ultralytics 8.2.103__tar.gz → 8.3.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (244) hide show
  1. {ultralytics-8.2.103 → ultralytics-8.3.0}/PKG-INFO +51 -65
  2. {ultralytics-8.2.103 → ultralytics-8.3.0}/README.md +50 -64
  3. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/__init__.py +2 -2
  4. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/conftest.py +1 -1
  5. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_cuda.py +1 -1
  6. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_engine.py +5 -5
  7. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_explorer.py +3 -3
  8. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_exports.py +1 -2
  9. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_integrations.py +9 -9
  10. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_python.py +11 -11
  11. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_solutions.py +3 -3
  12. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/__init__.py +1 -2
  13. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/hand-keypoints.yaml +2 -2
  14. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/default.yaml +1 -0
  15. ultralytics-8.3.0/ultralytics/cfg/models/11/yolo11-cls.yaml +30 -0
  16. ultralytics-8.3.0/ultralytics/cfg/models/11/yolo11-obb.yaml +47 -0
  17. ultralytics-8.3.0/ultralytics/cfg/models/11/yolo11-pose.yaml +48 -0
  18. ultralytics-8.3.0/ultralytics/cfg/models/11/yolo11-seg.yaml +47 -0
  19. ultralytics-8.3.0/ultralytics/cfg/models/11/yolo11.yaml +47 -0
  20. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/augment.py +101 -80
  21. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/trainer.py +8 -1
  22. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/modules/__init__.py +7 -1
  23. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/modules/block.py +198 -37
  24. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/modules/conv.py +2 -1
  25. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/modules/head.py +9 -2
  26. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/tasks.py +25 -2
  27. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/downloads.py +3 -2
  28. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/loss.py +3 -0
  29. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/torch_utils.py +1 -1
  30. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics.egg-info/PKG-INFO +51 -65
  31. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics.egg-info/SOURCES.txt +5 -0
  32. {ultralytics-8.2.103 → ultralytics-8.3.0}/LICENSE +0 -0
  33. {ultralytics-8.2.103 → ultralytics-8.3.0}/pyproject.toml +0 -0
  34. {ultralytics-8.2.103 → ultralytics-8.3.0}/setup.cfg +0 -0
  35. {ultralytics-8.2.103 → ultralytics-8.3.0}/tests/test_cli.py +0 -0
  36. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/assets/bus.jpg +0 -0
  37. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/assets/zidane.jpg +0 -0
  38. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/__init__.py +0 -0
  39. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  40. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  41. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  42. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  43. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  44. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  45. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  46. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  47. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  48. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  49. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  50. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  51. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  52. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/coco.yaml +0 -0
  53. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  54. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  55. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  56. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  57. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  58. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  59. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  60. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  61. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  62. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  63. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/signature.yaml +0 -0
  64. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  65. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/datasets/xView.yaml +0 -0
  66. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  67. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  68. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  69. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  70. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  71. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  72. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  73. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  74. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  75. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  76. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  77. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  78. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  79. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  80. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  81. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  82. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  83. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  84. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  85. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  86. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  87. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  88. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  89. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  90. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  91. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  92. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  93. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  94. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  95. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  96. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  97. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  98. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  99. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  100. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  101. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  102. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  103. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  104. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  105. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  106. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  107. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  108. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/__init__.py +0 -0
  109. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/annotator.py +0 -0
  110. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/base.py +0 -0
  111. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/build.py +0 -0
  112. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/converter.py +0 -0
  113. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/dataset.py +0 -0
  114. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/explorer/__init__.py +0 -0
  115. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/explorer/explorer.py +0 -0
  116. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/explorer/gui/__init__.py +0 -0
  117. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/explorer/gui/dash.py +0 -0
  118. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/explorer/utils.py +0 -0
  119. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/loaders.py +0 -0
  120. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/split_dota.py +0 -0
  121. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/data/utils.py +0 -0
  122. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/__init__.py +0 -0
  123. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/exporter.py +0 -0
  124. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/model.py +0 -0
  125. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/predictor.py +0 -0
  126. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/results.py +0 -0
  127. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/tuner.py +0 -0
  128. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/engine/validator.py +0 -0
  129. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/hub/__init__.py +0 -0
  130. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/hub/auth.py +0 -0
  131. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/hub/google/__init__.py +0 -0
  132. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/hub/session.py +0 -0
  133. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/hub/utils.py +0 -0
