ultralytics 8.1.47__tar.gz → 8.2.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (217) hide show
  1. {ultralytics-8.1.47/ultralytics.egg-info → ultralytics-8.2.1}/PKG-INFO +34 -34
  2. {ultralytics-8.1.47 → ultralytics-8.2.1}/README.md +33 -33
  3. {ultralytics-8.1.47 → ultralytics-8.2.1}/pyproject.toml +1 -0
  4. {ultralytics-8.1.47 → ultralytics-8.2.1}/tests/test_integrations.py +1 -1
  5. {ultralytics-8.1.47 → ultralytics-8.2.1}/tests/test_python.py +8 -6
  6. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/__init__.py +1 -1
  7. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/augment.py +1 -0
  8. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/base.py +1 -0
  9. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/build.py +1 -0
  10. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/dataset.py +1 -0
  11. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/explorer/explorer.py +2 -1
  12. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/exporter.py +4 -1
  13. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/model.py +6 -1
  14. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/trainer.py +3 -0
  15. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/hub/session.py +17 -0
  16. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/fastsam/model.py +1 -0
  17. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/nas/model.py +1 -0
  18. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/rtdetr/train.py +1 -0
  19. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/build.py +1 -0
  20. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/model.py +1 -0
  21. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/predict.py +1 -0
  22. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/utils/loss.py +1 -0
  23. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/classify/val.py +2 -2
  24. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/autobackend.py +4 -1
  25. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/modules/head.py +1 -0
  26. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/solutions/object_counter.py +1 -1
  27. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/track.py +1 -0
  28. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/__init__.py +3 -2
  29. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/benchmarks.py +4 -2
  30. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/base.py +0 -1
  31. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/downloads.py +2 -2
  32. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/loss.py +1 -0
  33. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/plotting.py +8 -8
  34. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/torch_utils.py +2 -0
  35. {ultralytics-8.1.47 → ultralytics-8.2.1/ultralytics.egg-info}/PKG-INFO +34 -34
  36. {ultralytics-8.1.47 → ultralytics-8.2.1}/LICENSE +0 -0
  37. {ultralytics-8.1.47 → ultralytics-8.2.1}/setup.cfg +0 -0
  38. {ultralytics-8.1.47 → ultralytics-8.2.1}/tests/test_cli.py +0 -0
  39. {ultralytics-8.1.47 → ultralytics-8.2.1}/tests/test_cuda.py +0 -0
  40. {ultralytics-8.1.47 → ultralytics-8.2.1}/tests/test_engine.py +0 -0
  41. {ultralytics-8.1.47 → ultralytics-8.2.1}/tests/test_explorer.py +0 -0
  42. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/assets/bus.jpg +0 -0
  43. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/assets/zidane.jpg +0 -0
  44. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/__init__.py +0 -0
  45. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  46. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  47. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  48. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  49. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  50. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  51. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  52. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  53. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  54. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  55. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  56. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  57. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  58. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/coco.yaml +0 -0
  59. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  60. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  61. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  62. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  63. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  64. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  65. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  66. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  67. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  68. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  69. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  70. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/datasets/xView.yaml +0 -0
  71. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/default.yaml +0 -0
  72. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  73. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  74. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  75. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  76. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  77. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  78. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  79. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  80. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  81. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  82. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  83. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  84. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  85. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  86. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  87. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  88. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  89. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  90. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  91. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  92. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  93. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  94. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  95. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  96. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  97. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  98. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  99. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  100. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  101. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  102. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  103. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  104. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  105. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/__init__.py +0 -0
  106. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/annotator.py +0 -0
  107. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/converter.py +0 -0
  108. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/explorer/__init__.py +0 -0
  109. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/explorer/gui/__init__.py +0 -0
  110. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/explorer/gui/dash.py +0 -0
  111. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/explorer/utils.py +0 -0
  112. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/loaders.py +0 -0
  113. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/split_dota.py +0 -0
  114. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/data/utils.py +0 -0
  115. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/__init__.py +0 -0
  116. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/predictor.py +0 -0
  117. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/results.py +0 -0
  118. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/tuner.py +0 -0
  119. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/engine/validator.py +0 -0
