ultralytics 8.2.103__tar.gz → 8.3.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- {ultralytics-8.2.103 → ultralytics-8.3.1}/PKG-INFO +48 -62
- {ultralytics-8.2.103 → ultralytics-8.3.1}/README.md +46 -60
- {ultralytics-8.2.103 → ultralytics-8.3.1}/pyproject.toml +1 -1
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/__init__.py +2 -2
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/conftest.py +1 -1
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_cuda.py +1 -1
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_engine.py +5 -5
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_explorer.py +3 -3
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_exports.py +1 -2
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_integrations.py +9 -9
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_python.py +11 -11
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_solutions.py +3 -3
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/__init__.py +1 -2
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/__init__.py +20 -20
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/hand-keypoints.yaml +2 -2
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/default.yaml +1 -0
- ultralytics-8.3.1/ultralytics/cfg/models/11/yolo11-cls.yaml +30 -0
- ultralytics-8.3.1/ultralytics/cfg/models/11/yolo11-obb.yaml +47 -0
- ultralytics-8.3.1/ultralytics/cfg/models/11/yolo11-pose.yaml +48 -0
- ultralytics-8.3.1/ultralytics/cfg/models/11/yolo11-seg.yaml +47 -0
- ultralytics-8.3.1/ultralytics/cfg/models/11/yolo11.yaml +47 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/augment.py +101 -80
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/trainer.py +8 -1
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/modules/__init__.py +7 -1
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/modules/block.py +198 -37
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/modules/conv.py +2 -1
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/modules/head.py +9 -2
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/tasks.py +25 -2
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/checks.py +8 -8
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/downloads.py +3 -2
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/loss.py +3 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/torch_utils.py +1 -1
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics.egg-info/PKG-INFO +48 -62
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics.egg-info/SOURCES.txt +5 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/LICENSE +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/setup.cfg +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/tests/test_cli.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/base.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/build.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/converter.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/dataset.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/explorer/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/explorer/explorer.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/explorer/gui/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/explorer/gui/dash.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/explorer/utils.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/loaders.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/data/utils.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/exporter.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/model.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/results.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/tuner.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/engine/validator.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/hub/auth.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/hub/google/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/hub/session.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/hub/utils.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/nas/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/build.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/blocks.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/memory_attention.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/modules/utils.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/sam/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/detect/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/detect/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/model.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/obb/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/obb/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/pose/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/pose/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/segment/predict.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/segment/val.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/autobackend.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/modules/activation.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/parking_management.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/solutions/streamlit_inference.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/benchmarks.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/files.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/metrics.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/ops.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/patches.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/plotting.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.2.103 → ultralytics-8.3.1}/ultralytics.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.
|
|
3
|
+
Version: 8.3.1
|
|
4
4
|
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Ayush Chaurasia
|
|
6
6
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
@@ -11,7 +11,7 @@ Project-URL: Source, https://github.com/ultralytics/ultralytics
|
|
|
11
11
|
Project-URL: Documentation, https://docs.ultralytics.com
|
|
12
12
|
Project-URL: Bug Reports, https://github.com/ultralytics/ultralytics/issues
|
|
13
13
|
Project-URL: Changelog, https://github.com/ultralytics/ultralytics/releases
|
|
14
|
-
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,HUB,Ultralytics
|
|
14
|
+
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,YOLO11,HUB,Ultralytics
|
|
15
15
|
Classifier: Development Status :: 4 - Beta
|
|
16
16
|
Classifier: Intended Audience :: Developers
|
|
17
17
|
Classifier: Intended Audience :: Education
|
|
@@ -96,7 +96,7 @@ Requires-Dist: pycocotools>=2.0.7; extra == "extra"
|
|
|
96
96
|
|
|
97
97
|
<div>
|
|
98
98
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
|
|
99
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics
|
|
99
|
+
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
100
100
|
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
|
|
101
101
|
<a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
102
102
|
<a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
@@ -108,13 +108,13 @@ Requires-Dist: pycocotools>=2.0.7; extra == "extra"
|
|
|
108
108
|
</div>
|
|
109
109
|
<br>
|
|
110
110
|
|
|
111
|
-
[Ultralytics](https://www.ultralytics.com/) [
|
|
111
|
+
[Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
|
|
112
112
|
|
|
113
|
-
We hope that the resources here will help you get the most out of
|
|
113
|
+
We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://ultralytics.com/discord">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com">Forums</a>!