  134. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/__init__.py +0 -0
  135. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/fastsam/__init__.py +0 -0
  136. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/fastsam/model.py +0 -0
  137. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/fastsam/predict.py +0 -0
  138. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/fastsam/utils.py +0 -0
  139. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/fastsam/val.py +0 -0
  140. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/nas/__init__.py +0 -0
  141. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/nas/model.py +0 -0
  142. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/nas/predict.py +0 -0
  143. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/nas/val.py +0 -0
  144. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/rtdetr/__init__.py +0 -0
  145. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/rtdetr/model.py +0 -0
  146. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/rtdetr/predict.py +0 -0
  147. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/rtdetr/train.py +0 -0
  148. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/rtdetr/val.py +0 -0
  149. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/__init__.py +0 -0
  150. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/amg.py +0 -0
  151. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/build.py +0 -0
  152. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/model.py +0 -0
  153. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/__init__.py +0 -0
  154. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/blocks.py +0 -0
  155. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/decoders.py +0 -0
  156. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/encoders.py +0 -0
  157. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  158. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/sam.py +0 -0
  159. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  160. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/transformer.py +0 -0
  161. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/modules/utils.py +0 -0
  162. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/sam/predict.py +0 -0
  163. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/utils/__init__.py +0 -0
  164. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/utils/loss.py +0 -0
  165. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/utils/ops.py +0 -0
  166. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/__init__.py +0 -0
  167. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/classify/__init__.py +0 -0
  168. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/classify/predict.py +0 -0
  169. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/classify/train.py +0 -0
  170. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/classify/val.py +0 -0
  171. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/detect/__init__.py +0 -0
  172. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/detect/predict.py +0 -0
  173. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/detect/train.py +0 -0
  174. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/detect/val.py +0 -0
  175. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/model.py +0 -0
  176. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/obb/__init__.py +0 -0
  177. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/obb/predict.py +0 -0
  178. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/obb/train.py +0 -0
  179. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/obb/val.py +0 -0
  180. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/pose/__init__.py +0 -0
  181. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/pose/predict.py +0 -0
  182. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/pose/train.py +0 -0
  183. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/pose/val.py +0 -0
  184. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/segment/__init__.py +0 -0
  185. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/segment/predict.py +0 -0
  186. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/segment/train.py +0 -0
  187. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/segment/val.py +0 -0
  188. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/world/__init__.py +0 -0
  189. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/world/train.py +0 -0
  190. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/models/yolo/world/train_world.py +0 -0
  191. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/__init__.py +0 -0
  192. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/autobackend.py +0 -0
  193. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/modules/activation.py +0 -0
  194. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/modules/transformer.py +0 -0
  195. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/nn/modules/utils.py +0 -0
  196. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/__init__.py +0 -0
  197. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/ai_gym.py +0 -0
  198. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/analytics.py +0 -0
  199. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/distance_calculation.py +0 -0
  200. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/heatmap.py +0 -0
  201. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/object_counter.py +0 -0
  202. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/parking_management.py +0 -0
  203. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/queue_management.py +0 -0
  204. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/speed_estimation.py +0 -0
  205. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/solutions/streamlit_inference.py +0 -0
  206. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/__init__.py +0 -0
  207. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/basetrack.py +0 -0
  208. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/bot_sort.py +0 -0
  209. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/byte_tracker.py +0 -0
  210. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/track.py +0 -0
  211. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/utils/__init__.py +0 -0
  212. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/utils/gmc.py +0 -0
  213. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  214. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/trackers/utils/matching.py +0 -0
  215. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/__init__.py +0 -0
  216. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/autobatch.py +0 -0
  217. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/benchmarks.py +0 -0
  218. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/__init__.py +0 -0
  219. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/base.py +0 -0
  220. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/clearml.py +0 -0
  221. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/comet.py +0 -0
  222. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/dvc.py +0 -0
  223. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/hub.py +0 -0
  224. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/mlflow.py +0 -0
  225. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/neptune.py +0 -0
  226. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/raytune.py +0 -0
  227. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  228. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/callbacks/wb.py +0 -0
  229. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/checks.py +0 -0
  230. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/dist.py +0 -0
  231. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/errors.py +0 -0
  232. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/files.py +0 -0
  233. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/instance.py +0 -0
  234. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/metrics.py +0 -0
  235. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/ops.py +0 -0
  236. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/patches.py +0 -0
  237. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/plotting.py +0 -0
  238. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/tal.py +0 -0
  239. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/triton.py +0 -0
  240. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics/utils/tuner.py +0 -0
  241. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics.egg-info/dependency_links.txt +0 -0
  242. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics.egg-info/entry_points.txt +0 -0
  243. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics.egg-info/requires.txt +0 -0
  244. {ultralytics-8.2.103 → ultralytics-8.3.0}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.2.103
3
+ Version: 8.3.0
4
4
  Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Ayush Chaurasia
6
6
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
@@ -96,7 +96,7 @@ Requires-Dist: pycocotools>=2.0.7; extra == "extra"
96
96
 
