,7 @@ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
|
182
182
|
path = model.export(format="onnx") # export the model to ONNX format
|
|
183
183
|
```
|
|
184
184
|
|
|
185
|
-
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
|
|
185
|
+
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
186
186
|
|
|
187
187
|
</details>
|
|
188
188
|
|
|
@@ -201,7 +201,7 @@ Ultralytics provides interactive notebooks for YOLOv8, covering training, valida
|
|
|
201
201
|
|
|
202
202
|
## <div align="center">Models</div>
|
|
203
203
|
|
|
204
|
-
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
|
204
|
+
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
|
|
205
205
|
|
|
206
206
|
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
|
|
207
207
|
|
|
@@ -312,7 +312,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
|
|
|
312
312
|
|
|
313
313
|
## <div align="center">Integrations</div>
|
|
314
314
|
|
|
315
|
-
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
|
|
315
|
+
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
|
316
316
|
|
|
317
317
|
<br>
|
|
318
318
|
<a href="https://ultralytics.com/hub" target="_blank">
|
|
@@ -347,7 +347,7 @@ Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub)
|
|
|
347
347
|
|
|
348
348
|
## <div align="center">Contribute</div>
|
|
349
349
|
|
|
350
|
-
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
350
|
+
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
351
351
|
|
|
352
352
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
|
353
353
|
|
|
@@ -47,7 +47,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|
|
47
47
|
|
|
48
48
|
## <div align="center">Documentation</div>
|
|
49
49
|
|
|
50
|
-
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
|
|
50
|
+
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
|
|
51
51
|
|
|
52
52
|
<details open>
|
|
53
53
|
<summary>Install</summary>
|
|
@@ -60,7 +60,7 @@ Pip install the ultralytics package including all [requirements](https://github.
|
|
|
60
60
|
pip install ultralytics
|
|
61
61
|
```
|
|
62
62
|
|
|
63
|
-
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
|
|
63
|
+
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
|
|
64
64
|
|
|
65
65
|
[](https://anaconda.org/conda-forge/ultralytics) [](https://hub.docker.com/r/ultralytics/ultralytics)
|
|
66
66
|
|
|
@@ -77,7 +77,7 @@ YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` co
|
|
|
77
77
|
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
78
78
|
```
|
|
79
79
|
|
|
80
|
-
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
|
|
80
|
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
|
81
81
|
|
|
82
82
|
### Python
|
|
83
83
|
|
|
@@ -97,7 +97,7 @@ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
|
97
97
|
path = model.export(format="onnx") # export the model to ONNX format
|
|
98
98
|
```
|
|
99
99
|
|
|
100
|
-
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
|
|
100
|
+
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
101
101
|
|
|
102
102
|
</details>
|
|
103
103
|
|
|
@@ -116,7 +116,7 @@ Ultralytics provides interactive notebooks for YOLOv8, covering training, valida
|
|
|
116
116
|
|
|
117
117
|
## <div align="center">Models</div>
|
|
118
118
|
|
|
119
|
-
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
|
119
|
+
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
|
|
120
120
|
|
|
121
121
|
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
|
|
122
122
|
|
|
@@ -227,7 +227,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
|
|
|
227
227
|
|
|
228
228
|
## <div align="center">Integrations</div>
|
|
229
229
|
|
|
230
|
-
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
|
|
230
|
+
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
|
231
231
|
|
|
232
232
|
<br>
|
|
233
233
|
<a href="https://ultralytics.com/hub" target="_blank">
|
|
@@ -262,7 +262,7 @@ Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub)
|
|
|
262
262
|
|
|
263
263
|
## <div align="center">Contribute</div>
|
|
264
264
|
|
|
265
|
-
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
265
|
+
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
266
266
|
|
|
267
267
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
|
268
268
|
|
|
@@ -26,11 +26,11 @@ build-backend = "setuptools.build_meta"
|
|
|
26
26
|
[project]
|
|
27
27
|
name = "ultralytics"
|
|
28
28
|
dynamic = ["version"]
|
|
29
|
-
description = "Ultralytics
|
|
29
|
+
description = "Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification."