|
|
114
114
|
|
|
115
115
|
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
|
|
116
116
|
|
|
117
|
-
<img width="100%" src="https://
|
|
117
|
+
<img width="100%" src="https://github.com/user-attachments/assets/a311a4ed-bbf2-43b5-8012-5f183a28a845" alt="YOLO11 performance plots"></a>
|
|
118
118
|
|
|
119
119
|
<div align="center">
|
|
120
120
|
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
|
|
@@ -135,7 +135,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|
|
135
135
|
|
|
136
136
|
## <div align="center">Documentation</div>
|
|
137
137
|
|
|
138
|
-
See below for a quickstart
|
|
138
|
+
See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
|
|
139
139
|
|
|
140
140
|
<details open>
|
|
141
141
|
<summary>Install</summary>
|
|
@@ -159,23 +159,23 @@ For alternative installation methods including [Conda](https://anaconda.org/cond
|
|
|
159
159
|
|
|
160
160
|
### CLI
|
|
161
161
|
|
|
162
|
-
|
|
162
|
+
YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:
|
|
163
163
|
|
|
164
164
|
```bash
|
|
165
|
-
yolo predict model=
|
|
165
|
+
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
166
166
|
```
|
|
167
167
|
|
|
168
|
-
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the
|
|
168
|
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
|
169
169
|
|
|
170
170
|
### Python
|
|
171
171
|
|
|
172
|
-
|
|
172
|
+
YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
|
|
173
173
|
|
|
174
174
|
```python
|
|
175
175
|
from ultralytics import YOLO
|
|
176
176
|
|
|
177
177
|
# Load a model
|
|
178
|
-
model = YOLO("
|
|
178
|
+
model = YOLO("yolo11n.pt")
|
|
179
179
|
|
|
180
180
|
# Train the model
|
|
181
181
|
train_results = model.train(
|
|
@@ -196,26 +196,13 @@ results[0].show()
|
|
|
196
196
|
path = model.export(format="onnx") # return path to exported model
|
|
197
197
|
```
|
|
198
198
|
|
|
199
|
-
See
|
|
199
|
+
See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
200
200
|
|
|
201
201
|
</details>
|
|
202
202
|
|
|
203
|
-
### Notebooks
|
|
204
|
-
|
|
205
|
-
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://www.youtube.com/ultralytics?sub_confirmation=1) tutorial, making it easy to learn and implement advanced YOLOv8 features.
|
|
206
|
-
|
|
207
|
-
| Docs | Notebook | YouTube |
|
|
208
|
-
| ---------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
209
|
-
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
210
|
-
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
211
|
-
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
212
|
-
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
213
|
-
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
214
|
-
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
215
|
-
|
|
216
203
|
## <div align="center">Models</div>
|
|
217
204
|
|
|
218
|
-
|
|
205
|
+
YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
|
|
219
206
|
|
|
220
207
|
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
|
|
221
208
|
|
|
@@ -225,13 +212,13 @@ All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cf
|
|
|
225
212
|
|
|
226
213
|
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
|
|
227
214
|
|
|
228
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
215
|
+
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
229
216
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
230
|
-
| [
|
|
231
|
-
| [
|
|
232
|
-
| [
|
|
233
|
-
| [
|
|
234
|
-
| [
|
|
217
|
+
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
|
|
218
|
+
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
|
|
219
|
+
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
|
|
220
|
+
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
|
|
221
|
+
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
|
|
235
222
|
|
|
236
223
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
237
224
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -242,13 +229,13 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
242
229
|
|
|
243
230
|
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
|
|
244
231
|
|
|
245
|
-
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
232
|
+
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
246
233
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
247
|
-
| [
|
|
248
|
-
| [
|
|
249
|
-
| [
|
|
250
|
-
| [
|
|
251
|
-
| [
|
|
234
|
+
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
|
|
235
|
+
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
|
|
236
|
+
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
|
|
237
|
+
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
|
|
238
|
+
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
|
|
252
239
|
|
|
253
240
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
254
241
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
@@ -259,14 +246,13 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
259
246
|
|
|
260
247
|
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
|
|
261
248
|
|
|
262
|
-
| Model
|
|
263
|
-
|
|
|
264
|
-
| [
|
|
265
|
-
| [
|
|
266
|
-
| [
|
|
267
|
-
| [
|
|
268
|
-
| [
|
|
269
|
-
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
|
249
|
+
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
250
|
+
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
251
|
+
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
|
|
252
|
+
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
|
|
253
|
+
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
|
|
254
|
+
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
|
|
255
|
+
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
|
|
270
256
|
|
|
271
257
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
272
258
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -277,13 +263,13 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
|
|
|
277
263
|
