ultralytics 8.2.28__tar.gz → 8.2.30__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (223) hide show
  1. {ultralytics-8.2.28 → ultralytics-8.2.30}/PKG-INFO +1 -1
  2. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/test_python.py +2 -1
  3. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/__init__.py +1 -1
  4. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/__init__.py +15 -7
  5. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/augment.py +1 -4
  6. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/build.py +1 -1
  7. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/split_dota.py +5 -4
  8. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/exporter.py +7 -3
  9. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/model.py +4 -5
  10. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/predictor.py +11 -5
  11. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/trainer.py +9 -4
  12. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/hub/session.py +1 -1
  13. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/fastsam/prompt.py +1 -1
  14. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/nas/val.py +1 -1
  15. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/modules/tiny_encoder.py +21 -21
  16. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/detect/val.py +8 -8
  17. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/model.py +1 -1
  18. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/world/train_world.py +12 -11
  19. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/autobackend.py +4 -2
  20. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/modules/block.py +2 -4
  21. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/ai_gym.py +1 -1
  22. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/analytics.py +88 -24
  23. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/object_counter.py +1 -1
  24. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/track.py +1 -2
  25. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/utils/gmc.py +1 -1
  26. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/autobatch.py +4 -4
  27. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/benchmarks.py +16 -28
  28. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/mlflow.py +16 -16
  29. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/tensorboard.py +1 -0
  30. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/wb.py +1 -1
  31. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/checks.py +1 -2
  32. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/ops.py +1 -1
  33. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/plotting.py +3 -1
  34. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/torch_utils.py +11 -5
  35. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics.egg-info/PKG-INFO +1 -1
  36. {ultralytics-8.2.28 → ultralytics-8.2.30}/LICENSE +0 -0
  37. {ultralytics-8.2.28 → ultralytics-8.2.30}/README.md +0 -0
  38. {ultralytics-8.2.28 → ultralytics-8.2.30}/pyproject.toml +0 -0
  39. {ultralytics-8.2.28 → ultralytics-8.2.30}/setup.cfg +0 -0
  40. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/__init__.py +0 -0
  41. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/conftest.py +0 -0
  42. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/test_cli.py +0 -0
  43. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/test_cuda.py +0 -0
  44. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/test_engine.py +0 -0
  45. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/test_explorer.py +0 -0
  46. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/test_exports.py +0 -0
  47. {ultralytics-8.2.28 → ultralytics-8.2.30}/tests/test_integrations.py +0 -0
  48. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/assets/bus.jpg +0 -0
  49. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/assets/zidane.jpg +0 -0
  50. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  51. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  52. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  53. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  54. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  55. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  56. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  57. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  58. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  59. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  60. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  61. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  62. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  63. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/coco.yaml +0 -0
  64. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  65. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  66. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  67. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  68. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  69. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  70. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  71. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  72. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  73. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  74. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/signature.yaml +0 -0
  75. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  76. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/datasets/xView.yaml +0 -0
  77. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/default.yaml +0 -0
  78. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  79. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  80. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  81. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  82. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  83. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  84. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  85. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  86. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  87. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  88. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  89. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  90. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  91. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  92. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  93. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  94. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  95. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  96. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  97. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  98. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  99. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  100. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  101. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  102. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  103. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  104. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  105. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  106. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  107. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  108. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  109. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  110. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  111. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/__init__.py +0 -0
  112. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/annotator.py +0 -0
  113. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/base.py +0 -0
  114. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/converter.py +0 -0
  115. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/dataset.py +0 -0
  116. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/explorer/__init__.py +0 -0
  117. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/explorer/explorer.py +0 -0
  118. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/explorer/gui/__init__.py +0 -0
  119. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/explorer/gui/dash.py +0 -0
  120. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/explorer/utils.py +0 -0
  121. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/loaders.py +0 -0
  122. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/data/utils.py +0 -0
  123. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/__init__.py +0 -0
  124. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/results.py +0 -0
