ultralytics 8.2.36__tar.gz → 8.2.38__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- {ultralytics-8.2.36 → ultralytics-8.2.38}/PKG-INFO +9 -9
- {ultralytics-8.2.36 → ultralytics-8.2.38}/README.md +8 -8
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/test_python.py +9 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/__init__.py +1 -1
- ultralytics-8.2.38/ultralytics/cfg/models/v10/yolov10b.yaml +42 -0
- ultralytics-8.2.38/ultralytics/cfg/models/v10/yolov10l.yaml +42 -0
- ultralytics-8.2.38/ultralytics/cfg/models/v10/yolov10m.yaml +42 -0
- ultralytics-8.2.38/ultralytics/cfg/models/v10/yolov10n.yaml +42 -0
- ultralytics-8.2.38/ultralytics/cfg/models/v10/yolov10s.yaml +42 -0
- ultralytics-8.2.38/ultralytics/cfg/models/v10/yolov10x.yaml +42 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/loaders.py +1 -1
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/exporter.py +1 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/modules/__init__.py +13 -1
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/modules/block.py +256 -12
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/modules/head.py +114 -3
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/tasks.py +47 -16
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/benchmarks.py +5 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/downloads.py +1 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/loss.py +20 -2
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/metrics.py +2 -1
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/ops.py +3 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/plotting.py +110 -4
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics.egg-info/PKG-INFO +9 -9
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics.egg-info/SOURCES.txt +6 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/LICENSE +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/pyproject.toml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/setup.cfg +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/conftest.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/test_cli.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/test_cuda.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/test_engine.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/test_explorer.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/test_exports.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/tests/test_integrations.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/augment.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/base.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/build.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/converter.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/dataset.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/explorer/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/explorer/explorer.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/explorer/gui/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/explorer/gui/dash.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/explorer/utils.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/data/utils.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/model.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/results.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/trainer.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/tuner.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/engine/validator.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/hub/auth.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/hub/session.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/hub/utils.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/fastsam/prompt.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/nas/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/build.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/sam/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/detect/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/detect/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/model.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/obb/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/obb/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/pose/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/pose/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/segment/predict.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/segment/val.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/autobackend.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/parking_management.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/checks.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/files.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/patches.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/torch_utils.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.2.36 → ultralytics-8.2.38}/ultralytics.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.2.
|
|
3
|
+
Version: 8.2.38
|
|
4
4
|
Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -188,13 +188,13 @@ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more exa
|
|
|
188
188
|
|
|
189
189
|
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics?sub_confirmation=1) tutorial, making it easy to learn and implement advanced YOLOv8 features.
|
|
190
190
|
|
|
191
|
-
| Docs
|
|
192
|
-
|
|
|
193
|
-
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a>
|
|
194
|
-
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a>
|
|
195
|
-
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a>
|
|
196
|
-
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a>
|
|
197
|
-
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a>
|
|
191
|
+
| Docs | Notebook | YouTube |
|
|
192
|
+
| ---------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
193
|
+
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
194
|
+
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
195
|
+
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
196
|
+
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
197
|
+
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
198
198
|
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
199
199
|
|
|
200
200
|
## <div align="center">Models</div>
|
|
@@ -332,7 +332,7 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
332
332
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
|
|
333
333
|
</div>
|
|
334
334
|
|
|
335
|
-
| Roboflow |
|
|
335
|
+
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
|
336
336
|
| :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
|
337
337
|
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
|
338
338
|
|
|
@@ -104,13 +104,13 @@ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more exa
|
|
|
104
104
|
|
|
105
105
|
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics?sub_confirmation=1) tutorial, making it easy to learn and implement advanced YOLOv8 features.
