ultralytics 8.2.67__tar.gz → 8.2.69__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (237) hide show
  1. {ultralytics-8.2.67/ultralytics.egg-info → ultralytics-8.2.69}/PKG-INFO +1 -1
  2. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_cli.py +4 -16
  3. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/__init__.py +1 -1
  4. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/augment.py +1 -1
  5. ultralytics-8.2.69/ultralytics/hub/google/__init__.py +159 -0
  6. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/fastsam/__init__.py +1 -2
  7. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/fastsam/model.py +18 -0
  8. ultralytics-8.2.69/ultralytics/models/fastsam/predict.py +145 -0
  9. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/ops.py +1 -1
  10. {ultralytics-8.2.67 → ultralytics-8.2.69/ultralytics.egg-info}/PKG-INFO +1 -1
  11. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics.egg-info/SOURCES.txt +1 -1
  12. ultralytics-8.2.67/ultralytics/models/fastsam/predict.py +0 -31
  13. ultralytics-8.2.67/ultralytics/models/fastsam/prompt.py +0 -352
  14. {ultralytics-8.2.67 → ultralytics-8.2.69}/LICENSE +0 -0
  15. {ultralytics-8.2.67 → ultralytics-8.2.69}/README.md +0 -0
  16. {ultralytics-8.2.67 → ultralytics-8.2.69}/pyproject.toml +0 -0
  17. {ultralytics-8.2.67 → ultralytics-8.2.69}/setup.cfg +0 -0
  18. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/__init__.py +0 -0
  19. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/conftest.py +0 -0
  20. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_cuda.py +0 -0
  21. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_engine.py +0 -0
  22. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_explorer.py +0 -0
  23. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_exports.py +0 -0
  24. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_integrations.py +0 -0
  25. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_python.py +0 -0
  26. {ultralytics-8.2.67 → ultralytics-8.2.69}/tests/test_solutions.py +0 -0
  27. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/assets/bus.jpg +0 -0
  28. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/assets/zidane.jpg +0 -0
  29. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/__init__.py +0 -0
  30. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  31. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  32. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  33. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  34. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  35. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  36. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  37. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  38. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  39. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  40. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  41. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  42. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  43. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco.yaml +0 -0
  44. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  45. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  46. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  47. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  48. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  49. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  50. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  51. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  52. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  53. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  54. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/signature.yaml +0 -0
  55. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  56. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/datasets/xView.yaml +0 -0
  57. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/default.yaml +0 -0
  58. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  59. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  60. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  61. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  62. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  63. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  64. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  65. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  66. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  67. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  68. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  69. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  70. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  71. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  72. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  73. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  74. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  75. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  76. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  77. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  78. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  79. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  80. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  81. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  82. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  83. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  84. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  85. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  86. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  87. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  88. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  89. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  90. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  91. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  92. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  93. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  94. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  95. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  96. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  97. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  98. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  99. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  100. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/__init__.py +0 -0
  101. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/annotator.py +0 -0
  102. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/base.py +0 -0
  103. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/build.py +0 -0
  104. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/converter.py +0 -0
  105. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/dataset.py +0 -0
  106. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/explorer/__init__.py +0 -0
  107. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/explorer/explorer.py +0 -0
  108. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/explorer/gui/__init__.py +0 -0
  109. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/explorer/gui/dash.py +0 -0
  110. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/explorer/utils.py +0 -0
  111. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/loaders.py +0 -0
  112. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/split_dota.py +0 -0
  113. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/data/utils.py +0 -0
  114. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/__init__.py +0 -0
  115. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/exporter.py +0 -0
  116. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/model.py +0 -0
  117. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/predictor.py +0 -0
  118. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/results.py +0 -0
  119. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/trainer.py +0 -0
  120. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/tuner.py +0 -0
  121. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/engine/validator.py +0 -0
  122. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/hub/__init__.py +0 -0
  123. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/hub/auth.py +0 -0
  124. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/hub/session.py +0 -0
  125. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/hub/utils.py +0 -0
  126. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/__init__.py +0 -0
  127. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/fastsam/utils.py +0 -0
  128. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/fastsam/val.py +0 -0
  129. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/nas/__init__.py +0 -0
