ultralytics 8.2.68__tar.gz → 8.2.69__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- {ultralytics-8.2.68/ultralytics.egg-info → ultralytics-8.2.69}/PKG-INFO +1 -1
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_cli.py +4 -16
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/__init__.py +1 -1
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/augment.py +1 -1
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/google/__init__.py +3 -3
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/__init__.py +1 -2
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/model.py +18 -0
- ultralytics-8.2.69/ultralytics/models/fastsam/predict.py +145 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/ops.py +1 -1
- {ultralytics-8.2.68 → ultralytics-8.2.69/ultralytics.egg-info}/PKG-INFO +1 -1
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/SOURCES.txt +0 -1
- ultralytics-8.2.68/ultralytics/models/fastsam/predict.py +0 -31
- ultralytics-8.2.68/ultralytics/models/fastsam/prompt.py +0 -352
- {ultralytics-8.2.68 → ultralytics-8.2.69}/LICENSE +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/README.md +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/pyproject.toml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/setup.cfg +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/conftest.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_cuda.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_engine.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_explorer.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_exports.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_integrations.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_python.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_solutions.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/base.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/build.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/converter.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/dataset.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/explorer.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/gui/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/gui/dash.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/utils.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/loaders.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/utils.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/exporter.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/model.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/results.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/trainer.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/tuner.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/validator.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/auth.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/session.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/utils.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/build.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/model.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/predict.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/val.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/autobackend.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/activation.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/block.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/head.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/tasks.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/parking_management.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/streamlit_inference.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/benchmarks.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/checks.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/downloads.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/files.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/loss.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/metrics.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/patches.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/plotting.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/torch_utils.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
3
|
+
Version: 8.2.69
|
|
4
4
|
Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -68,7 +68,6 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
|
|
|
68
68
|
run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt")
|
|
69
69
|
|
|
70
70
|
from ultralytics import FastSAM
|
|
71
|
-
from ultralytics.models.fastsam import FastSAMPrompt
|
|
72
71
|
from ultralytics.models.sam import Predictor
|
|
73
72
|
|
|
74
73
|
# Create a FastSAM model
|
|
@@ -81,21 +80,10 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
|
|
|
81
80
|
# Remove small regions
|
|
82
81
|
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
|
|
83
82
|
|
|
84
|
-
#
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
|
|
89
|
-
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
|
|
90
|
-
|
|
91
|
-
# Text prompt
|
|
92
|
-
ann = prompt_process.text_prompt(text="a photo of a dog")
|
|
93
|
-
|
|
94
|
-
# Point prompt
|
|
95
|
-
# Points default [[0,0]] [[x1,y1],[x2,y2]]
|
|
96
|
-
# Point_label default [0] [1,0] 0:background, 1:foreground
|
|
97
|
-
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
|
|
98
|
-
prompt_process.plot(annotations=ann, output="./")
|
|
83
|
+
# Run inference with bboxes and points and texts prompt at the same time
|
|
84
|
+
results = sam_model(
|
|
85
|
+
source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog"
|
|
86
|
+
)
|
|
99
87
|
|
|
100
88
|
|
|
101
89
|
def test_mobilesam():
|
|
@@ -2221,7 +2221,7 @@ class RandomLoadText:
|
|
|
2221
2221
|
pos_labels = np.unique(cls).tolist()
|
|
2222
2222
|
|
|
2223
2223
|
if len(pos_labels) > self.max_samples:
|
|
2224
|
-
pos_labels =
|
|
2224
|
+
pos_labels = random.sample(pos_labels, k=self.max_samples)
|
|
2225
2225
|
|
|
2226
2226
|
neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
|
|
2227
2227
|
neg_labels = [i for i in range(num_classes) if i not in pos_labels]
|
|
@@ -136,14 +136,14 @@ class GCPRegions:
|
|
|
136
136
|
sorted_results = sorted(results, key=lambda x: x[1])
|
|
137
137
|
|
|
138
138
|
if verbose:
|
|
139
|
-
print(f"{'Region':<
|
|
139
|
+
print(f"{'Region':<25} {'Location':<35} {'Tier':<5} {'Latency (ms)'}")
|
|
140
140
|
for region, mean, std, min_, max_ in sorted_results:
|
|
141
141
|
tier, city, country = self.regions[region]
|
|
142
142
|
location = f"{city}, {country}"
|
|
143
143
|
if mean == float("inf"):
|
|
144
|
-
print(f"{region:<
|
|
144
|
+
print(f"{region:<25} {location:<35} {tier:<5} {'Timeout'}")
|
|
145
145
|
else:
|
|
146
|
-
print(f"{region:<
|
|
146
|
+
print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
|
|
147
147
|
print(f"\nLowest latency region{'s' if top > 1 else ''}:")
|
|
148
148
|
for region, mean, std, min_, max_ in sorted_results[:top]:
|
|
149
149
|
tier, city, country = self.regions[region]
|
|
@@ -2,7 +2,6 @@
|
|
|
2
2
|
|
|
3
3
|
from .model import FastSAM
|
|
4
4
|
from .predict import FastSAMPredictor
|
|
5
|
-
from .prompt import FastSAMPrompt
|
|
6
5
|
from .val import FastSAMValidator
|
|
7
6
|
|
|
8
|
-
__all__ = "FastSAMPredictor", "FastSAM", "
|
|
7
|
+
__all__ = "FastSAMPredictor", "FastSAM", "FastSAMValidator"
|
|
@@ -28,6 +28,24 @@ class FastSAM(Model):
|
|
|
28
28
|
assert Path(model).suffix not in {".yaml", ".yml"}, "FastSAM models only support pre-trained models."