|
|
106
106
|
|
|
107
|
-
| Docs
|
|
108
|
-
|
|
|
109
|
-
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a>
|
|
110
|
-
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a>
|
|
111
|
-
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a>
|
|
112
|
-
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a>
|
|
113
|
-
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a>
|
|
107
|
+
| Docs | Notebook | YouTube |
|
|
108
|
+
| ---------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
109
|
+
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
110
|
+
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
111
|
+
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
112
|
+
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
113
|
+
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
114
114
|
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
115
115
|
|
|
116
116
|
## <div align="center">Models</div>
|
|
@@ -248,7 +248,7 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
248
248
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
|
|
249
249
|
</div>
|
|
250
250
|
|
|
251
|
-
| Roboflow |
|
|
251
|
+
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
|
252
252
|
| :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
|
253
253
|
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
|
254
254
|
|
|
@@ -577,3 +577,12 @@ def test_yolo_world():
|
|
|
577
577
|
close_mosaic=1,
|
|
578
578
|
trainer=WorldTrainerFromScratch,
|
|
579
579
|
)
|
|
580
|
+
|
|
581
|
+
|
|
582
|
+
def test_yolov10():
|
|
583
|
+
"""A simple test for yolov10 for now."""
|
|
584
|
+
model = YOLO("yolov10n.yaml")
|
|
585
|
+
# train/val/predict
|
|
586
|
+
model.train(data="coco8.yaml", epochs=1, imgsz=32, close_mosaic=1, cache="disk")
|
|
587
|
+
model.val(data="coco8.yaml", imgsz=32)
|
|
588
|
+
model(SOURCE)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
|
3
|
+
|
|
4
|
+
# Parameters
|
|
5
|
+
nc: 80 # number of classes
|
|
6
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
7
|
+
# [depth, width, max_channels]
|
|
8
|
+
b: [0.67, 1.00, 512]
|
|
9
|
+
|
|
10
|
+
backbone:
|
|
11
|
+
# [from, repeats, module, args]
|
|
12
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
13
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
14
|
+
- [-1, 3, C2f, [128, True]]
|
|
15
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
16
|
+
- [-1, 6, C2f, [256, True]]
|
|
17
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
18
|
+
- [-1, 6, C2f, [512, True]]
|
|
19
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
20
|
+
- [-1, 3, C2fCIB, [1024, True]]
|
|
21
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
22
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
23
|
+
|
|
24
|
+
# YOLOv8.0n head
|
|
25
|
+
head:
|
|
26
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
27
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
28
|
+
- [-1, 3, C2fCIB, [512, True]] # 13
|
|
29
|
+
|
|
30
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
31
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
32
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
33
|
+
|
|
34
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
35
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
36
|
+
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
|
37
|
+
|
|
38
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
39
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
40
|
+
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
|
41
|
+
|
|
42
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
|
3
|
+
|
|
4
|
+
# Parameters
|
|
5
|
+
nc: 80 # number of classes
|
|
6
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
7
|
+
# [depth, width, max_channels]
|
|
8
|
+
l: [1.00, 1.00, 512]
|
|
9
|
+
|
|
10
|
+
backbone:
|
|
11
|
+
# [from, repeats, module, args]
|
|
12
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
13
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
14
|
+
- [-1, 3, C2f, [128, True]]
|
|
15
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
16
|
+
- [-1, 6, C2f, [256, True]]
|
|
17
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
18
|
+
- [-1, 6, C2f, [512, True]]
|
|
19
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
20
|
+
- [-1, 3, C2fCIB, [1024, True]]
|
|
21
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
22
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
23
|
+
|
|
24
|
+
# YOLOv8.0n head
|
|
25
|
+
head:
|
|
26
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
27
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
28
|
+
- [-1, 3, C2fCIB, [512, True]] # 13
|
|
29
|
+
|
|
30
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
31