  125. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/tuner.py +0 -0
  126. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/engine/validator.py +0 -0
  127. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/hub/__init__.py +0 -0
  128. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/hub/auth.py +0 -0
  129. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/hub/utils.py +0 -0
  130. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/__init__.py +0 -0
  131. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/fastsam/__init__.py +0 -0
  132. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/fastsam/model.py +0 -0
  133. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/fastsam/predict.py +0 -0
  134. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/fastsam/utils.py +0 -0
  135. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/fastsam/val.py +0 -0
  136. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/nas/__init__.py +0 -0
  137. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/nas/model.py +0 -0
  138. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/nas/predict.py +0 -0
  139. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/rtdetr/__init__.py +0 -0
  140. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/rtdetr/model.py +0 -0
  141. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/rtdetr/predict.py +0 -0
  142. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/rtdetr/train.py +0 -0
  143. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/rtdetr/val.py +0 -0
  144. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/__init__.py +0 -0
  145. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/amg.py +0 -0
  146. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/build.py +0 -0
  147. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/model.py +0 -0
  148. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/modules/__init__.py +0 -0
  149. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/modules/decoders.py +0 -0
  150. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/modules/encoders.py +0 -0
  151. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/modules/sam.py +0 -0
  152. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/modules/transformer.py +0 -0
  153. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/sam/predict.py +0 -0
  154. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/utils/__init__.py +0 -0
  155. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/utils/loss.py +0 -0
  156. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/utils/ops.py +0 -0
  157. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/__init__.py +0 -0
  158. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/classify/__init__.py +0 -0
  159. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/classify/predict.py +0 -0
  160. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/classify/train.py +0 -0
  161. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/classify/val.py +0 -0
  162. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/detect/__init__.py +0 -0
  163. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/detect/predict.py +0 -0
  164. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/detect/train.py +0 -0
  165. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/obb/__init__.py +0 -0
  166. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/obb/predict.py +0 -0
  167. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/obb/train.py +0 -0
  168. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/obb/val.py +0 -0
  169. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/pose/__init__.py +0 -0
  170. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/pose/predict.py +0 -0
  171. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/pose/train.py +0 -0
  172. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/pose/val.py +0 -0
  173. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/segment/__init__.py +0 -0
  174. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/segment/predict.py +0 -0
  175. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/segment/train.py +0 -0
  176. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/segment/val.py +0 -0
  177. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/world/__init__.py +0 -0
  178. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/models/yolo/world/train.py +0 -0
  179. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/__init__.py +0 -0
  180. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/modules/__init__.py +0 -0
  181. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/modules/conv.py +0 -0
  182. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/modules/head.py +0 -0
  183. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/modules/transformer.py +0 -0
  184. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/modules/utils.py +0 -0
  185. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/nn/tasks.py +0 -0
  186. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/__init__.py +0 -0
  187. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/distance_calculation.py +0 -0
  188. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/heatmap.py +0 -0
  189. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/parking_management.py +0 -0
  190. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/queue_management.py +0 -0
  191. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/solutions/speed_estimation.py +0 -0
  192. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/__init__.py +0 -0
  193. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/basetrack.py +0 -0
  194. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/bot_sort.py +0 -0
  195. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/byte_tracker.py +0 -0
  196. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/utils/__init__.py +0 -0
  197. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  198. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/trackers/utils/matching.py +0 -0
  199. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/__init__.py +0 -0
  200. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/__init__.py +0 -0
  201. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/base.py +0 -0
  202. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/clearml.py +0 -0
  203. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/comet.py +0 -0
  204. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/dvc.py +0 -0
  205. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/hub.py +0 -0
  206. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/neptune.py +0 -0
  207. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/callbacks/raytune.py +0 -0
  208. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/dist.py +0 -0
  209. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/downloads.py +0 -0
  210. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/errors.py +0 -0
  211. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/files.py +0 -0
  212. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/instance.py +0 -0
  213. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/loss.py +0 -0
  214. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/metrics.py +0 -0
  215. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/patches.py +0 -0
  216. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/tal.py +0 -0
  217. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/triton.py +0 -0
  218. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics/utils/tuner.py +0 -0
  219. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics.egg-info/SOURCES.txt +0 -0
  220. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics.egg-info/dependency_links.txt +0 -0
  221. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics.egg-info/entry_points.txt +0 -0
  222. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics.egg-info/requires.txt +0 -0
  223. {ultralytics-8.2.28 → ultralytics-8.2.30}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.28
3
+ Version: 8.2.30
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -140,7 +140,8 @@ def test_youtube():
140
140
  model = YOLO(MODEL)
141
141
  try:
142
142
  model.predict("https://youtu.be/G17sBkb38XQ", imgsz=96, save=True)
143
- except urllib.error.HTTPError as e: # handle 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests'
143
+ # Handle internet connection errors and 'urllib.error.HTTPError: HTTP Error 429: Too Many Requests'
144
+ except (urllib.error.HTTPError, ConnectionError) as e:
144
145
  LOGGER.warning(f"WARNING: YouTube Test Error: {e}")
145
146
 