  130. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/nas/model.py +0 -0
  131. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/nas/predict.py +0 -0
  132. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/nas/val.py +0 -0
  133. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/rtdetr/__init__.py +0 -0
  134. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/rtdetr/model.py +0 -0
  135. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/rtdetr/predict.py +0 -0
  136. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/rtdetr/train.py +0 -0
  137. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/rtdetr/val.py +0 -0
  138. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/__init__.py +0 -0
  139. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/amg.py +0 -0
  140. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/build.py +0 -0
  141. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/model.py +0 -0
  142. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/modules/__init__.py +0 -0
  143. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/modules/decoders.py +0 -0
  144. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/modules/encoders.py +0 -0
  145. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/modules/sam.py +0 -0
  146. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  147. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/modules/transformer.py +0 -0
  148. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/sam/predict.py +0 -0
  149. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/utils/__init__.py +0 -0
  150. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/utils/loss.py +0 -0
  151. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/utils/ops.py +0 -0
  152. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/__init__.py +0 -0
  153. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/__init__.py +0 -0
  154. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/predict.py +0 -0
  155. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/train.py +0 -0
  156. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/classify/val.py +0 -0
  157. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/__init__.py +0 -0
  158. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/predict.py +0 -0
  159. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/train.py +0 -0
  160. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/detect/val.py +0 -0
  161. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/model.py +0 -0
  162. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/__init__.py +0 -0
  163. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/predict.py +0 -0
  164. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/train.py +0 -0
  165. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/obb/val.py +0 -0
  166. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/__init__.py +0 -0
  167. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/predict.py +0 -0
  168. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/train.py +0 -0
  169. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/pose/val.py +0 -0
  170. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/__init__.py +0 -0
  171. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/predict.py +0 -0
  172. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/train.py +0 -0
  173. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/segment/val.py +0 -0
  174. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/world/__init__.py +0 -0
  175. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/world/train.py +0 -0
  176. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/models/yolo/world/train_world.py +0 -0
  177. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/__init__.py +0 -0
  178. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/autobackend.py +0 -0
  179. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/modules/__init__.py +0 -0
  180. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/modules/activation.py +0 -0
  181. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/modules/block.py +0 -0
  182. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/modules/conv.py +0 -0
  183. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/modules/head.py +0 -0
  184. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/modules/transformer.py +0 -0
  185. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/modules/utils.py +0 -0
  186. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/nn/tasks.py +0 -0
  187. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/__init__.py +0 -0
  188. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/ai_gym.py +0 -0
  189. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/analytics.py +0 -0
  190. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/distance_calculation.py +0 -0
  191. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/heatmap.py +0 -0
  192. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/object_counter.py +0 -0
  193. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/parking_management.py +0 -0
  194. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/queue_management.py +0 -0
  195. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/speed_estimation.py +0 -0
  196. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/solutions/streamlit_inference.py +0 -0
  197. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/__init__.py +0 -0
  198. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/basetrack.py +0 -0
  199. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/bot_sort.py +0 -0
  200. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/byte_tracker.py +0 -0
  201. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/track.py +0 -0
  202. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/utils/__init__.py +0 -0
  203. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/utils/gmc.py +0 -0
  204. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  205. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/trackers/utils/matching.py +0 -0
  206. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/__init__.py +0 -0
  207. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/autobatch.py +0 -0
  208. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/benchmarks.py +0 -0
  209. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/__init__.py +0 -0
  210. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/base.py +0 -0
  211. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/clearml.py +0 -0
  212. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/comet.py +0 -0
  213. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/dvc.py +0 -0
  214. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/hub.py +0 -0
  215. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/mlflow.py +0 -0
  216. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/neptune.py +0 -0
  217. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/raytune.py +0 -0
  218. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  219. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/callbacks/wb.py +0 -0
  220. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/checks.py +0 -0
  221. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/dist.py +0 -0
  222. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/downloads.py +0 -0
  223. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/errors.py +0 -0
  224. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/files.py +0 -0
  225. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/instance.py +0 -0
  226. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/loss.py +0 -0
  227. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/metrics.py +0 -0
  228. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/patches.py +0 -0
  229. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/plotting.py +0 -0
  230. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/tal.py +0 -0
  231. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/torch_utils.py +0 -0
  232. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/triton.py +0 -0
  233. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics/utils/tuner.py +0 -0
  234. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics.egg-info/dependency_links.txt +0 -0
  235. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics.egg-info/entry_points.txt +0 -0
  236. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics.egg-info/requires.txt +0 -0
  237. {ultralytics-8.2.67 → ultralytics-8.2.69}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.67
3
+ Version: 8.2.69
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -68,7 +68,6 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
68
68
  run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt")
69
69
 