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
32
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
33
|
+
|
|
34
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
35
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
36
|
+
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
|
37
|
+
|
|
38
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
39
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
40
|
+
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
|
41
|
+
|
|
42
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
|
3
|
+
|
|
4
|
+
# Parameters
|
|
5
|
+
nc: 80 # number of classes
|
|
6
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
7
|
+
# [depth, width, max_channels]
|
|
8
|
+
m: [0.67, 0.75, 768]
|
|
9
|
+
|
|
10
|
+
backbone:
|
|
11
|
+
# [from, repeats, module, args]
|
|
12
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
13
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
14
|
+
- [-1, 3, C2f, [128, True]]
|
|
15
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
16
|
+
- [-1, 6, C2f, [256, True]]
|
|
17
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
18
|
+
- [-1, 6, C2f, [512, True]]
|
|
19
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
20
|
+
- [-1, 3, C2fCIB, [1024, True]]
|
|
21
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
22
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
23
|
+
|
|
24
|
+
# YOLOv8.0n head
|
|
25
|
+
head:
|
|
26
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
27
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
28
|
+
- [-1, 3, C2f, [512]] # 13
|
|
29
|
+
|
|
30
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
31
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
32
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
33
|
+
|
|
34
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
35
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
36
|
+
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
|
37
|
+
|
|
38
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
39
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
40
|
+
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
|
41
|
+
|
|
42
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
|
3
|
+
|
|
4
|
+
# Parameters
|
|
5
|
+
nc: 80 # number of classes
|
|
6
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
7
|
+
# [depth, width, max_channels]
|
|
8
|
+
n: [0.33, 0.25, 1024]
|
|
9
|
+
|
|
10
|
+
backbone:
|
|
11
|
+
# [from, repeats, module, args]
|
|
12
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
13
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
14
|
+
- [-1, 3, C2f, [128, True]]
|
|
15
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
16
|
+
- [-1, 6, C2f, [256, True]]
|
|
17
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
18
|
+
- [-1, 6, C2f, [512, True]]
|
|
19
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
20
|
+
- [-1, 3, C2f, [1024, True]]
|
|
21
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
22
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
23
|
+
|
|
24
|
+
# YOLOv8.0n head
|
|
25
|
+
head:
|
|
26
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
27
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
28
|
+
- [-1, 3, C2f, [512]] # 13
|
|
29
|
+
|
|
30
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
31
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
32
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
33
|
+
|
|
34
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
35
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
36
|
+
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
|
|
37
|
+
|
|
38
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
39
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
40
|
+
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
|
|
41
|
+
|
|
42
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
|
3
|
+
|
|
4
|
+
# Parameters
|
|
5
|
+
nc: 80 # number of classes
|
|
6
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
7
|
+
# [depth, width, max_channels]
|
|
8
|
+
s: [0.33, 0.50, 1024]
|
|
9
|
+
|
|
10
|
+
backbone:
|
|
11
|
+
# [from, repeats, module, args]
|
|
12
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
13
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
14
|
+
- [-1, 3, C2f, [128, True]]
|
|
15
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
16
|
+
- [-1, 6, C2f, [256, True]]
|
|
17
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
18
|
+
- [-1, 6, C2f, [512, True]]
|
|
19
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
20
|
+
- [-1, 3, C2fCIB, [1024, True, True]]
|
|
21
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
22
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