146
147
 
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.2.28"
3
+ __version__ = "8.2.30"
4
4
 
5
5
  import os
6
6
 
@@ -95,10 +95,19 @@ CLI_HELP_MSG = f"""
95
95
  """
96
96
 
97
97
  # Define keys for arg type checks
98
- CFG_FLOAT_KEYS = {"warmup_epochs", "box", "cls", "dfl", "degrees", "shear", "time", "workspace"}
99
- CFG_FRACTION_KEYS = {
98
+ CFG_FLOAT_KEYS = { # integer or float arguments, i.e. x=2 and x=2.0
99
+ "warmup_epochs",
100
+ "box",
101
+ "cls",
102
+ "dfl",
103
+ "degrees",
104
+ "shear",
105
+ "time",
106
+ "workspace",
107
+ "batch",
108
+ }
109
+ CFG_FRACTION_KEYS = { # fractional float arguments with 0.0<=values<=1.0
100
110
  "dropout",
101
- "iou",
102
111
  "lr0",
103
112
  "lrf",
104
113
  "momentum",
@@ -121,11 +130,10 @@ CFG_FRACTION_KEYS = {
121
130
  "conf",
122
131
  "iou",
123
132
  "fraction",
124
- } # fraction floats 0.0 - 1.0
125
- CFG_INT_KEYS = {
133
+ }
134
+ CFG_INT_KEYS = { # integer-only arguments
126
135
  "epochs",
127
136
  "patience",
128
- "batch",
129
137
  "workers",
130
138
  "seed",
131
139
  "close_mosaic",
@@ -136,7 +144,7 @@ CFG_INT_KEYS = {
136
144
  "nbs",
137
145
  "save_period",
138
146
  }
139
- CFG_BOOL_KEYS = {
147
+ CFG_BOOL_KEYS = { # boolean-only arguments
140
148
  "save",
141
149
  "exist_ok",
142
150
  "verbose",
@@ -1114,10 +1114,7 @@ class RandomLoadText:
1114
1114
  pos_labels = set(random.sample(pos_labels, k=self.max_samples))
1115
1115
 
1116
1116
  neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
1117
- neg_labels = []
1118
- for i in range(num_classes):
1119
- if i not in pos_labels:
1120
- neg_labels.append(i)
1117
+ neg_labels = [i for i in range(num_classes) if i not in pos_labels]
1121
1118
  neg_labels = random.sample(neg_labels, k=neg_samples)
1122
1119
 
1123
1120
  sampled_labels = pos_labels + neg_labels
@@ -21,7 +21,7 @@ from ultralytics.data.loaders import (
21
21
  autocast_list,
22
22
  )
23
23
  from ultralytics.data.utils import IMG_FORMATS, PIN_MEMORY, VID_FORMATS
24
- from ultralytics.utils import LINUX, RANK, colorstr
24
+ from ultralytics.utils import RANK, colorstr
25
25
  from ultralytics.utils.checks import check_file
26
26
 
27
27
 
@@ -86,7 +86,7 @@ def load_yolo_dota(data_root, split="train"):
86
86
  return annos
87
87
 
88
88
 
89
- def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.01):
89
+ def get_windows(im_size, crop_sizes=(1024,), gaps=(200,), im_rate_thr=0.6, eps=0.01):
90
90
  """
91
91
  Get the coordinates of windows.
92
92
 
@@ -95,6 +95,7 @@ def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.0
95
95
  crop_sizes (List(int)): Crop size of windows.
96
96
  gaps (List(int)): Gap between crops.
97
97
  im_rate_thr (float): Threshold of windows areas divided by image ares.
98
+ eps (float): Epsilon value for math operations.
98
99
  """
99
100
  h, w = im_size
100
101
  windows = []
@@ -187,7 +188,7 @@ def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
187
188
  f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n")
188
189
 
189
190
 
190
- def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=[1024], gaps=[200]):
191
+ def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=(1024,), gaps=(200,)):
191
192
  """
192
193
  Split both images and labels.
193
194
 
