ultralytics 8.2.68__tar.gz → 8.2.69__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (237) hide show
  1. {ultralytics-8.2.68/ultralytics.egg-info → ultralytics-8.2.69}/PKG-INFO +1 -1
  2. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_cli.py +4 -16
  3. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/__init__.py +1 -1
  4. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/augment.py +1 -1
  5. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/google/__init__.py +3 -3
  6. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/__init__.py +1 -2
  7. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/model.py +18 -0
  8. ultralytics-8.2.69/ultralytics/models/fastsam/predict.py +145 -0
  9. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/ops.py +1 -1
  10. {ultralytics-8.2.68 → ultralytics-8.2.69/ultralytics.egg-info}/PKG-INFO +1 -1
  11. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/SOURCES.txt +0 -1
  12. ultralytics-8.2.68/ultralytics/models/fastsam/predict.py +0 -31
  13. ultralytics-8.2.68/ultralytics/models/fastsam/prompt.py +0 -352
  14. {ultralytics-8.2.68 → ultralytics-8.2.69}/LICENSE +0 -0
  15. {ultralytics-8.2.68 → ultralytics-8.2.69}/README.md +0 -0
  16. {ultralytics-8.2.68 → ultralytics-8.2.69}/pyproject.toml +0 -0
  17. {ultralytics-8.2.68 → ultralytics-8.2.69}/setup.cfg +0 -0
  18. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/__init__.py +0 -0
  19. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/conftest.py +0 -0
  20. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_cuda.py +0 -0
  21. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_engine.py +0 -0
  22. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_explorer.py +0 -0
  23. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_exports.py +0 -0
  24. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_integrations.py +0 -0
  25. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_python.py +0 -0
  26. {ultralytics-8.2.68 → ultralytics-8.2.69}/tests/test_solutions.py +0 -0
  27. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/assets/bus.jpg +0 -0
  28. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/assets/zidane.jpg +0 -0
  29. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/__init__.py +0 -0
  30. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  31. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  32. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  33. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  34. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  35. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  36. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  37. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  38. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  39. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  40. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  41. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  42. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  43. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco.yaml +0 -0
  44. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  45. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  46. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  47. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  48. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  49. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  50. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  51. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  52. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  53. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  54. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/signature.yaml +0 -0
  55. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  56. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/datasets/xView.yaml +0 -0
  57. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/default.yaml +0 -0
  58. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  59. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  60. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  61. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  62. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  63. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  64. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  65. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  66. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  67. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  68. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  69. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  70. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  71. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  72. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  73. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  74. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  75. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  76. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  77. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  78. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  79. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  80. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  81. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  82. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  83. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  84. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  85. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  86. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  87. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  88. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  89. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  90. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  91. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  92. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  93. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  94. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  95. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  96. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  97. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  98. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  99. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  100. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/__init__.py +0 -0
  101. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/annotator.py +0 -0
  102. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/base.py +0 -0
  103. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/build.py +0 -0
  104. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/converter.py +0 -0
  105. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/dataset.py +0 -0
  106. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/__init__.py +0 -0
  107. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/explorer.py +0 -0
  108. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/gui/__init__.py +0 -0
  109. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/gui/dash.py +0 -0
  110. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/explorer/utils.py +0 -0
  111. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/loaders.py +0 -0
  112. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/split_dota.py +0 -0
  113. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/data/utils.py +0 -0
  114. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/__init__.py +0 -0
  115. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/exporter.py +0 -0
  116. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/model.py +0 -0
  117. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/predictor.py +0 -0
  118. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/results.py +0 -0
  119. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/trainer.py +0 -0
  120. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/tuner.py +0 -0
  121. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/engine/validator.py +0 -0
  122. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/__init__.py +0 -0
  123. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/auth.py +0 -0
  124. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/session.py +0 -0
  125. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/hub/utils.py +0 -0
  126. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/__init__.py +0 -0
  127. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/utils.py +0 -0
  128. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/fastsam/val.py +0 -0