70
70
  from ultralytics import FastSAM
71
- from ultralytics.models.fastsam import FastSAMPrompt
72
71
  from ultralytics.models.sam import Predictor
73
72
 
74
73
  # Create a FastSAM model
@@ -81,21 +80,10 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
81
80
  # Remove small regions
82
81
  new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
83
82
 
84
- # Everything prompt
85
- prompt_process = FastSAMPrompt(s, everything_results, device="cpu")
86
- ann = prompt_process.everything_prompt()
87
-
88
- # Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
89
- ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
90
-
91
- # Text prompt
92
- ann = prompt_process.text_prompt(text="a photo of a dog")
93
-
94
- # Point prompt
95
- # Points default [[0,0]] [[x1,y1],[x2,y2]]
96
- # Point_label default [0] [1,0] 0:background, 1:foreground
97
- ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
98
- prompt_process.plot(annotations=ann, output="./")
83
+ # Run inference with bboxes and points and texts prompt at the same time
84
+ results = sam_model(
85
+ source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog"
86
+ )
99
87
 
100
88
 
101
89
  def test_mobilesam():
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.67"
3
+ __version__ = "8.2.69"
4
4
 
5
5
  import os
6
6
 
@@ -2221,7 +2221,7 @@ class RandomLoadText:
2221
2221
  pos_labels = np.unique(cls).tolist()
2222
2222
 
2223
2223
  if len(pos_labels) > self.max_samples:
2224
- pos_labels = set(random.sample(pos_labels, k=self.max_samples))
2224
+ pos_labels = random.sample(pos_labels, k=self.max_samples)
2225
2225
 