@@ -217,7 +218,7 @@ def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=[1024
217
218
  crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir))
218
219
 
219
220
 
220
- def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
221
+ def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=(1.0,)):
221
222
  """
222
223
  Split train and val set of DOTA.
223
224
 
@@ -247,7 +248,7 @@ def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
247
248
  split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps)
248
249
 
249
250
 
250
- def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
251
+ def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=(1.0,)):
251
252
  """
252
253
  Split test set of DOTA, labels are not included within this set.
253
254
 
@@ -126,7 +126,7 @@ def gd_outputs(gd):
126
126
 
127
127
 
128
128
  def try_export(inner_func):
129
- """YOLOv8 export decorator, i..e @try_export."""
129
+ """YOLOv8 export decorator, i.e. @try_export."""
130
130
  inner_args = get_default_args(inner_func)
131
131
 
132
132
  def outer_func(*args, **kwargs):
@@ -209,8 +209,12 @@ class Exporter:
209
209
  if self.args.optimize:
210
210
  assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
211
211
  assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
212
- if edgetpu and not LINUX:
213
- raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/")
212
+ if edgetpu:
213
+ if not LINUX:
214
+ raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler")
215
+ elif self.args.batch != 1: # see github.com/ultralytics/ultralytics/pull/13420
216
+ LOGGER.warning("WARNING ⚠️ Edge TPU export requires batch size 1, setting batch=1.")
217
+ self.args.batch = 1
214
218
  if isinstance(model, WorldModel):
215
219
  LOGGER.warning(
216
220
  "WARNING ⚠️ YOLOWorld (original version) export is not supported to any format.\n"
@@ -742,11 +742,10 @@ class Model(nn.Module):
742
742
 
743
743
  if hasattr(self.model, "names"):
744
744
  return check_class_names(self.model.names)
745
- else:
746
- if not self.predictor: # export formats will not have predictor defined until predict() is called
747
- self.predictor = self._smart_load("predictor")(overrides=self.overrides, _callbacks=self.callbacks)
748
- self.predictor.setup_model(model=self.model, verbose=False)
749
- return self.predictor.model.names
745
+ if not self.predictor: # export formats will not have predictor defined until predict() is called
746
+ self.predictor = self._smart_load("predictor")(overrides=self.overrides, _callbacks=self.callbacks)
747
+ self.predictor.setup_model(model=self.model, verbose=False)
748
+ return self.predictor.model.names
750
749
 
751
750
  @property
752
751
  def device(self) -> torch.device:
@@ -169,12 +169,18 @@ class BasePredictor:
169
169
 
170
170
  def predict_cli(self, source=None, model=None):
171
171
  """
172
- Method used for CLI prediction.
172
+ Method used for Command Line Interface (CLI) prediction.
173
173
 
174
- It uses always generator as outputs as not required by CLI mode.
174
+ This function is designed to run predictions using the CLI. It sets up the source and model, then processes
175
+ the inputs in a streaming manner. This method ensures that no outputs accumulate in memory by consuming the
176
+ generator without storing results.
177
+
178
+ Note:
179
+ Do not modify this function or remove the generator. The generator ensures that no outputs are
180
+ accumulated in memory, which is critical for preventing memory issues during long-running predictions.
175
181
  """
176
182
  gen = self.stream_inference(source, model)
177
- for _ in gen: # noqa, running CLI inference without accumulating any outputs (do not modify)
183
+ for _ in gen: # sourcery skip: remove-empty-nested-block, noqa
178
184
  pass
179
185
 
180
186
  def setup_source(self, source):
@@ -319,13 +325,13 @@ class BasePredictor:
319
325
  frame = self.dataset.count
320
326
  else:
321
327
  match = re.search(r"frame (\d+)/", s[i])
322
- frame = int(match.group(1)) if match else None # 0 if frame undetermined
328
+ frame = int(match[1]) if match else None # 0 if frame undetermined
323
329
 
324
330
  self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
325
331
  string += "%gx%g " % im.shape[2:]
326
332
  result = self.results[i]
327
333
  result.save_dir = self.save_dir.__str__() # used in other locations
328
- string += result.verbose() + f"{result.speed['inference']:.1f}ms"
334
+ string += f"{result.verbose()}{result.speed['inference']:.1f}ms"
329
335
 