23
|
+
|
|
24
|
+
# YOLOv8.0n head
|
|
25
|
+
head:
|
|
26
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
27
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
28
|
+
- [-1, 3, C2f, [512]] # 13
|
|
29
|
+
|
|
30
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
31
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
32
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
33
|
+
|
|
34
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
35
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
36
|
+
- [-1, 3, C2f, [512]] # 19 (P4/16-medium)
|
|
37
|
+
|
|
38
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
39
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
40
|
+
- [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)
|
|
41
|
+
|
|
42
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
|
|
3
|
+
|
|
4
|
+
# Parameters
|
|
5
|
+
nc: 80 # number of classes
|
|
6
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
7
|
+
# [depth, width, max_channels]
|
|
8
|
+
x: [1.00, 1.25, 512]
|
|
9
|
+
|
|
10
|
+
backbone:
|
|
11
|
+
# [from, repeats, module, args]
|
|
12
|
+
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
13
|
+
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
14
|
+
- [-1, 3, C2f, [128, True]]
|
|
15
|
+
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
16
|
+
- [-1, 6, C2f, [256, True]]
|
|
17
|
+
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
|
|
18
|
+
- [-1, 6, C2fCIB, [512, True]]
|
|
19
|
+
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
|
|
20
|
+
- [-1, 3, C2fCIB, [1024, True]]
|
|
21
|
+
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
22
|
+
- [-1, 1, PSA, [1024]] # 10
|
|
23
|
+
|
|
24
|
+
# YOLOv8.0n head
|
|
25
|
+
head:
|
|
26
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
27
|
+
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
28
|
+
- [-1, 3, C2fCIB, [512, True]] # 13
|
|
29
|
+
|
|
30
|
+
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
31
|
+
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
32
|
+
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
|
|
33
|
+
|
|
34
|
+
- [-1, 1, Conv, [256, 3, 2]]
|
|
35
|
+
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
36
|
+
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
|
|
37
|
+
|
|
38
|
+
- [-1, 1, SCDown, [512, 3, 2]]
|
|
39
|
+
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
40
|
+
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
|
|
41
|
+
|
|
42
|
+
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -362,7 +362,7 @@ class LoadImagesAndVideos:
|
|
|
362
362
|
self.mode = "image"
|
|
363
363
|
im0 = cv2.imread(path) # BGR
|
|
364
364
|
if im0 is None:
|
|
365
|
-
raise FileNotFoundError(f"Image
|
|
365
|
+
raise FileNotFoundError(f"Image Read Error {path}")
|
|
366
366
|
paths.append(path)
|
|
367
367
|
imgs.append(im0)
|
|
368
368
|
info.append(f"image {self.count + 1}/{self.nf} {path}: ")
|
|
@@ -920,6 +920,7 @@ class Exporter:
|
|
|
920
920
|
@try_export
|
|
921
921
|
def export_tflite(self, keras_model, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
|
|
922
922
|
"""YOLOv8 TensorFlow Lite export."""
|
|
923
|
+
# BUG https://github.com/ultralytics/ultralytics/issues/13436
|
|
923
924
|
import tensorflow as tf # noqa
|
|
924
925
|
|
|
925
926
|
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
|
@@ -22,18 +22,22 @@ from .block import (
|
|
|
22
22
|
C2,
|
|
23
23
|
C3,
|
|
24
24
|
C3TR,
|
|
25
|
+
CIB,
|
|
25
26
|
DFL,
|
|
26
27
|
ELAN1,
|
|
28
|
+
PSA,
|
|
27
29
|
SPP,
|
|
28
30
|
SPPELAN,
|
|
29
31
|
SPPF,
|
|
30
32
|
AConv,
|
|
31
33
|
ADown,
|
|
34
|
+
Attention,
|
|
32
35
|
BNContrastiveHead,
|
|
33
36
|
Bottleneck,
|
|
34
37
|
BottleneckCSP,
|
|
35
38
|
C2f,
|
|
36
39
|
C2fAttn,
|
|
40
|
+
C2fCIB,
|
|
37
41
|
C3Ghost,
|
|
38
42
|
C3x,
|
|
39
43
|
CBFuse,
|
|
@@ -46,7 +50,9 @@ from .block import (
|
|
|
46
50
|
Proto,
|
|
47
51
|
RepC3,
|
|
48
52
|
RepNCSPELAN4,
|
|
53
|
+
RepVGGDW,
|
|
49
54
|
ResNetLayer,
|
|
55
|
+
SCDown,
|
|
50
56
|
)
|
|
51
57
|
from .conv import (
|
|
52
58
|
CBAM,
|
|
@@ -63,7 +69,7 @@ from .conv import (
|
|
|
63
69
|
RepConv,
|
|
64
70
|
SpatialAttention,
|
|
65
71
|
)
|
|
66
|
-
from .head import OBB, Classify, Detect, Pose, RTDETRDecoder, Segment, WorldDetect
|
|
72
|
+
from .head import OBB, Classify, Detect, Pose, RTDETRDecoder, Segment, WorldDetect, v10Detect
|
|
67
73
|
from .transformer import (
|
|
68
74
|
AIFI,
|
|
69
75
|
MLP,
|
|
@@ -137,4 +143,10 @@ __all__ = (
|
|
|
137
143
|
"CBLinear",
|
|
138
144
|
"AConv",
|
|
139
145
|
"ELAN1",
|
|
146
|
+
"RepVGGDW",
|
|
147
|
+
"CIB",
|
|
148
|
+
"C2fCIB",
|
|
149
|
+
"Attention",
|
|
150
|
+
"PSA",
|
|
151
|
+
"SCDown",
|
|
140
152
|
)
|