|
|
30
30
|
readme = "README.md"
|
|
31
31
|
requires-python = ">=3.8"
|
|
32
32
|
license = { "text" = "AGPL-3.0" }
|
|
33
|
-
keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "HUB", "Ultralytics"]
|
|
33
|
+
keywords = ["machine-learning", "deep-learning", "computer-vision", "ML", "DL", "AI", "YOLO", "YOLOv3", "YOLOv5", "YOLOv8", "YOLOv9", "YOLOv10", "HUB", "Ultralytics"]
|
|
34
34
|
authors = [
|
|
35
35
|
{ name = "Glenn Jocher" },
|
|
36
36
|
{ name = "Ayush Chaurasia" },
|
|
@@ -101,7 +101,7 @@ def test_mobilesam():
|
|
|
101
101
|
model.predict(source, points=[900, 370], labels=[1])
|
|
102
102
|
|
|
103
103
|
# Predict a segment based on a box prompt
|
|
104
|
-
model.predict(source, bboxes=[439, 437, 524, 709])
|
|
104
|
+
model.predict(source, bboxes=[439, 437, 524, 709], save=True)
|
|
105
105
|
|
|
106
106
|
# Predict all
|
|
107
107
|
# model(source)
|
|
@@ -28,7 +28,6 @@ from ultralytics.utils import (
|
|
|
28
28
|
DEFAULT_CFG,
|
|
29
29
|
LOCAL_RANK,
|
|
30
30
|
LOGGER,
|
|
31
|
-
MACOS,
|
|
32
31
|
RANK,
|
|
33
32
|
TQDM,
|
|
34
33
|
__version__,
|
|
@@ -409,13 +408,17 @@ class BaseTrainer:
|
|
|
409
408
|
break
|
|
410
409
|
|
|
411
410
|
# Log
|
|
412
|
-
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
|
|
413
|
-
loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1
|
|
414
|
-
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
|
|
415
411
|
if RANK in {-1, 0}:
|
|
412
|
+
loss_length = self.tloss.shape[0] if len(self.tloss.shape) else 1
|
|
416
413
|
pbar.set_description(
|
|
417
|
-
("%11s" * 2 + "%11.4g" * (2 +
|
|
418
|
-
% (
|
|
414
|
+
("%11s" * 2 + "%11.4g" * (2 + loss_length))
|
|
415
|
+
% (
|
|
416
|
+
f"{epoch + 1}/{self.epochs}",
|
|
417
|
+
f"{self._get_memory():.3g}G", # (GB) GPU memory util
|
|
418
|
+
*(self.tloss if loss_length > 1 else torch.unsqueeze(self.tloss, 0)), # losses
|
|
419
|
+
batch["cls"].shape[0], # batch size, i.e. 8
|
|
420
|
+
batch["img"].shape[-1], # imgsz, i.e 640
|
|
421
|
+
)
|
|
419
422
|
)
|
|
420
423
|
self.run_callbacks("on_batch_end")
|
|
421
424
|
if self.args.plots and ni in self.plot_idx:
|
|
@@ -453,11 +456,7 @@ class BaseTrainer:
|
|
|
453
456
|
self.scheduler.last_epoch = self.epoch # do not move
|
|
454
457
|
self.stop |= epoch >= self.epochs # stop if exceeded epochs
|
|
455
458
|
self.run_callbacks("on_fit_epoch_end")
|
|
456
|
-
|
|
457
|
-
if MACOS:
|
|
458
|
-
torch.mps.empty_cache() # clear unified memory at end of epoch, may help MPS' management of 'unlimited' virtual memoy
|
|
459
|
-
else:
|
|
460
|
-
torch.cuda.empty_cache() # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors
|
|
459
|
+
self._clear_memory()
|
|
461
460
|
|
|
462
461
|
# Early Stopping
|
|
463
462
|
if RANK != -1: # if DDP training
|
|
@@ -478,14 +477,29 @@ class BaseTrainer:
|
|
|
478
477
|
if self.args.plots:
|
|
479
478
|
self.plot_metrics()
|
|
480
479
|
self.run_callbacks("on_train_end")
|
|
480
|
+
self._clear_memory()
|
|
481
|
+
self.run_callbacks("teardown")
|
|
482
|
+
|
|
483
|
+
def _get_memory(self):
|
|
484
|
+
"""Get accelerator memory utilization in GB."""
|
|
485
|
+
if self.device.type == "mps":
|
|
486
|
+
memory = torch.mps.driver_allocated_memory()
|
|
487
|
+
elif self.device.type == "cpu":
|
|
488
|
+
memory = 0
|
|
489
|
+
else:
|
|
490
|
+
memory = torch.cuda.memory_reserved()
|
|
491
|
+
return memory / 1e9
|
|
492
|
+
|
|
493
|
+
def _clear_memory(self):
|
|
494
|
+
"""Clear accelerator memory on different platforms."""