  129. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/__init__.py +0 -0
  130. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/model.py +0 -0
  131. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/predict.py +0 -0
  132. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/nas/val.py +0 -0
  133. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/__init__.py +0 -0
  134. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/model.py +0 -0
  135. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/predict.py +0 -0
  136. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/train.py +0 -0
  137. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/rtdetr/val.py +0 -0
  138. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/__init__.py +0 -0
  139. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/amg.py +0 -0
  140. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/build.py +0 -0
  141. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/model.py +0 -0
  142. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/__init__.py +0 -0
  143. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/decoders.py +0 -0
  144. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/encoders.py +0 -0
  145. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/sam.py +0 -0
  146. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  147. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/modules/transformer.py +0 -0
  148. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/sam/predict.py +0 -0
  149. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/utils/__init__.py +0 -0
  150. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/utils/loss.py +0 -0
  151. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/utils/ops.py +0 -0
  152. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/__init__.py +0 -0
  153. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/__init__.py +0 -0
  154. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/predict.py +0 -0
  155. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/train.py +0 -0
  156. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/val.py +0 -0
  157. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/__init__.py +0 -0
  158. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/predict.py +0 -0
  159. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/train.py +0 -0
  160. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/val.py +0 -0
  161. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/model.py +0 -0
  162. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/__init__.py +0 -0
  163. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/predict.py +0 -0
  164. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/train.py +0 -0
  165. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/val.py +0 -0
  166. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/__init__.py +0 -0
  167. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/predict.py +0 -0
  168. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/train.py +0 -0
  169. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/val.py +0 -0
  170. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/__init__.py +0 -0
  171. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/predict.py +0 -0
  172. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/train.py +0 -0
  173. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/val.py +0 -0
  174. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/world/__init__.py +0 -0
  175. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/world/train.py +0 -0
  176. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/models/yolo/world/train_world.py +0 -0
  177. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/__init__.py +0 -0
  178. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/autobackend.py +0 -0
  179. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/__init__.py +0 -0
  180. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/activation.py +0 -0
  181. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/block.py +0 -0
  182. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/conv.py +0 -0
  183. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/head.py +0 -0
  184. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/transformer.py +0 -0
  185. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/modules/utils.py +0 -0
  186. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/nn/tasks.py +0 -0
  187. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/__init__.py +0 -0
  188. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/ai_gym.py +0 -0
  189. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/analytics.py +0 -0
  190. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/distance_calculation.py +0 -0
  191. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/heatmap.py +0 -0
  192. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/object_counter.py +0 -0
  193. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/parking_management.py +0 -0
  194. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/queue_management.py +0 -0
  195. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/speed_estimation.py +0 -0
  196. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/solutions/streamlit_inference.py +0 -0
  197. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/__init__.py +0 -0
  198. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/basetrack.py +0 -0
  199. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/bot_sort.py +0 -0
  200. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/byte_tracker.py +0 -0
  201. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/track.py +0 -0
  202. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/__init__.py +0 -0
  203. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/gmc.py +0 -0
  204. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  205. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/trackers/utils/matching.py +0 -0
  206. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/__init__.py +0 -0
  207. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/autobatch.py +0 -0
  208. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/benchmarks.py +0 -0
  209. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/__init__.py +0 -0
  210. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/base.py +0 -0
  211. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/clearml.py +0 -0
  212. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/comet.py +0 -0
  213. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/dvc.py +0 -0
  214. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/hub.py +0 -0
  215. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/mlflow.py +0 -0
  216. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/neptune.py +0 -0
  217. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/raytune.py +0 -0
  218. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  219. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/callbacks/wb.py +0 -0
  220. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/checks.py +0 -0
  221. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/dist.py +0 -0
  222. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/downloads.py +0 -0
  223. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/errors.py +0 -0
  224. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/files.py +0 -0
  225. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/instance.py +0 -0
  226. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/loss.py +0 -0
  227. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/metrics.py +0 -0
  228. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/patches.py +0 -0
  229. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/plotting.py +0 -0
  230. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/tal.py +0 -0
  231. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/torch_utils.py +0 -0
  232. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/triton.py +0 -0
  233. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics/utils/tuner.py +0 -0
  234. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/dependency_links.txt +0 -0
  235. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/entry_points.txt +0 -0
  236. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/requires.txt +0 -0
  237. {ultralytics-8.2.68 → ultralytics-8.2.69}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.68
3
+ Version: 8.2.69
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -68,7 +68,6 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
68
68
  run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt")
69
69
 