|
|
29
29
|
super().__init__(model=model, task="segment")
|
|
30
30
|
|
|
31
|
+
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, texts=None, **kwargs):
|
|
32
|
+
"""
|
|
33
|
+
Performs segmentation prediction on the given image or video source.
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
|
|
37
|
+
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
|
|
38
|
+
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
|
|
39
|
+
points (list, optional): List of points for prompted segmentation. Defaults to None.
|
|
40
|
+
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
|
|
41
|
+
texts (list, optional): List of texts for prompted segmentation. Defaults to None.
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
(list): The model predictions.
|
|
45
|
+
"""
|
|
46
|
+
prompts = dict(bboxes=bboxes, points=points, labels=labels, texts=texts)
|
|
47
|
+
return super().predict(source, stream, prompts=prompts, **kwargs)
|
|
48
|
+
|
|
31
49
|
@property
|
|
32
50
|
def task_map(self):
|
|
33
51
|
"""Returns a dictionary mapping segment task to corresponding predictor and validator classes."""
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
import torch
|
|
3
|
+
from PIL import Image
|
|
4
|
+
|
|
5
|
+
from ultralytics.models.yolo.segment import SegmentationPredictor
|
|
6
|
+
from ultralytics.utils import DEFAULT_CFG, checks
|
|
7
|
+
from ultralytics.utils.metrics import box_iou
|
|
8
|
+
from ultralytics.utils.ops import scale_masks
|
|
9
|
+
|
|
10
|
+
from .utils import adjust_bboxes_to_image_border
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class FastSAMPredictor(SegmentationPredictor):
|
|
14
|
+
"""
|
|
15
|
+
FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
|
|
16
|
+
YOLO framework.
|
|
17
|
+
|
|
18
|
+
This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
|
|
19
|
+
adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
|
|
20
|
+
class segmentation.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
24
|
+
super().__init__(cfg, overrides, _callbacks)
|
|
25
|
+
self.prompts = {}
|
|
26
|
+
|
|
27
|
+
def postprocess(self, preds, img, orig_imgs):
|
|
28
|
+
"""Applies box postprocess for FastSAM predictions."""
|
|
29
|
+
bboxes = self.prompts.pop("bboxes", None)
|
|
30
|
+
points = self.prompts.pop("points", None)
|
|
31
|
+
labels = self.prompts.pop("labels", None)
|
|
32
|
+
texts = self.prompts.pop("texts", None)
|
|
33
|
+
results = super().postprocess(preds, img, orig_imgs)
|
|
34
|
+
for result in results:
|
|
35
|
+
full_box = torch.tensor(
|
|
36
|
+
[0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
|
|
37
|
+
)
|
|
38
|
+
boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
|
|
39
|
+
idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
|
|
40
|
+
if idx.numel() != 0:
|
|
41
|
+
result.boxes.xyxy[idx] = full_box
|
|
42
|
+
|
|
43
|
+
return self.prompt(results, bboxes=bboxes, points=points, labels=labels, texts=texts)
|
|
44
|
+
|
|
45
|
+
def prompt(self, results, bboxes=None, points=None, labels=None, texts=None):
|
|
46
|
+
"""
|
|
47
|
+
Internal function for image segmentation inference based on cues like bounding boxes, points, and masks.