2226
2226
  neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
2227
2227
  neg_labels = [i for i in range(num_classes) if i not in pos_labels]
@@ -0,0 +1,159 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ import concurrent.futures
4
+ import statistics
5
+ import time
6
+ from typing import List, Optional, Tuple
7
+
8
+ import requests
9
+
10
+
11
+ class GCPRegions:
12
+ """
13
+ A class for managing and analyzing Google Cloud Platform (GCP) regions.
14
+
15
+ This class provides functionality to initialize, categorize, and analyze GCP regions based on their
16
+ geographical location, tier classification, and network latency.
17
+
18
+ Attributes:
19
+ regions (Dict[str, Tuple[int, str, str]]): A dictionary of GCP regions with their tier, city, and country.
20
+
21
+ Methods:
22
+ tier1: Returns a list of tier 1 GCP regions.
23
+ tier2: Returns a list of tier 2 GCP regions.
24
+ lowest_latency: Determines the GCP region(s) with the lowest network latency.
25
+
26
+ Examples:
27
+ >>> from ultralytics.hub.google import GCPRegions
28
+ >>> regions = GCPRegions()
29
+ >>> lowest_latency_region = regions.lowest_latency(verbose=True, attempts=3)
30
+ >>> print(f"Lowest latency region: {lowest_latency_region[0][0]}")
31
+ """
32
+
33
+ def __init__(self):
34
+ """Initializes the GCPRegions class with predefined Google Cloud Platform regions and their details."""
35
+ self.regions = {
36
+ "asia-east1": (1, "Taiwan", "China"),
37
+ "asia-east2": (2, "Hong Kong", "China"),
38
+ "asia-northeast1": (1, "Tokyo", "Japan"),
39
+ "asia-northeast2": (1, "Osaka", "Japan"),
40
+ "asia-northeast3": (2, "Seoul", "South Korea"),
41
+ "asia-south1": (2, "Mumbai", "India"),
42
+ "asia-south2": (2, "Delhi", "India"),
43
+ "asia-southeast1": (2, "Jurong West", "Singapore"),
44
+ "asia-southeast2": (2, "Jakarta", "Indonesia"),
45
+ "australia-southeast1": (2, "Sydney", "Australia"),
46
+ "australia-southeast2": (2, "Melbourne", "Australia"),
47
+ "europe-central2": (2, "Warsaw", "Poland"),
48
+ "europe-north1": (1, "Hamina", "Finland"),
49
+ "europe-southwest1": (1, "Madrid", "Spain"),
50
+ "europe-west1": (1, "St. Ghislain", "Belgium"),
51
+ "europe-west10": (2, "Berlin", "Germany"),
52
+ "europe-west12": (2, "Turin", "Italy"),
53
+ "europe-west2": (2, "London", "United Kingdom"),
54
+ "europe-west3": (2, "Frankfurt", "Germany"),
55
+ "europe-west4": (1, "Eemshaven", "Netherlands"),
56
+ "europe-west6": (2, "Zurich", "Switzerland"),
57
+ "europe-west8": (1, "Milan", "Italy"),
58
+ "europe-west9": (1, "Paris", "France"),
59
+ "me-central1": (2, "Doha", "Qatar"),
60
+ "me-west1": (1, "Tel Aviv", "Israel"),
61
+ "northamerica-northeast1": (2, "Montreal", "Canada"),
62
+ "northamerica-northeast2": (2, "Toronto", "Canada"),
63
+ "southamerica-east1": (2, "São Paulo", "Brazil"),
64
+ "southamerica-west1": (2, "Santiago", "Chile"),
65
+ "us-central1": (1, "Iowa", "United States"),
66
+ "us-east1": (1, "South Carolina", "United States"),
67
+ "us-east4": (1, "Northern Virginia", "United States"),
68
+ "us-east5": (1, "Columbus", "United States"),
69
+ "us-south1": (1, "Dallas", "United States"),
70
+ "us-west1": (1, "Oregon", "United States"),
71
+ "us-west2": (2, "Los Angeles", "United States"),
72
+ "us-west3": (2, "Salt Lake City", "United States"),
73
+ "us-west4": (2, "Las Vegas", "United States"),
74
+ }
75
+
76
+ def tier1(self) -> List[str]:
77
+ """Returns a list of GCP regions classified as tier 1 based on predefined criteria."""
78
+ return [region for region, info in self.regions.items() if info[0] == 1]
79
+
80
+ def tier2(self) -> List[str]:
81
+ """Returns a list of GCP regions classified as tier 2 based on predefined criteria."""
82
+ return [region for region, info in self.regions.items() if info[0] == 2]
83
+
84
+ @staticmethod
85
+ def _ping_region(region: str, attempts: int = 1) -> Tuple[str, float, float, float, float]:
86
+ """Pings a specified GCP region and returns latency statistics: mean, min, max, and standard deviation."""
87
+ url = f"https://{region}-docker.pkg.dev"
88
+ latencies = []
89
+ for _ in range(attempts):
90
+ try:
91
+ start_time = time.time()
92
+ _ = requests.head(url, timeout=5)
93
+ latency = (time.time() - start_time) * 1000 # convert latency to milliseconds
94
+ if latency != float("inf"):
95
+ latencies.append(latency)
96
+ except requests.RequestException:
97
+ pass
98
+ if not latencies:
99
+ return region, float("inf"), float("inf"), float("inf"), float("inf")
100
+
101
+ std_dev = statistics.stdev(latencies) if len(latencies) > 1 else 0
102
+ return region, statistics.mean(latencies), std_dev, min(latencies), max(latencies)
103
+
104
+ def lowest_latency(
105
+ self,
106
+ top: int = 1,
107
+ verbose: bool = False,
108
+ tier: Optional[int] = None,
109
+ attempts: int = 1,
110
+ ) -> List[Tuple[str, float, float, float, float]]:
111
+ """
112
+ Determines the GCP regions with the lowest latency based on ping tests.
113
+
114
+ Args:
115
+ top (int): Number of top regions to return.
116
+ verbose (bool): If True, prints detailed latency information for all tested regions.
117
+ tier (int | None): Filter regions by tier (1 or 2). If None, all regions are tested.
118
+ attempts (int): Number of ping attempts per region.
119
+
120
+ Returns:
121
+ (List[Tuple[str, float, float, float, float]]): List of tuples containing region information and
122
+ latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency).
123
+
124
+ Examples:
125
+ >>> regions = GCPRegions()
126
+ >>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2)
127
+ >>> print(results[0][0]) # Print the name of the lowest latency region
128
+ """
129
+ if verbose:
130
+ print(f"Testing GCP regions for latency (with {attempts} {'retry' if attempts == 1 else 'attempts'})...")
131
+
132
+ regions_to_test = [k for k, v in self.regions.items() if v[0] == tier] if tier else list(self.regions.keys())
133
+ with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
134
+ results = list(executor.map(lambda r: self._ping_region(r, attempts), regions_to_test))
135
+
136
+ sorted_results = sorted(results, key=lambda x: x[1])
137
+
138
+ if verbose:
139
+ print(f"{'Region':<25} {'Location':<35} {'Tier':<5} {'Latency (ms)'}")
140
+ for region, mean, std, min_, max_ in sorted_results:
141
+ tier, city, country = self.regions[region]
142
+ location = f"{city}, {country}"
143
+ if mean == float("inf"):
144
+ print(f"{region:<25} {location:<35} {tier:<5} {'Timeout'}")
145
+ else:
146
+ print(f"{region:<25} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
147
+ print(f"\nLowest latency region{'s' if top > 1 else ''}:")
148
+ for region, mean, std, min_, max_ in sorted_results[:top]:
149
+ tier, city, country = self.regions[region]
150
+ location = f"{city}, {country}"
151
+ print(f"{region} ({location}, {mean:.0f} ± {std:.0f} ms ({min_:.0f} - {max_:.0f}))")
152
+
153
+ return sorted_results[:top]
154
+
155
+
156
+ # Usage example
157
+ if __name__ == "__main__":
158
+ regions = GCPRegions()
159
+ top_3_latency_tier1 = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=3)
@@ -2,7 +2,6 @@
2
2
 