330
336
  # Add predictions to image
331
337
  if self.args.save or self.args.show:
@@ -178,9 +178,9 @@ class BaseTrainer:
178
178
  if self.args.rect:
179
179
  LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting 'rect=False'")
180
180
  self.args.rect = False
181
- if self.args.batch == -1:
181
+ if self.args.batch < 1.0:
182
182
  LOGGER.warning(
183
- "WARNING ⚠️ 'batch=-1' for AutoBatch is incompatible with Multi-GPU training, setting "
183
+ "WARNING ⚠️ 'batch<1' for AutoBatch is incompatible with Multi-GPU training, setting "
184
184
  "default 'batch=16'"
185
185
  )
186
186
  self.args.batch = 16
@@ -269,8 +269,13 @@ class BaseTrainer:
269
269
  self.stride = gs # for multiscale training
270
270
 
271
271
  # Batch size
272
- if self.batch_size == -1 and RANK == -1: # single-GPU only, estimate best batch size
273
- self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)
272
+ if self.batch_size < 1 and RANK == -1: # single-GPU only, estimate best batch size
273
+ self.args.batch = self.batch_size = check_train_batch_size(
274
+ model=self.model,
275
+ imgsz=self.args.imgsz,
276
+ amp=self.amp,
277
+ batch=self.batch_size,
278
+ )
274
279
 
275
280
  # Dataloaders
276
281
  batch_size = self.batch_size // max(world_size, 1)
@@ -368,5 +368,5 @@ class HUBTrainingSession:
368
368
  Returns:
369
369
  None
370
370
  """
371
- for data in response.iter_content(chunk_size=1024):
371
+ for _ in response.iter_content(chunk_size=1024):
372
372
  pass # Do nothing with data chunks
@@ -25,7 +25,7 @@ class FastSAMPrompt:
25
25
  def __init__(self, source, results, device="cuda") -> None:
26
26
  """Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment."""
27
27
  if isinstance(source, (str, Path)) and os.path.isdir(source):
28
- raise ValueError(f"FastSAM only accepts image paths and PIL Image sources, not directories.")
28
+ raise ValueError("FastSAM only accepts image paths and PIL Image sources, not directories.")
29
29
  self.device = device
30
30
  self.results = results
31
31
  self.source = source
@@ -17,7 +17,7 @@ class NASValidator(DetectionValidator):
17
17
  ultimately producing the final detections.
18
18
 
19
19
  Attributes:
20
- args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU thresholds.
20
+ args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU.
21
21
  lb (torch.Tensor): Optional tensor for multilabel NMS.
22
22
 
23
23
  Example:
@@ -383,44 +383,44 @@ class TinyViTBlock(nn.Module):
383
383
  """Applies attention-based transformation or padding to input 'x' before passing it through a local
384
384
  convolution.
385
385
  """
386
- H, W = self.input_resolution
387
- B, L, C = x.shape
388
- assert L == H * W, "input feature has wrong size"
386
+ h, w = self.input_resolution
387
+ b, l, c = x.shape
388
+ assert l == h * w, "input feature has wrong size"
389
389
  res_x = x
390
- if H == self.window_size and W == self.window_size:
390
+ if h == self.window_size and w == self.window_size:
391
391
  x = self.attn(x)
392
392
  else:
393
- x = x.view(B, H, W, C)
394
- pad_b = (self.window_size - H % self.window_size) % self.window_size
395
- pad_r = (self.window_size - W % self.window_size) % self.window_size
393
+ x = x.view(b, h, w, c)
394
+ pad_b = (self.window_size - h % self.window_size) % self.window_size
395
+ pad_r = (self.window_size - w % self.window_size) % self.window_size
396
396
  padding = pad_b > 0 or pad_r > 0
397
397
 
398
398
  if padding:
399
399
  x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
400
400
 
401
- pH, pW = H + pad_b, W + pad_r
401
+ pH, pW = h + pad_b, w + pad_r
402
402
  nH = pH // self.window_size
403
403
  nW = pW // self.window_size
404
404
  # Window partition
405
405
  x = (
406
- x.view(B, nH, self.window_size, nW, self.window_size, C)
406
+ x.view(b, nH, self.window_size, nW, self.window_size, c)
407
407
  .transpose(2, 3)
408
- .reshape(B * nH * nW, self.window_size * self.window_size, C)
408
+ .reshape(b * nH * nW, self.window_size * self.window_size, c)
409
409
  )
410
410
  x = self.attn(x)
411
411
  # Window reverse
412
- x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C)
412
+ x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c)
413
413
 