97
97
  <div>
98
98
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
99
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLOv8 Citation"></a>
99
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
100
100
  <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
101
101
  <a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
102
102
  <a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
@@ -108,13 +108,13 @@ Requires-Dist: pycocotools>=2.0.7; extra == "extra"
108
108
  </div>
109
109
  <br>
110
110
 
111
- [Ultralytics](https://www.ultralytics.com/) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
111
+ [Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
112
112
 
113
- We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://ultralytics.com/discord">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com">Forums</a>!
113
+ We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://ultralytics.com/discord">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com">Forums</a>!
114
114
 
115
115
  To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
116
116
 
117
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png" alt="YOLOv8 performance plots"></a>
117
+ <img width="100%" src="https://github.com/user-attachments/assets/a311a4ed-bbf2-43b5-8012-5f183a28a845" alt="YOLO11 performance plots"></a>
118
118
 
119
119
  <div align="center">
120
120
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
@@ -135,7 +135,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
135
135
 
136
136
  ## <div align="center">Documentation</div>
137
137
 
138
- See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
138
+ See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
139
139
 
140
140
  <details open>
141
141
  <summary>Install</summary>
@@ -159,23 +159,23 @@ For alternative installation methods including [Conda](https://anaconda.org/cond
159
159
 
160
160
  ### CLI
161
161
 
162
- YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
162
+ YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:
163
163
 
164
164
  ```bash
165
- yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
165
+ yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
166
166
  ```
167
167
 
168
- `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
168
+ `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
169
169
 
170
170
  ### Python
171
171
 
172
- YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
172
+ YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
173
173
 
174
174
  ```python
175
175
  from ultralytics import YOLO
176
176
 
177
177
  # Load a model
178
- model = YOLO("yolov8n.pt")
178
+ model = YOLO("yolo11n.pt")
179
179
 
180
180
  # Train the model
181
181
  train_results = model.train(
@@ -196,26 +196,13 @@ results[0].show()
196
196
  path = model.export(format="onnx") # return path to exported model
197
197
  ```
198
198
 
199
- See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
199
+ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
200
200
 
201
201
  </details>
202
202
 
203
- ### Notebooks
204
-
205
- Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://www.youtube.com/ultralytics?sub_confirmation=1) tutorial, making it easy to learn and implement advanced YOLOv8 features.
206
-
207
- | Docs | Notebook | YouTube |
208
- | ---------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
209
- | <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
210
- | <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
211
- | <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
212
- | <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
213
- | <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
214
- | <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
215
-
216
203
  ## <div align="center">Models</div>
217
204
 
218
- YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
205
+ YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
219
206
 
220
207
  <img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
221
208
 
@@ -225,13 +212,13 @@ All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cf
225
212
 
226
213
  See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
227
214
 
228
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
229
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
230
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
231
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
232
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
233
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
234
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
215
+ | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
216
+ | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
217
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
218
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
219
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
220
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
221
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
235
222
 
236
223
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
237
224
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -242,13 +229,13 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
242
229
 
243
230
  See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
244
231
 
245
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
246
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
247
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
248
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
249
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
250
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
251
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
232
+ | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
233
+ | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
234
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
235
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
236
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
237
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
238
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
252
239
 
253
240
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
254
241
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -259,14 +246,13 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
259
246
 
260
247
  See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
261
248
 
262
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
263
- | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
264
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
265
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
266
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
267
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
268
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
269
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
249
+ | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
250
+ | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
251
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
252
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
253
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
254
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
255
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
270
256
 
271
257
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
272
258
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -277,13 +263,13 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
277
263
 
278
264
  See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
279
265
 
280
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
281
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
282
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
283
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
284
- | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
285
- | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
286
- | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
266
+ | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
267
+ | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
268
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
269
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
270
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
271
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
272
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
287
273
 
288
274
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
289
275
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -294,13 +280,13 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
294
280
 
295
281
  See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
296
282
 
297
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
298
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
299
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
300
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
301
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
302
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 78.3 | 94.2 | 163.0 | 0.87 | 37.5 | 99.7 |
303
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
283
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
284
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | --------------------------------------- | ------------------ | ------------------------ |
285
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
286
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
287
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
288
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
289
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
304
290
 
305
291
  - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
306
292
  - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -333,18 +319,18 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
333
319
 
334
320
  | Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
335
321
  | :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
336
- | Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
322
+ | Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
337
323
 
338
324
  ## <div align="center">Ultralytics HUB</div>
339
325
 
340
- Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
326
+ Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLO11 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
341
327
 
342
328
  <a href="https://ultralytics.com/hub" target="_blank">
343
329
  <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
344
330
 
345
331
  ## <div align="center">Contribute</div>
346
332
 
347
- We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
333
+ We love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
348
334
 
349
335
  <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
350
336