3
3
  from .model import FastSAM
4
4
  from .predict import FastSAMPredictor
5
- from .prompt import FastSAMPrompt
6
5
  from .val import FastSAMValidator
7
6
 
8
- __all__ = "FastSAMPredictor", "FastSAM", "FastSAMPrompt", "FastSAMValidator"
7
+ __all__ = "FastSAMPredictor", "FastSAM", "FastSAMValidator"
@@ -28,6 +28,24 @@ class FastSAM(Model):
28
28
  assert Path(model).suffix not in {".yaml", ".yml"}, "FastSAM models only support pre-trained models."
29
29
  super().__init__(model=model, task="segment")
30
30
 
31
+ def predict(self, source, stream=False, bboxes=None, points=None, labels=None, texts=None, **kwargs):
32
+ """
33
+ Performs segmentation prediction on the given image or video source.
34
+
35
+ Args:
36
+ source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
37
+ stream (bool, optional): If True, enables real-time streaming. Defaults to False.
38
+ bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
39
+ points (list, optional): List of points for prompted segmentation. Defaults to None.
40
+ labels (list, optional): List of labels for prompted segmentation. Defaults to None.
41
+ texts (list, optional): List of texts for prompted segmentation. Defaults to None.
42
+
43
+ Returns:
44
+ (list): The model predictions.
45
+ """
46
+ prompts = dict(bboxes=bboxes, points=points, labels=labels, texts=texts)
47
+ return super().predict(source, stream, prompts=prompts, **kwargs)
48
+
31
49
  @property
32
50
  def task_map(self):
33
51
  """Returns a dictionary mapping segment task to corresponding predictor and validator classes."""
@@ -0,0 +1,145 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ import torch
3
+ from PIL import Image
4
+
5
+ from ultralytics.models.yolo.segment import SegmentationPredictor
6
+ from ultralytics.utils import DEFAULT_CFG, checks
7
+ from ultralytics.utils.metrics import box_iou
8
+ from ultralytics.utils.ops import scale_masks
9
+
10
+ from .utils import adjust_bboxes_to_image_border
11
+
12
+
13
+ class FastSAMPredictor(SegmentationPredictor):
14
+ """
15
+ FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
16
+ YOLO framework.
17
+
18
+ This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
19
+ adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
20
+ class segmentation.
21
+ """
22
+
23
+ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
24
+ super().__init__(cfg, overrides, _callbacks)
25
+ self.prompts = {}
26
+
27
+ def postprocess(self, preds, img, orig_imgs):
28
+ """Applies box postprocess for FastSAM predictions."""
29
+ bboxes = self.prompts.pop("bboxes", None)
30
+ points = self.prompts.pop("points", None)
31
+ labels = self.prompts.pop("labels", None)
32
+ texts = self.prompts.pop("texts", None)
33
+ results = super().postprocess(preds, img, orig_imgs)
34
+ for result in results:
35
+ full_box = torch.tensor(
36
+ [0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
37
+ )
38
+ boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
39
+ idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
40
+ if idx.numel() != 0:
41
+ result.boxes.xyxy[idx] = full_box
42
+
43
+ return self.prompt(results, bboxes=bboxes, points=points, labels=labels, texts=texts)
44
+
45
+ def prompt(self, results, bboxes=None, points=None, labels=None, texts=None):
46
+ """
47
+ Internal function for image segmentation inference based on cues like bounding boxes, points, and masks.
48
+ Leverages SAM's specialized architecture for prompt-based, real-time segmentation.
49
+
50
+ Args:
51
+ results (Results | List[Results]): The original inference results from FastSAM models without any prompts.
52
+ bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
53
+ points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
54
+ labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
55
+ texts (str | List[str], optional): Textual prompts, a list contains string objects.
56
+
57
+ Returns:
58
+ (List[Results]): The output results determined by prompts.