414
414
  if padding:
415
- x = x[:, :H, :W].contiguous()
415
+ x = x[:, :h, :w].contiguous()
416
416
 
417
- x = x.view(B, L, C)
417
+ x = x.view(b, l, c)
418
418
 
419
419
  x = res_x + self.drop_path(x)
420
420
 
421
- x = x.transpose(1, 2).reshape(B, C, H, W)
421
+ x = x.transpose(1, 2).reshape(b, c, h, w)
422
422
  x = self.local_conv(x)
423
- x = x.view(B, C, L).transpose(1, 2)
423
+ x = x.view(b, c, l).transpose(1, 2)
424
424
 
425
425
  return x + self.drop_path(self.mlp(x))
426
426
 
@@ -565,10 +565,10 @@ class TinyViT(nn.Module):
565
565
  img_size=224,
566
566
  in_chans=3,
567
567
  num_classes=1000,
568
- embed_dims=[96, 192, 384, 768],
569
- depths=[2, 2, 6, 2],
570
- num_heads=[3, 6, 12, 24],
571
- window_sizes=[7, 7, 14, 7],
568
+ embed_dims=(96, 192, 384, 768),
569
+ depths=(2, 2, 6, 2),
570
+ num_heads=(3, 6, 12, 24),
571
+ window_sizes=(7, 7, 14, 7),
572
572
  mlp_ratio=4.0,
573
573
  drop_rate=0.0,
574
574
  drop_path_rate=0.1,
@@ -732,8 +732,8 @@ class TinyViT(nn.Module):
732
732
  for i in range(start_i, len(self.layers)):
733
733
  layer = self.layers[i]
734
734
  x = layer(x)
735
- B, _, C = x.shape
736
- x = x.view(B, 64, 64, C)
735
+ batch, _, channel = x.shape
736
+ x = x.view(batch, 64, 64, channel)
737
737
  x = x.permute(0, 3, 1, 2)
738
738
  return self.neck(x)
739
739
 
@@ -300,22 +300,22 @@ class DetectionValidator(BaseValidator):
300
300
 
301
301
  anno = COCO(str(anno_json)) # init annotations api
302
302
  pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
303
- eval = COCOeval(anno, pred, "bbox")
303
+ val = COCOeval(anno, pred, "bbox")
304
304
  else:
305
305
  from lvis import LVIS, LVISEval
306
306
 
307
307
  anno = LVIS(str(anno_json)) # init annotations api
308
308
  pred = anno._load_json(str(pred_json)) # init predictions api (must pass string, not Path)
309
- eval = LVISEval(anno, pred, "bbox")
310
- eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
311
- eval.evaluate()
312
- eval.accumulate()
313
- eval.summarize()
309
+ val = LVISEval(anno, pred, "bbox")
310
+ val.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
311
+ val.evaluate()
312
+ val.accumulate()
313
+ val.summarize()
314
314
  if self.is_lvis:
315
- eval.print_results() # explicitly call print_results
315
+ val.print_results() # explicitly call print_results
316
316
  # update mAP50-95 and mAP50
317
317
  stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = (
318
- eval.stats[:2] if self.is_coco else [eval.results["AP50"], eval.results["AP"]]
318
+ val.stats[:2] if self.is_coco else [val.results["AP50"], val.results["AP"]]
319
319
  )
320
320
  except Exception as e:
321
321
  LOGGER.warning(f"{pkg} unable to run: {e}")
@@ -92,7 +92,7 @@ class YOLOWorld(Model):
92
92
  Set classes.
93
93
 