|
|
481
495
|
gc.collect()
|
|
482
|
-
if
|
|
496
|
+
if self.device.type == "mps":
|
|
483
497
|
torch.mps.empty_cache()
|
|
498
|
+
elif self.device.type == "cpu":
|
|
499
|
+
return
|
|
484
500
|
else:
|
|
485
501
|
torch.cuda.empty_cache()
|
|
486
502
|
|
|
487
|
-
self.run_callbacks("teardown")
|
|
488
|
-
|
|
489
503
|
def read_results_csv(self):
|
|
490
504
|
"""Read results.csv into a dict using pandas."""
|
|
491
505
|
import pandas as pd # scope for faster 'import ultralytics'
|
|
@@ -450,16 +450,18 @@ class Predictor(BasePredictor):
|
|
|
450
450
|
|
|
451
451
|
results = []
|
|
452
452
|
for masks, orig_img, img_path in zip([pred_masks], orig_imgs, self.batch[0]):
|
|
453
|
-
if pred_bboxes is not None:
|
|
454
|
-
pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
|
|
455
|
-
cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
|
|
456
|
-
pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
|
|
457
|
-
|
|
458
453
|
if len(masks) == 0:
|
|
459
454
|
masks = None
|
|
460
455
|
else:
|
|
461
456
|
masks = ops.scale_masks(masks[None].float(), orig_img.shape[:2], padding=False)[0]
|
|
462
457
|
masks = masks > self.model.mask_threshold # to bool
|
|
458
|
+
if pred_bboxes is not None:
|
|
459
|
+
pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
|
|
460
|
+
else:
|
|
461
|
+
pred_bboxes = batched_mask_to_box(masks)
|
|
462
|
+
# NOTE: SAM models do not return cls info. This `cls` here is just a placeholder for consistency.
|
|
463
|
+
cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
|
|
464
|
+
pred_bboxes = torch.cat([pred_bboxes, pred_scores[:, None], cls[:, None]], dim=-1)
|
|
463
465
|
results.append(Results(orig_img, path=img_path, names=names, masks=masks, boxes=pred_bboxes))
|
|
464
466
|
# Reset segment-all mode.
|
|
465
467
|
self.segment_all = False
|
|
@@ -20,7 +20,7 @@ from ultralytics.utils.files import increment_path
|
|
|
20
20
|
|
|
21
21
|
class Colors:
|
|
22
22
|
"""
|
|
23
|
-
Ultralytics
|
|
23
|
+
Ultralytics color palette https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Colors.
|
|
24
24
|
|
|
25
25
|
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
|
|
26
26
|
RGB values.
|
|
@@ -29,6 +29,60 @@ class Colors:
|
|
|
29
29
|
palette (list of tuple): List of RGB color values.
|
|
30
30
|
n (int): The number of colors in the palette.
|
|
31
31
|
pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.
|
|
32
|
+
|
|
33
|
+
## Ultralytics Color Palette
|
|
34
|
+
|
|
35
|
+
| Index | Color | HEX | RGB |
|
|
36
|
+
|-------|-------------------------------------------------------------------|-----------|-------------------|
|
|
37
|
+
| 0 | <i class="fa-solid fa-square fa-2xl" style="color: #042aff;"></i> | `#042aff` | (4, 42, 255) |
|
|
38
|
+
| 1 | <i class="fa-solid fa-square fa-2xl" style="color: #0bdbeb;"></i> | `#0bdbeb` | (11, 219, 235) |
|
|
39
|
+
| 2 | <i class="fa-solid fa-square fa-2xl" style="color: #f3f3f3;"></i> | `#f3f3f3` | (243, 243, 243) |
|
|
40
|
+
| 3 | <i class="fa-solid fa-square fa-2xl" style="color: #00dfb7;"></i> | `#00dfb7` | (0, 223, 183) |
|
|
41
|
+
| 4 | <i class="fa-solid fa-square fa-2xl" style="color: #111f68;"></i> | `#111f68` | (17, 31, 104) |
|
|
42
|
+
| 5 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6fdd;"></i> | `#ff6fdd` | (255, 111, 221) |
|
|
43
|
+
| 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff444f;"></i> | `#ff444f` | (255, 68, 79) |
|
|
44
|
+
| 7 | <i class="fa-solid fa-square fa-2xl" style="color: #cced00;"></i> | `#cced00` | (204, 237, 0) |
|
|
45
|
+
| 8 | <i class="fa-solid fa-square fa-2xl" style="color: #00f344;"></i> | `#00f344` | (0, 243, 68) |
|
|
46
|
+
| 9 | <i class="fa-solid fa-square fa-2xl" style="color: #bd00ff;"></i> | `#bd00ff` | (189, 0, 255) |
|
|
47
|
+
| 10 | <i class="fa-solid fa-square fa-2xl" style="color: #00b4ff;"></i> | `#00b4ff` | (0, 180, 255) |