59
+ """
60
+ if bboxes is None and points is None and texts is None:
61
+ return results
62
+ prompt_results = []
63
+ if not isinstance(results, list):
64
+ results = [results]
65
+ for result in results:
66
+ masks = result.masks.data
67
+ if masks.shape[1:] != result.orig_shape:
68
+ masks = scale_masks(masks[None], result.orig_shape)[0]
69
+ # bboxes prompt
70
+ idx = torch.zeros(len(result), dtype=torch.bool, device=self.device)
71
+ if bboxes is not None:
72
+ bboxes = torch.as_tensor(bboxes, dtype=torch.int32, device=self.device)
73
+ bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
74
+ bbox_areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
75
+ mask_areas = torch.stack([masks[:, b[1] : b[3], b[0] : b[2]].sum(dim=(1, 2)) for b in bboxes])
76
+ full_mask_areas = torch.sum(masks, dim=(1, 2))
77
+
78
+ union = bbox_areas[:, None] + full_mask_areas - mask_areas
79
+ idx[torch.argmax(mask_areas / union, dim=1)] = True
80
+ if points is not None:
81
+ points = torch.as_tensor(points, dtype=torch.int32, device=self.device)
82
+ points = points[None] if points.ndim == 1 else points
83
+ if labels is None:
84
+ labels = torch.ones(points.shape[0])
85
+ labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
86
+ assert len(labels) == len(
87
+ points
88
+ ), f"Excepted `labels` got same size as `point`, but got {len(labels)} and {len(points)}"
89
+ point_idx = (
90
+ torch.ones(len(result), dtype=torch.bool, device=self.device)
91
+ if labels.sum() == 0 # all negative points
92
+ else torch.zeros(len(result), dtype=torch.bool, device=self.device)
93
+ )
94
+ for p, l in zip(points, labels):
95
+ point_idx[torch.nonzero(masks[:, p[1], p[0]], as_tuple=True)[0]] = True if l else False
96
+ idx |= point_idx
97
+ if texts is not None:
98
+ if isinstance(texts, str):
99
+ texts = [texts]
100
+ crop_ims, filter_idx = [], []
101
+ for i, b in enumerate(result.boxes.xyxy.tolist()):
102
+ x1, y1, x2, y2 = [int(x) for x in b]
103
+ if masks[i].sum() <= 100:
104
+ filter_idx.append(i)
105
+ continue
106
+ crop_ims.append(Image.fromarray(result.orig_img[y1:y2, x1:x2, ::-1]))
107
+ similarity = self._clip_inference(crop_ims, texts)
108
+ text_idx = torch.argmax(similarity, dim=-1) # (M, )
109
+ if len(filter_idx):
110
+ text_idx += (torch.tensor(filter_idx, device=self.device)[None] <= int(text_idx)).sum(0)
111
+ idx[text_idx] = True
112
+
113
+ prompt_results.append(result[idx])
114
+
115
+ return prompt_results
116
+
117
+ def _clip_inference(self, images, texts):
118
+ """
119
+ CLIP Inference process.
120
+
121
+ Args:
122
+ images (List[PIL.Image]): A list of source images and each of them should be PIL.Image type with RGB channel order.
123
+ texts (List[str]): A list of prompt texts and each of them should be string object.
124
+
125
+ Returns:
126
+ (torch.Tensor): The similarity between given images and texts.
127
+ """
128
+ try:
129
+ import clip
130
+ except ImportError:
131
+ checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
132
+ import clip
133
+ if (not hasattr(self, "clip_model")) or (not hasattr(self, "clip_preprocess")):
134
+ self.clip_model, self.clip_preprocess = clip.load("ViT-B/32", device=self.device)
135
+ images = torch.stack([self.clip_preprocess(image).to(self.device) for image in images])
136
+ tokenized_text = clip.tokenize(texts).to(self.device)
137
+ image_features = self.clip_model.encode_image(images)
138
+ text_features = self.clip_model.encode_text(tokenized_text)
139
+ image_features /= image_features.norm(dim=-1, keepdim=True) # (N, 512)
140
+ text_features /= text_features.norm(dim=-1, keepdim=True) # (M, 512)
141
+ return (image_features * text_features[:, None]).sum(-1) # (M, N)
142
+
143
+ def set_prompts(self, prompts):
144
+ """Set prompts in advance."""
145
+ self.prompts = prompts
@@ -363,7 +363,7 @@ def scale_image(masks, im0_shape, ratio_pad=None):
363
363
  ratio_pad (tuple): the ratio of the padding to the original image.
364
364
 