|
|
278
264
|
See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
|
|
279
265
|
|
|
280
|
-
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
266
|
+
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
281
267
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
282
|
-
| [
|
|
283
|
-
| [
|
|
284
|
-
| [
|
|
285
|
-
| [
|
|
286
|
-
| [
|
|
268
|
+
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
|
|
269
|
+
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
|
|
270
|
+
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
|
|
271
|
+
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
|
|
272
|
+
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
|
|
287
273
|
|
|
288
274
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
289
275
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -294,13 +280,13 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
294
280
|
|
|
295
281
|
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
296
282
|
|
|
297
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
283
|
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
298
284
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
299
|
-
| [
|
|
300
|
-
| [
|
|
301
|
-
| [
|
|
302
|
-
| [
|
|
303
|
-
| [
|
|
285
|
+
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
|
|
286
|
+
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
|
|
287
|
+
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
|
|
288
|
+
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
|
|
289
|
+
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
|
|
304
290
|
|
|
305
291
|
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
306
292
|
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -333,18 +319,18 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
333
319
|
|
|
334
320
|
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
|
335
321
|
| :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
|
336
|
-
| Label and export your custom datasets directly to
|
|
322
|
+
| Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
|
337
323
|
|
|
338
324
|
## <div align="center">Ultralytics HUB</div>
|
|
339
325
|
|
|
340
|
-
Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization,
|
|
326
|
+
Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLO11 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
|
|
341
327
|
|
|
342
328
|
<a href="https://ultralytics.com/hub" target="_blank">
|
|
343
329
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
344
330
|
|
|
345
331
|
## <div align="center">Contribute</div>
|
|
346
332
|
|
|
347
|
-
We love your input!
|
|
333
|
+
We love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
348
334
|
|
|
349
335
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
|
350
336
|
|
|
@@ -8,7 +8,7 @@
|
|
|
8
8
|
|
|
9
9
|
<div>
|
|
10
10
|
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
|
|
11
|
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics
|
|
11
|
+
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
|
|
12
12
|
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
|
|
13
13
|
<a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
|
|
14
14
|
<a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
|
|
@@ -20,13 +20,13 @@
|
|
|
20
20
|
</div>
|
|
21
21
|
<br>
|
|
22
22
|
|
|
23
|
-
[Ultralytics](https://www.ultralytics.com/) [
|
|
23
|
+
[Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
|
|
24
24
|
|
|
25
|
-
We hope that the resources here will help you get the most out of
|
|
25
|
+
We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://ultralytics.com/discord">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com">Forums</a>!
|
|
26
26
|
|
|
27
27
|
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
|
|
28
28
|
|
|
29
|
-
<img width="100%" src="https://
|
|
29
|
+
<img width="100%" src="https://github.com/user-attachments/assets/a311a4ed-bbf2-43b5-8012-5f183a28a845" alt="YOLO11 performance plots"></a>
|
|
30
30
|
|
|
31
31
|
<div align="center">
|
|
32
32
|
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
|
|
@@ -47,7 +47,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|
|
47
47
|
|
|
48
48
|
## <div align="center">Documentation</div>
|
|
49
49
|
|
|
50
|
-
See below for a quickstart
|
|
50
|
+
See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
|
|
51
51
|
|
|
52
52
|
<details open>
|
|
53
53
|
<summary>Install</summary>
|
|
@@ -71,23 +71,23 @@ For alternative installation methods including [Conda](https://anaconda.org/cond
|
|
|
71
71
|
|
|
72
72
|
### CLI
|
|
73
73
|
|
|
74
|
-
|
|
74
|
+
YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:
|
|
75
75
|
|
|
76
76
|
```bash
|
|
77
|
-
yolo predict model=
|
|
77
|
+
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
78
78
|
```
|
|
79
79
|
|
|
80
|
-
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the
|
|
80
|
+
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
|
|
81
81
|
|
|
82
82
|
### Python
|
|
83
83
|
|
|
84
|
-
|
|
84
|
+
YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
|
|
85
85
|
|
|
86
86
|
```python
|
|
87
87
|
from ultralytics import YOLO
|
|
88
88
|
|
|
89
89
|
# Load a model
|
|
90
|
-
model = YOLO("
|
|
90
|
+
model = YOLO("yolo11n.pt")
|
|
91
91
|
|
|
92
92
|
# Train the model
|
|
93
93
|
train_results = model.train(
|
|
@@ -108,26 +108,13 @@ results[0].show()
|
|
|
108
108
|
path = model.export(format="onnx") # return path to exported model
|
|
109
109
|
```
|
|
110
110
|
|
|
111
|
-
See
|
|
111
|
+
See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
|
|
112
112
|
|
|
113
113
|
</details>
|
|
114
114
|
|
|
115
|
-
### Notebooks
|
|
116
|
-
|
|
117
|
-
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://www.youtube.com/ultralytics?sub_confirmation=1) tutorial, making it easy to learn and implement advanced YOLOv8 features.