70
70
  from ultralytics import FastSAM
71
- from ultralytics.models.fastsam import FastSAMPrompt
72
71
  from ultralytics.models.sam import Predictor
73
72
 
74
73
  # Create a FastSAM model
@@ -81,21 +80,10 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
81
80
  # Remove small regions
82
81
  new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
83
82
 
84
- # Everything prompt
85
- prompt_process = FastSAMPrompt(s, everything_results, device="cpu")
86
- ann = prompt_process.everything_prompt()
87
-
88
- # Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
89
- ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
90
-
91
- # Text prompt
92
- ann = prompt_process.text_prompt(text="a photo of a dog")
93
-
94
- # Point prompt
95
- # Points default [[0,0]] [[x1,y1],[x2,y2]]
96
- # Point_label default [0] [1,0] 0:background, 1:foreground
97
- ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
98
- prompt_process.plot(annotations=ann, output="./")
83
+ # Run inference with bboxes and points and texts prompt at the same time
84
+ results = sam_model(
85
+ source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog"
86
+ )
99
87
 
100
88
 
101
89
  def test_mobilesam():
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.68"
3
+ __version__ = "8.2.69"
4
4
 
5
5
  import os
6
6
 
@@ -2221,7 +2221,7 @@ class RandomLoadText:
2221
2221
  pos_labels = np.unique(cls).tolist()
2222
2222
 
2223
2223
  if len(pos_labels) > self.max_samples:
2224
- pos_labels = set(random.sample(pos_labels, k=self.max_samples))
2224
+ pos_labels = random.sample(pos_labels, k=self.max_samples)
2225
2225
 
2226
2226
  neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
2227
2227
  neg_labels = [i for i in range(num_classes) if i not in pos_labels]
@@ -136,14 +136,14 @@ class GCPRegions:
136
136
  sorted_results = sorted(results, key=lambda x: x[1])
137
137
 
138
138
  if verbose:
139
- print(f"{'Region':<20} {'Location':<35} {'Tier':<5} {'Latency (ms)'}")
139
+ print(f"{'Region':<25} {'Location':<35} {'Tier':<5} {'Latency (ms)'}")
140
140
  for region, mean, std, min_, max_ in sorted_results:
141
141
  tier, city, country = self.regions[region]
142
142
  location = f"{city}, {country}"
143
143
  if mean == float("inf"):
144
- print(f"{region:<20} {location:<35} {tier:<5} {'Timeout'}")
144
+ print(f"{region:<25} {location:<35} {tier:<5} {'Timeout'}")
145
145
  else:
146
- print(f"{region:<20} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
146
+ print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
147
147
  print(f"\nLowest latency region{'s' if top > 1 else ''}:")
148
148
  for region, mean, std, min_, max_ in sorted_results[:top]:
149
149
  tier, city, country = self.regions[region]
@@ -2,7 +2,6 @@
2
2
 
3
3
  from .model import FastSAM
4
4
  from .predict import FastSAMPredictor
5
- from .prompt import FastSAMPrompt
6
5
  from .val import FastSAMValidator
7
6
 
8
- __all__ = "FastSAMPredictor", "FastSAM", "FastSAMPrompt", "FastSAMValidator"
7
+ __all__ = "FastSAMPredictor", "FastSAM", "FastSAMValidator"
@@ -28,6 +28,24 @@ class FastSAM(Model):
28
28
  assert Path(model).suffix not in {".yaml", ".yml"}, "FastSAM models only support pre-trained models."
29
29
  super().__init__(model=model, task="segment")
30
30
 