365
365
  Returns:
366
- masks (torch.Tensor): The masks that are being returned.
366
+ masks (np.ndarray): The masks that are being returned with shape [h, w, num].
367
367
  """
368
368
  # Rescale coordinates (xyxy) from im1_shape to im0_shape
369
369
  im1_shape = masks.shape
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.67
3
+ Version: 8.2.69
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -126,11 +126,11 @@ ultralytics/hub/__init__.py
126
126
  ultralytics/hub/auth.py
127
127
  ultralytics/hub/session.py
128
128
  ultralytics/hub/utils.py
129
+ ultralytics/hub/google/__init__.py
129
130
  ultralytics/models/__init__.py
130
131
  ultralytics/models/fastsam/__init__.py
131
132
  ultralytics/models/fastsam/model.py
132
133
  ultralytics/models/fastsam/predict.py
133
- ultralytics/models/fastsam/prompt.py
134
134
  ultralytics/models/fastsam/utils.py
135
135
  ultralytics/models/fastsam/val.py
136
136
  ultralytics/models/nas/__init__.py
@@ -1,31 +0,0 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- import torch
3
-
4
- from ultralytics.models.yolo.segment import SegmentationPredictor
5
- from ultralytics.utils.metrics import box_iou
6
-
7
- from .utils import adjust_bboxes_to_image_border
8
-
9
-
10
- class FastSAMPredictor(SegmentationPredictor):
11
- """
12
- FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
13
- YOLO framework.
14
-
15
- This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
16
- adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
17
- class segmentation.
18
- """
19
-
20
- def postprocess(self, preds, img, orig_imgs):
21
- """Applies box postprocess for FastSAM predictions."""
22
- results = super().postprocess(preds, img, orig_imgs)
23
- for result in results:
24
- full_box = torch.tensor(
25
- [0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
26
- )
27
- boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
28
- idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
29
- if idx.numel() != 0:
30
- result.boxes.xyxy[idx] = full_box
31
- return results