|
|
118
|
-
|
|
119
|
-
| Docs | Notebook | YouTube |
|
|
120
|
-
| ---------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
121
|
-
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
122
|
-
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
123
|
-
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
124
|
-
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
125
|
-
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
126
|
-
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
|
|
127
|
-
|
|
128
115
|
## <div align="center">Models</div>
|
|
129
116
|
|
|
130
|
-
|
|
117
|
+
YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
|
|
131
118
|
|
|
132
119
|
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
|
|
133
120
|
|
|
@@ -137,13 +124,13 @@ All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cf
|
|
|
137
124
|
|
|
138
125
|
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
|
|
139
126
|
|
|
140
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
127
|
+
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
141
128
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
142
|
-
| [
|
|
143
|
-
| [
|
|
144
|
-
| [
|
|
145
|
-
| [
|
|
146
|
-
| [
|
|
129
|
+
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
|
|
130
|
+
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
|
|
131
|
+
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
|
|
132
|
+
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
|
|
133
|
+
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
|
|
147
134
|
|
|
148
135
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
149
136
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -154,13 +141,13 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
154
141
|
|
|
155
142
|
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
|
|
156
143
|
|
|
157
|
-
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
144
|
+
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
158
145
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
159
|
-
| [
|
|
160
|
-
| [
|
|
161
|
-
| [
|
|
162
|
-
| [
|
|
163
|
-
| [
|
|
146
|
+
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
|
|
147
|
+
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
|
|
148
|
+
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
|
|
149
|
+
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
|
|
150
|
+
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
|
|
164
151
|
|
|
165
152
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
166
153
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
@@ -171,14 +158,13 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
171
158
|
|
|
172
159
|
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
|
|
173
160
|
|
|
174
|
-
| Model
|
|
175
|
-
|
|
|
176
|
-
| [
|
|
177
|
-
| [
|
|
178
|
-
| [
|
|
179
|
-
| [
|
|
180
|
-
| [
|
|
181
|
-
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
|
161
|
+
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
162
|
+
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
163
|
+
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
|
|
164
|
+
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
|
|
165
|
+
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
|
|
166
|
+
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
|
|
167
|
+
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
|
|
182
168
|
|
|
183
169
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
184
170
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -189,13 +175,13 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
|
|
|
189
175
|
|
|
190
176
|
See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
|
|
191
177
|
|
|
192
|
-
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
178
|
+
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
193
179
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
194
|
-
| [
|
|
195
|
-
| [
|
|
196
|
-
| [
|
|
197
|
-
| [
|
|
198
|
-
| [
|
|
180
|
+
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
|
|
181
|
+
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
|
|
182
|
+
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
|
|
183
|
+
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
|
|
184
|
+
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
|
|
199
185
|
|
|
200
186
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
201
187
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -206,13 +192,13 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
206
192
|
|
|
207
193
|
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
208
194
|
|
|
209
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
195
|
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
210
196
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
211
|
-
| [
|
|
212
|
-
| [
|
|
213
|
-
| [
|
|
214
|
-
| [
|
|
215
|
-
| [
|
|
197
|
+
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
|
|
198
|
+
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
|
|
199
|
+
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
|
|
200
|
+
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
|
|
201
|
+
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
|
|
216
202
|
|
|
217
203
|
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
218
204
|
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -245,18 +231,18 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
|
245
231
|
|
|
246
232
|
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
|
|
247
233
|
| :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
|
|
248
|
-
| Label and export your custom datasets directly to
|
|
234
|
+
| Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
|
|
249
235
|
|
|
250
236
|
## <div align="center">Ultralytics HUB</div>
|
|
251
237
|
|
|
252
|
-
Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization,
|
|
238
|
+
Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLO11 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
|
|
253
239
|
|
|
254
240
|
<a href="https://ultralytics.com/hub" target="_blank">
|
|
255
241
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
|
256
242
|
|
|
257
243
|
## <div align="center">Contribute</div>
|
|
258
244
|
|
|
259
|
-
We love your input!
|
|
245
|
+
We love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
|
|
260
246
|
|
|
261
247
|
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
|
|
262
248
|
|