  120. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/hub/__init__.py +0 -0
  121. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/hub/auth.py +0 -0
  122. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/hub/utils.py +0 -0
  123. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/__init__.py +0 -0
  124. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/fastsam/__init__.py +0 -0
  125. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/fastsam/predict.py +0 -0
  126. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/fastsam/prompt.py +0 -0
  127. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/fastsam/utils.py +0 -0
  128. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/fastsam/val.py +0 -0
  129. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/nas/__init__.py +0 -0
  130. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/nas/predict.py +0 -0
  131. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/nas/val.py +0 -0
  132. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/rtdetr/__init__.py +0 -0
  133. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/rtdetr/model.py +0 -0
  134. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/rtdetr/predict.py +0 -0
  135. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/rtdetr/val.py +0 -0
  136. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/__init__.py +0 -0
  137. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/amg.py +0 -0
  138. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/modules/__init__.py +0 -0
  139. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/modules/decoders.py +0 -0
  140. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/modules/encoders.py +0 -0
  141. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/modules/sam.py +0 -0
  142. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  143. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/sam/modules/transformer.py +0 -0
  144. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/utils/__init__.py +0 -0
  145. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/utils/ops.py +0 -0
  146. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/__init__.py +0 -0
  147. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/classify/__init__.py +0 -0
  148. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/classify/predict.py +0 -0
  149. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/classify/train.py +0 -0
  150. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/detect/__init__.py +0 -0
  151. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/detect/predict.py +0 -0
  152. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/detect/train.py +0 -0
  153. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/detect/val.py +0 -0
  154. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/model.py +0 -0
  155. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/obb/__init__.py +0 -0
  156. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/obb/predict.py +0 -0
  157. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/obb/train.py +0 -0
  158. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/obb/val.py +0 -0
  159. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/pose/__init__.py +0 -0
  160. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/pose/predict.py +0 -0
  161. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/pose/train.py +0 -0
  162. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/pose/val.py +0 -0
  163. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/segment/__init__.py +0 -0
  164. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/segment/predict.py +0 -0
  165. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/segment/train.py +0 -0
  166. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/segment/val.py +0 -0
  167. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/world/__init__.py +0 -0
  168. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/world/train.py +0 -0
  169. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/models/yolo/world/train_world.py +0 -0
  170. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/__init__.py +0 -0
  171. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/modules/__init__.py +0 -0
  172. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/modules/block.py +0 -0
  173. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/modules/conv.py +0 -0
  174. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/modules/transformer.py +0 -0
  175. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/modules/utils.py +0 -0
  176. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/nn/tasks.py +0 -0
  177. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/solutions/__init__.py +0 -0
  178. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/solutions/ai_gym.py +0 -0
  179. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/solutions/distance_calculation.py +0 -0
  180. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/solutions/heatmap.py +0 -0
  181. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/solutions/queue_management.py +0 -0
  182. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/solutions/speed_estimation.py +0 -0
  183. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/__init__.py +0 -0
  184. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/basetrack.py +0 -0
  185. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/bot_sort.py +0 -0
  186. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/byte_tracker.py +2 -2
  187. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/utils/__init__.py +0 -0
  188. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/utils/gmc.py +0 -0
  189. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  190. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/trackers/utils/matching.py +0 -0
  191. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/autobatch.py +0 -0
  192. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/__init__.py +0 -0
  193. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/clearml.py +0 -0
  194. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/comet.py +0 -0
  195. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/dvc.py +0 -0
  196. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/hub.py +0 -0
  197. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/mlflow.py +0 -0
  198. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/neptune.py +0 -0
  199. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/raytune.py +0 -0
  200. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  201. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/callbacks/wb.py +0 -0
  202. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/checks.py +0 -0
  203. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/dist.py +0 -0
  204. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/errors.py +0 -0
  205. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/files.py +0 -0
  206. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/instance.py +0 -0
  207. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/metrics.py +0 -0
  208. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/ops.py +0 -0
  209. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/patches.py +0 -0
  210. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/tal.py +0 -0
  211. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/triton.py +0 -0
  212. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics/utils/tuner.py +0 -0
  213. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics.egg-info/SOURCES.txt +0 -0
  214. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics.egg-info/dependency_links.txt +0 -0
  215. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics.egg-info/entry_points.txt +0 -0
  216. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics.egg-info/requires.txt +0 -0
  217. {ultralytics-8.1.47 → ultralytics-8.2.1}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.1.47
3
+ Version: 8.2.1
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -80,8 +80,8 @@ Requires-Dist: pycocotools>=2.0.7; extra == "extra"
80
80
 