31
+ def predict(self, source, stream=False, bboxes=None, points=None, labels=None, texts=None, **kwargs):
32
+ """
33
+ Performs segmentation prediction on the given image or video source.
34
+
35
+ Args:
36
+ source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
37
+ stream (bool, optional): If True, enables real-time streaming. Defaults to False.
38
+ bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
39
+ points (list, optional): List of points for prompted segmentation. Defaults to None.
40
+ labels (list, optional): List of labels for prompted segmentation. Defaults to None.
41
+ texts (list, optional): List of texts for prompted segmentation. Defaults to None.
42
+
43
+ Returns:
44
+ (list): The model predictions.
45
+ """
46
+ prompts = dict(bboxes=bboxes, points=points, labels=labels, texts=texts)
47
+ return super().predict(source, stream, prompts=prompts, **kwargs)
48
+
31
49
  @property
32
50
  def task_map(self):
33
51
  """Returns a dictionary mapping segment task to corresponding predictor and validator classes."""
@@ -0,0 +1,145 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ import torch
3
+ from PIL import Image
4
+
5
+ from ultralytics.models.yolo.segment import SegmentationPredictor
6
+ from ultralytics.utils import DEFAULT_CFG, checks
7
+ from ultralytics.utils.metrics import box_iou
8
+ from ultralytics.utils.ops import scale_masks
9
+
10
+ from .utils import adjust_bboxes_to_image_border
11
+
12
+
13
+ class FastSAMPredictor(SegmentationPredictor):
14
+ """
15
+ FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
16
+ YOLO framework.
17
+
18
+ This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
19
+ adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
20
+ class segmentation.
21
+ """
22
+
23
+ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
24
+ super().__init__(cfg, overrides, _callbacks)
25
+ self.prompts = {}
26
+
27
+ def postprocess(self, preds, img, orig_imgs):
28
+ """Applies box postprocess for FastSAM predictions."""
29
+ bboxes = self.prompts.pop("bboxes", None)
30
+ points = self.prompts.pop("points", None)
31
+ labels = self.prompts.pop("labels", None)
32
+ texts = self.prompts.pop("texts", None)
33
+ results = super().postprocess(preds, img, orig_imgs)
34
+ for result in results:
35
+ full_box = torch.tensor(
36
+ [0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
37
+ )
38
+ boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
39
+ idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
40
+ if idx.numel() != 0:
41
+ result.boxes.xyxy[idx] = full_box
42
+
43
+ return self.prompt(results, bboxes=bboxes, points=points, labels=labels, texts=texts)
44
+
45
+ def prompt(self, results, bboxes=None, points=None, labels=None, texts=None):
46
+ """
47
+ Internal function for image segmentation inference based on cues like bounding boxes, points, and masks.
48
+ Leverages SAM's specialized architecture for prompt-based, real-time segmentation.
49
+
50
+ Args:
51
+ results (Results | List[Results]): The original inference results from FastSAM models without any prompts.
52
+ bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
53
+ points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
54
+ labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
55
+ texts (str | List[str], optional): Textual prompts, a list contains string objects.
56
+
57
+ Returns:
58
+ (List[Results]): The output results determined by prompts.
59
+ """
60
+ if bboxes is None and points is None and texts is None:
61
+ return results
62
+ prompt_results = []
63
+ if not isinstance(results, list):
64
+ results = [results]
65
+ for result in results:
66
+ masks = result.masks.data
67
+ if masks.shape[1:] != result.orig_shape:
68
+ masks = scale_masks(masks[None], result.orig_shape)[0]
69
+ # bboxes prompt
70
+ idx = torch.zeros(len(result), dtype=torch.bool, device=self.device)
71
+ if bboxes is not None:
72
+ bboxes = torch.as_tensor(bboxes, dtype=torch.int32, device=self.device)
73
+ bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
74
+ bbox_areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
75
+ mask_areas = torch.stack([masks[:, b[1] : b[3], b[0] : b[2]].sum(dim=(1, 2)) for b in bboxes])
76
+ full_mask_areas = torch.sum(masks, dim=(1, 2))
77
+
78
+ union = bbox_areas[:, None] + full_mask_areas - mask_areas
79
+ idx[torch.argmax(mask_areas / union, dim=1)] = True
80
+ if points is not None:
81
+ points = torch.as_tensor(points, dtype=torch.int32, device=self.device)
82
+ points = points[None] if points.ndim == 1 else points
83
+ if labels is None:
84
+ labels = torch.ones(points.shape[0])
85
+ labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
86
+ assert len(labels) == len(
87
+ points
88
+ ), f"Excepted `labels` got same size as `point`, but got {len(labels)} and {len(points)}"
89
+ point_idx = (
90
+ torch.ones(len(result), dtype=torch.bool, device=self.device)
91
+ if labels.sum() == 0 # all negative points
92
+ else torch.zeros(len(result), dtype=torch.bool, device=self.device)
93
+ )
94
+ for p, l in zip(points, labels):
95
+ point_idx[torch.nonzero(masks[:, p[1], p[0]], as_tuple=True)[0]] = True if l else False
96
+ idx |= point_idx
97
+ if texts is not None:
98
+ if isinstance(texts, str):
99
+ texts = [texts]
100
+ crop_ims, filter_idx = [], []
101
+ for i, b in enumerate(result.boxes.xyxy.tolist()):
102
+ x1, y1, x2, y2 = [int(x) for x in b]
103
+ if masks[i].sum() <= 100:
104
+ filter_idx.append(i)
105
+ continue
106
+ crop_ims.append(Image.fromarray(result.orig_img[y1:y2, x1:x2, ::-1]))
107
+ similarity = self._clip_inference(crop_ims, texts)
108
+ text_idx = torch.argmax(similarity, dim=-1) # (M, )
109
+ if len(filter_idx):
110
+ text_idx += (torch.tensor(filter_idx, device=self.device)[None] <= int(text_idx)).sum(0)
111
+ idx[text_idx] = True
112
+
113
+ prompt_results.append(result[idx])
114
+
115
+ return prompt_results
116
+
117
+ def _clip_inference(self, images, texts):
118
+ """
119
+ CLIP Inference process.
120
+
121
+ Args:
122
+ images (List[PIL.Image]): A list of source images and each of them should be PIL.Image type with RGB channel order.
123
+ texts (List[str]): A list of prompt texts and each of them should be string object.
124
+
125
+ Returns:
126
+ (torch.Tensor): The similarity between given images and texts.
127
+ """
128
+ try:
129
+ import clip
130
+ except ImportError:
131
+ checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
132
+ import clip
133
+ if (not hasattr(self, "clip_model")) or (not hasattr(self, "clip_preprocess")):
134
+ self.clip_model, self.clip_preprocess = clip.load("ViT-B/32", device=self.device)
135
+ images = torch.stack([self.clip_preprocess(image).to(self.device) for image in images])
136
+ tokenized_text = clip.tokenize(texts).to(self.device)
137
+ image_features = self.clip_model.encode_image(images)
138
+ text_features = self.clip_model.encode_text(tokenized_text)
139
+ image_features /= image_features.norm(dim=-1, keepdim=True) # (N, 512)
140
+ text_features /= text_features.norm(dim=-1, keepdim=True) # (M, 512)
141
+ return (image_features * text_features[:, None]).sum(-1) # (M, N)
142
+
143
+ def set_prompts(self, prompts):
144
+ """Set prompts in advance."""
145
+ self.prompts = prompts
@@ -363,7 +363,7 @@ def scale_image(masks, im0_shape, ratio_pad=None):
363
363
  ratio_pad (tuple): the ratio of the padding to the original image.
364
364
 