|
|
48
|
+
Leverages SAM's specialized architecture for prompt-based, real-time segmentation.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
results (Results | List[Results]): The original inference results from FastSAM models without any prompts.
|
|
52
|
+
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
|
|
53
|
+
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
|
|
54
|
+
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
|
|
55
|
+
texts (str | List[str], optional): Textual prompts, a list contains string objects.
|
|
56
|
+
|
|
57
|
+
Returns:
|
|
58
|
+
(List[Results]): The output results determined by prompts.
|
|
59
|
+
"""
|
|
60
|
+
if bboxes is None and points is None and texts is None:
|
|
61
|
+
return results
|
|
62
|
+
prompt_results = []
|
|
63
|
+
if not isinstance(results, list):
|
|
64
|
+
results = [results]
|
|
65
|
+
for result in results:
|
|
66
|
+
masks = result.masks.data
|
|
67
|
+
if masks.shape[1:] != result.orig_shape:
|
|
68
|
+
masks = scale_masks(masks[None], result.orig_shape)[0]
|
|
69
|
+
# bboxes prompt
|
|
70
|
+
idx = torch.zeros(len(result), dtype=torch.bool, device=self.device)
|
|
71
|
+
if bboxes is not None:
|
|
72
|
+
bboxes = torch.as_tensor(bboxes, dtype=torch.int32, device=self.device)
|
|
73
|
+
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
|
74
|
+
bbox_areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
|
|
75
|
+
mask_areas = torch.stack([masks[:, b[1] : b[3], b[0] : b[2]].sum(dim=(1, 2)) for b in bboxes])
|
|
76
|
+
full_mask_areas = torch.sum(masks, dim=(1, 2))
|
|
77
|
+
|
|
78
|
+
union = bbox_areas[:, None] + full_mask_areas - mask_areas
|
|
79
|
+
idx[torch.argmax(mask_areas / union, dim=1)] = True
|
|
80
|
+
if points is not None:
|
|
81
|
+
points = torch.as_tensor(points, dtype=torch.int32, device=self.device)
|
|
82
|
+
points = points[None] if points.ndim == 1 else points
|
|
83
|
+
if labels is None:
|
|
84
|
+
labels = torch.ones(points.shape[0])
|
|
85
|
+
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
|
|
86
|
+
assert len(labels) == len(
|
|
87
|
+
points
|
|
88
|
+
), f"Excepted `labels` got same size as `point`, but got {len(labels)} and {len(points)}"
|
|
89
|
+
point_idx = (
|
|
90
|
+
torch.ones(len(result), dtype=torch.bool, device=self.device)
|
|
91
|
+
if labels.sum() == 0 # all negative points
|
|
92
|
+
else torch.zeros(len(result), dtype=torch.bool, device=self.device)
|
|
93
|
+
)
|
|
94
|
+
for p, l in zip(points, labels):
|
|
95
|
+
point_idx[torch.nonzero(masks[:, p[1], p[0]], as_tuple=True)[0]] = True if l else False
|
|
96
|
+
idx |= point_idx
|
|
97
|
+
if texts is not None:
|
|
98
|
+
if isinstance(texts, str):
|
|
99
|
+
texts = [texts]
|
|
100
|
+
crop_ims, filter_idx = [], []
|
|
101
|
+
for i, b in enumerate(result.boxes.xyxy.tolist()):
|
|
102
|
+
x1, y1, x2, y2 = [int(x) for x in b]
|
|
103
|
+
if masks[i].sum() <= 100:
|
|
104
|
+
filter_idx.append(i)
|
|
105
|
+
continue
|
|
106
|
+
crop_ims.append(Image.fromarray(result.orig_img[y1:y2, x1:x2, ::-1]))
|
|
107
|
+
similarity = self._clip_inference(crop_ims, texts)
|
|
108
|
+
text_idx = torch.argmax(similarity, dim=-1) # (M, )
|
|
109
|
+
if len(filter_idx):
|
|
110
|
+
text_idx += (torch.tensor(filter_idx, device=self.device)[None] <= int(text_idx)).sum(0)
|
|
111
|
+
idx[text_idx] = True
|
|
112
|
+
|
|
113
|
+
prompt_results.append(result[idx])
|
|
114
|
+
|
|
115
|
+
return prompt_results
|
|
116
|
+
|
|
117
|
+
def _clip_inference(self, images, texts):
|
|
118
|
+
"""
|
|
119
|
+
CLIP Inference process.