|
|
48
|
+
| 11 | <i class="fa-solid fa-square fa-2xl" style="color: #dd00ba;"></i> | `#dd00ba` | (221, 0, 186) |
|
|
49
|
+
| 12 | <i class="fa-solid fa-square fa-2xl" style="color: #00ffff;"></i> | `#00ffff` | (0, 255, 255) |
|
|
50
|
+
| 13 | <i class="fa-solid fa-square fa-2xl" style="color: #26c000;"></i> | `#26c000` | (38, 192, 0) |
|
|
51
|
+
| 14 | <i class="fa-solid fa-square fa-2xl" style="color: #01ffb3;"></i> | `#01ffb3` | (1, 255, 179) |
|
|
52
|
+
| 15 | <i class="fa-solid fa-square fa-2xl" style="color: #7d24ff;"></i> | `#7d24ff` | (125, 36, 255) |
|
|
53
|
+
| 16 | <i class="fa-solid fa-square fa-2xl" style="color: #7b0068;"></i> | `#7b0068` | (123, 0, 104) |
|
|
54
|
+
| 17 | <i class="fa-solid fa-square fa-2xl" style="color: #ff1b6c;"></i> | `#ff1b6c` | (255, 27, 108) |
|
|
55
|
+
| 18 | <i class="fa-solid fa-square fa-2xl" style="color: #fc6d2f;"></i> | `#fc6d2f` | (252, 109, 47) |
|
|
56
|
+
| 19 | <i class="fa-solid fa-square fa-2xl" style="color: #a2ff0b;"></i> | `#a2ff0b` | (162, 255, 11) |
|
|
57
|
+
|
|
58
|
+
## Pose Color Palette
|
|
59
|
+
|
|
60
|
+
| Index | Color | HEX | RGB |
|
|
61
|
+
|-------|-------------------------------------------------------------------|-----------|-------------------|
|
|
62
|
+
| 0 | <i class="fa-solid fa-square fa-2xl" style="color: #ff8000;"></i> | `#ff8000` | (255, 128, 0) |
|
|
63
|
+
| 1 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9933;"></i> | `#ff9933` | (255, 153, 51) |
|
|
64
|
+
| 2 | <i class="fa-solid fa-square fa-2xl" style="color: #ffb266;"></i> | `#ffb266` | (255, 178, 102) |
|
|
65
|
+
| 3 | <i class="fa-solid fa-square fa-2xl" style="color: #e6e600;"></i> | `#e6e600` | (230, 230, 0) |
|
|
66
|
+
| 4 | <i class="fa-solid fa-square fa-2xl" style="color: #ff99ff;"></i> | `#ff99ff` | (255, 153, 255) |
|
|
67
|
+
| 5 | <i class="fa-solid fa-square fa-2xl" style="color: #99ccff;"></i> | `#99ccff` | (153, 204, 255) |
|
|
68
|
+
| 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff66ff;"></i> | `#ff66ff` | (255, 102, 255) |
|
|
69
|
+
| 7 | <i class="fa-solid fa-square fa-2xl" style="color: #ff33ff;"></i> | `#ff33ff` | (255, 51, 255) |
|
|
70
|
+
| 8 | <i class="fa-solid fa-square fa-2xl" style="color: #66b2ff;"></i> | `#66b2ff` | (102, 178, 255) |
|
|
71
|
+
| 9 | <i class="fa-solid fa-square fa-2xl" style="color: #3399ff;"></i> | `#3399ff` | (51, 153, 255) |
|
|
72
|
+
| 10 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9999;"></i> | `#ff9999` | (255, 153, 153) |
|
|
73
|
+
| 11 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6666;"></i> | `#ff6666` | (255, 102, 102) |
|
|
74
|
+
| 12 | <i class="fa-solid fa-square fa-2xl" style="color: #ff3333;"></i> | `#ff3333` | (255, 51, 51) |
|
|
75
|
+
| 13 | <i class="fa-solid fa-square fa-2xl" style="color: #99ff99;"></i> | `#99ff99` | (153, 255, 153) |
|
|
76
|
+
| 14 | <i class="fa-solid fa-square fa-2xl" style="color: #66ff66;"></i> | `#66ff66` | (102, 255, 102) |
|
|
77
|
+
| 15 | <i class="fa-solid fa-square fa-2xl" style="color: #33ff33;"></i> | `#33ff33` | (51, 255, 51) |
|
|
78
|
+
| 16 | <i class="fa-solid fa-square fa-2xl" style="color: #00ff00;"></i> | `#00ff00` | (0, 255, 0) |
|
|
79
|
+
| 17 | <i class="fa-solid fa-square fa-2xl" style="color: #0000ff;"></i> | `#0000ff` | (0, 0, 255) |
|
|
80
|
+
| 18 | <i class="fa-solid fa-square fa-2xl" style="color: #ff0000;"></i> | `#ff0000` | (255, 0, 0) |
|
|
81
|
+
| 19 | <i class="fa-solid fa-square fa-2xl" style="color: #ffffff;"></i> | `#ffffff` | (255, 255, 255) |
|
|
82
|
+
|
|
83
|
+
!!! note "Ultralytics Brand Colors"
|
|
84
|
+
|
|
85
|
+
For Ultralytics brand colors see [https://www.ultralytics.com/brand](https://www.ultralytics.com/brand). Please use the official Ultralytics colors for all marketing materials.