94
94
  Args:
95
- classes (List(str)): A list of categories i.e ["person"].
95
+ classes (List(str)): A list of categories i.e. ["person"].
96
96
  """
97
97
  self.model.set_classes(classes)
98
98
  # Remove background if it's given
@@ -1,3 +1,5 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
1
3
  from ultralytics.data import YOLOConcatDataset, build_grounding, build_yolo_dataset
2
4
  from ultralytics.data.utils import check_det_dataset
3
5
  from ultralytics.models.yolo.world import WorldTrainer
@@ -52,16 +54,15 @@ class WorldTrainerFromScratch(WorldTrainer):
52
54
  batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
53
55
  """
54
56
  gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
55
- if mode == "train":
56
- dataset = [
57
- build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True)
58
- if isinstance(im_path, str)
59
- else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
60
- for im_path in img_path
61
- ]
62
- return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0]
63
- else:
57
+ if mode != "train":
64
58
  return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
59
+ dataset = [
60
+ build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True)
61
+ if isinstance(im_path, str)
62
+ else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
63
+ for im_path in img_path
64
+ ]
65
+ return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0]
65
66
 
66
67
  def get_dataset(self):
67
68
  """
@@ -69,7 +70,7 @@ class WorldTrainerFromScratch(WorldTrainer):
69
70
 
70
71
  Returns None if data format is not recognized.
71
72
  """
72
- final_data = dict()
73
+ final_data = {}
73
74
  data_yaml = self.args.data
74
75
  assert data_yaml.get("train", False) # object365.yaml
75
76
  assert data_yaml.get("val", False) # lvis.yaml
@@ -86,7 +87,7 @@ class WorldTrainerFromScratch(WorldTrainer):
86
87
  grounding_data = data_yaml[s].get("grounding_data")
87
88
  if grounding_data is None:
88
89
  continue
89
- grounding_data = [grounding_data] if not isinstance(grounding_data, list) else grounding_data
90
+ grounding_data = grounding_data if isinstance(grounding_data, list) else [grounding_data]
90
91
  for g in grounding_data:
91
92
  assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
92
93
  final_data[s] += grounding_data
@@ -320,6 +320,8 @@ class AutoBackend(nn.Module):
320
320
  with open(w, "rb") as f:
321
321
  gd.ParseFromString(f.read())
322
322
  frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
323
+ with contextlib.suppress(StopIteration): # find metadata in SavedModel alongside GraphDef
324
+ metadata = next(Path(w).resolve().parent.rglob(f"{Path(w).stem}_saved_model*/metadata.yaml"))
323
325
 
324
326
  # TFLite or TFLite Edge TPU
325
327
  elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
@@ -402,7 +404,7 @@ class AutoBackend(nn.Module):
402
404
  # Load external metadata YAML
403
405
  if isinstance(metadata, (str, Path)) and Path(metadata).exists():
404
406
  metadata = yaml_load(metadata)
405
- if metadata:
407
+ if metadata and isinstance(metadata, dict):
406
408
  for k, v in metadata.items():
407
409
  if k in {"stride", "batch"}:
408
410
  metadata[k] = int(v)
@@ -563,7 +565,7 @@ class AutoBackend(nn.Module):
563
565
  y = [y]
564
566
  elif self.pb: # GraphDef
565
567
  y = self.frozen_func(x=self.tf.constant(im))
566
- if len(y) == 2 and len(self.names) == 999: # segments and names not defined
568
+ if (self.task == "segment" or len(y) == 2) and len(self.names) == 999: # segments and names not defined
567
569
  ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
568
570
  nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
569
571
  self.names = {i: f"class{i}" for i in range(nc)}
@@ -666,8 +666,7 @@ class CBLinear(nn.Module):
666
666
 
667
667
  def forward(self, x):
668
668
  """Forward pass through CBLinear layer."""
669
- outs = self.conv(x).split(self.c2s, dim=1)
670
- return outs
669
+ return self.conv(x).split(self.c2s, dim=1)
671
670
 
672
671
 
673
672
  class CBFuse(nn.Module):
@@ -682,5 +681,4 @@ class CBFuse(nn.Module):
682
681
  """Forward pass through CBFuse layer."""
683
682
  target_size = xs[-1].shape[2:]
684
683
  res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
685
- out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
686
- return out
684
+ return torch.sum(torch.stack(res + xs[-1:]), dim=0)
@@ -93,7 +93,7 @@ class AIGym:
93
93
  self.stage[ind] = "up"
94
94
  self.count[ind] += 1
95
95
 
96
- elif self.pose_type == "pushup" or self.pose_type == "squat":
96
+ elif self.pose_type in {"pushup", "squat"}:
97
97
  if self.angle[ind] > self.poseup_angle:
98
98
  self.stage[ind] = "up"
99
99
  if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":