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
images (List[PIL.Image]): A list of source images and each of them should be PIL.Image type with RGB channel order.
|
|
123
|
+
texts (List[str]): A list of prompt texts and each of them should be string object.
|
|
124
|
+
|
|
125
|
+
Returns:
|
|
126
|
+
(torch.Tensor): The similarity between given images and texts.
|
|
127
|
+
"""
|
|
128
|
+
try:
|
|
129
|
+
import clip
|
|
130
|
+
except ImportError:
|
|
131
|
+
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
|
|
132
|
+
import clip
|
|
133
|
+
if (not hasattr(self, "clip_model")) or (not hasattr(self, "clip_preprocess")):
|
|
134
|
+
self.clip_model, self.clip_preprocess = clip.load("ViT-B/32", device=self.device)
|
|
135
|
+
images = torch.stack([self.clip_preprocess(image).to(self.device) for image in images])
|
|
136
|
+
tokenized_text = clip.tokenize(texts).to(self.device)
|
|
137
|
+
image_features = self.clip_model.encode_image(images)
|
|
138
|
+
text_features = self.clip_model.encode_text(tokenized_text)
|
|
139
|
+
image_features /= image_features.norm(dim=-1, keepdim=True) # (N, 512)
|
|
140
|
+
text_features /= text_features.norm(dim=-1, keepdim=True) # (M, 512)
|
|
141
|
+
return (image_features * text_features[:, None]).sum(-1) # (M, N)
|
|
142
|
+
|
|
143
|
+
def set_prompts(self, prompts):
|
|
144
|
+
"""Set prompts in advance."""
|
|
145
|
+
self.prompts = prompts
|
|
@@ -363,7 +363,7 @@ def scale_image(masks, im0_shape, ratio_pad=None):
|
|
|
363
363
|
ratio_pad (tuple): the ratio of the padding to the original image.
|
|
364
364
|
|
|
365
365
|
Returns:
|
|
366
|
-
masks (
|
|
366
|
+
masks (np.ndarray): The masks that are being returned with shape [h, w, num].
|
|
367
367
|
"""
|
|
368
368
|
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
|
369
369
|
im1_shape = masks.shape
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
3
|
+
Version: 8.2.69
|
|
4
4
|
Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -131,7 +131,6 @@ ultralytics/models/__init__.py
|
|
|
131
131
|
ultralytics/models/fastsam/__init__.py
|
|
132
132
|
ultralytics/models/fastsam/model.py
|
|
133
133
|
ultralytics/models/fastsam/predict.py
|
|
134
|
-
ultralytics/models/fastsam/prompt.py
|
|
135
134
|
ultralytics/models/fastsam/utils.py
|
|
136
135
|
ultralytics/models/fastsam/val.py
|
|
137
136
|
ultralytics/models/nas/__init__.py
|
|
@@ -1,31 +0,0 @@
|
|
|
1
|
-
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
-
import torch
|
|
3
|
-
|
|
4
|
-
from ultralytics.models.yolo.segment import SegmentationPredictor
|
|
5
|
-
from ultralytics.utils.metrics import box_iou
|
|
6
|
-
|
|
7
|
-
from .utils import adjust_bboxes_to_image_border
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
class FastSAMPredictor(SegmentationPredictor):
|
|
11
|
-
"""
|
|
12
|
-
FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
|
|
13
|
-
YOLO framework.
|
|
14
|
-
|
|
15
|
-
This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
|
|
16
|
-
adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
|
|
17
|
-
class segmentation.
|
|
18
|
-
"""
|
|
19
|
-
|
|
20
|
-
def postprocess(self, preds, img, orig_imgs):
|
|
21
|
-
"""Applies box postprocess for FastSAM predictions."""
|
|
22
|
-
results = super().postprocess(preds, img, orig_imgs)
|
|
23
|
-
for result in results:
|
|
24
|
-
full_box = torch.tensor(
|
|
25
|
-
[0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
|
|
26
|
-
)
|
|
27
|
-
boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
|
|
28
|
-
idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
|
|
29
|
-
if idx.numel() != 0:
|
|
30
|
-
result.boxes.xyxy[idx] = full_box
|
|
31
|
-
return results
|