|
|
32
86
|
"""
|
|
33
87
|
|
|
34
88
|
def __init__(self):
|
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
4
|
-
Summary: Ultralytics
|
|
3
|
+
Version: 8.2.94
|
|
4
|
+
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
7
7
|
License: AGPL-3.0
|
|
8
8
|
Project-URL: Bug Reports, https://github.com/ultralytics/ultralytics/issues
|
|
9
9
|
Project-URL: Funding, https://ultralytics.com
|
|
10
10
|
Project-URL: Source, https://github.com/ultralytics/ultralytics/
|
|
11
|
-
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,HUB,Ultralytics
|
|
11
|
+
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,HUB,Ultralytics
|
|
12
12
|
Classifier: Development Status :: 4 - Beta
|
|
13
13
|
Classifier: Intended Audience :: Developers
|
|
14
14
|
Classifier: Intended Audience :: Education
|
|
@@ -132,7 +132,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|
|
132
132
|
|
|
133
133
|
## <div align="center">Documentation</div>
|
|
134
134
|
|
|
135
|
-
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
|
|
135
|
+
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
|
|
136
136
|
|
|
137
137
|
<details open>
|
|
138
138
|
<summary>Install</summary>
|
|
@@ -145,7 +145,7 @@ Pip install the ultralytics package including all [requirements](https://github.
|
|
|
145
145
|
pip install ultralytics
|
|
146
146
|
```
|
|
147
147
|
|
|
148
|
-
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
|
|
148
|
+
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
|
|
149
149
|
|
|
150
150
|
[](https://anaconda.org/conda-forge/ultralytics) [](https://hub.docker.com/r/ultralytics/ultralytics)
|
|
151
151
|
|
|
@@ -162,7 +162,7 @@ YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` co
|
|
|
162
162
|
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
163
163
|
```
|
|
164
164
|
|
|
165
|
-
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
|
|
165
|
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
|
166
166
|
|
|
167
167
|
### Python
|
|
168
168
|
|
|
@@ -182,7 +182,7 @@ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
|
182
182
|
path = model.export(format="onnx") # export the model to ONNX format
|
|
183
183
|
```
|
|
184
184
|
|
|
185
|
-
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
|
|
185
|
+
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
186
186
|
|
|
187
187
|
</details>
|
|
188
188
|
|
|
@@ -201,7 +201,7 @@ Ultralytics provides interactive notebooks for YOLOv8, covering training, valida
|
|
|
201
201
|
|
|
202
202
|
## <div align="center">Models</div>
|
|
203
203
|
|
|
204
|
-
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
|
204
|
+
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
|
|
205
205
|
|
|
206
206
|
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
|
|
207
207
|
|
|
@@ -312,7 +312,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
|
|
|
312
312
|
|
|
313
313
|
## <div align="center">Integrations</div>
|
|
314
314
|
|
|
315
|
-
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
|
|
315
|
+
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
|
|
316
316
|
|
|
317
317
|
<br>
|
|
318
318
|
<a href="https://ultralytics.com/hub" target="_blank">
|
|
@@ -347,7 +347,7 @@ Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub)
|
|
|
347
347
|
|
|
348
348
|
## <div align="center">Contribute</div>
|
|
349
349
|
|
|
350
|
-
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
350
|
+
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
351
351
|
|
|
352
352
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
|
353
353
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml
RENAMED
|
File without changes
|
{ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml
RENAMED
|
File without changes
|
{ultralytics-8.2.93 → ultralytics-8.2.94}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|