365
365
  Returns:
366
- masks (torch.Tensor): The masks that are being returned.
366
+ masks (np.ndarray): The masks that are being returned with shape [h, w, num].
367
367
  """
368
368
  # Rescale coordinates (xyxy) from im1_shape to im0_shape
369
369
  im1_shape = masks.shape
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.68
3
+ Version: 8.2.69
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -131,7 +131,6 @@ ultralytics/models/__init__.py
131
131
  ultralytics/models/fastsam/__init__.py
132
132
  ultralytics/models/fastsam/model.py
133
133
  ultralytics/models/fastsam/predict.py
134
- ultralytics/models/fastsam/prompt.py
135
134
  ultralytics/models/fastsam/utils.py
136
135
  ultralytics/models/fastsam/val.py
137
136
  ultralytics/models/nas/__init__.py
@@ -1,31 +0,0 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- import torch
3
-
4
- from ultralytics.models.yolo.segment import SegmentationPredictor
5
- from ultralytics.utils.metrics import box_iou
6
-
7
- from .utils import adjust_bboxes_to_image_border
8
-
9
-
10
- class FastSAMPredictor(SegmentationPredictor):
11
- """
12
- FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
13
- YOLO framework.
14
-
15
- This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
16
- adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
17
- class segmentation.
18
- """
19
-
20
- def postprocess(self, preds, img, orig_imgs):
21
- """Applies box postprocess for FastSAM predictions."""
22
- results = super().postprocess(preds, img, orig_imgs)
23
- for result in results:
24
- full_box = torch.tensor(
25
- [0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
26
- )
27
- boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
28
- idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
29
- if idx.numel() != 0:
30
- result.boxes.xyxy[idx] = full_box
31
- return results