81
81
  <div align="center">
82
82
  <p>
83
- <a href="https://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
84
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png" alt="YOLO Vision banner"></a>
83
+ <a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
84
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
85
85
  </p>
86
86
 
87
87
  [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
@@ -205,11 +205,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
205
205
 
206
206
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
207
207
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
208
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
209
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
210
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
211
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
212
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
208
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
209
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
210
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
211
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
212
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
213
213
 
214
214
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
215
215
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -222,11 +222,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
222
222
 
223
223
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
224
224
  | ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
225
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
226
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
227
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
228
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
229
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
225
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
226
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
227
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
228
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
229
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
230
230
 
231
231
  - **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
232
232
  - **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
@@ -239,11 +239,11 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
239
239
 
240
240
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
241
241
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
242
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
243
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
244
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
245
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
246
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
242
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
243
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
244
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
245
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
246
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
247
247
 
248
248
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
249
249
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -256,12 +256,12 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
256
256
 
257
257
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
258
258
  | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
259
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
260
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
261
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
262
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
263
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
264
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
259
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
260
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
261
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
262
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
263
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
264
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
265
265
 
266
266
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
267
267
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -274,11 +274,11 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
274
274
 
275
275
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
276
276
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
277
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
278
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
279
- | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
280
- | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
281
- | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
277
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
278
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
279
+ | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
280
+ | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
281
+ | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
282
282
 
283
283
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
284
284
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -291,11 +291,11 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
291
291
 
292
292
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
293
293
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
294
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
295
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
296
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
297
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
298
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
294
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
295
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
296
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
297
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
298
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
299
299
 
300
300
  - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
301
301
  - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -1,7 +1,7 @@
1
1
  <div align="center">
2
2
  <p>
3
- <a href="https://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
4
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png" alt="YOLO Vision banner"></a>
3
+ <a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
4
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
5
5
  </p>
6
6
 
7
7
  [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
@@ -125,11 +125,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
125
125
 
126
126
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
127
127
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
128
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
129
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
130
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
131
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
132
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
128
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
129
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
130
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
131
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
132
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
133
133
 
134
134
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
135
135
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -142,11 +142,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
142
142
 
143
143
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
144
144
  | ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
145
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
146
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
147
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
148
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
149
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
145
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
146
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
147
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
148
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
149
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
150
150
 
151
151
  - **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
152
152
  - **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
@@ -159,11 +159,11 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
159
159
 
160
160
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
161
161
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
162
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
163
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
164
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
165
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
166
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
162
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
163
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
164
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
165
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
166
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
167
167
 
168
168
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
169
169
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -176,12 +176,12 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
176
176
 
177
177
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
178
178
  | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
179
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
180
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
181
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
182
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
183
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
184
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
179
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
180
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
181
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
182
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
183
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
184
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
185
185
 
186
186
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
187
187
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -194,11 +194,11 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
194
194
 
195
195
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
196
196
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
197
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
198
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
199
- | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
200
- | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
201
- | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
197
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
198
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
199
+ | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
200
+ | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
201
+ | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
202
202
 
203
203
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
204
204
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -211,11 +211,11 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
211
211
 
212
212
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
213
213
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
214
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
215
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
216
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
217
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
218
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
214
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
215
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
216
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
217
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
218
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
219
219
 
220
220
  - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
221
221
  - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -101,6 +101,7 @@ export = [
101
101
  "openvino>=2024.0.0", # OpenVINO export
102
102
  "tensorflow<=2.13.1; python_version <= '3.11'", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
103
103
  "tensorflowjs>=3.9.0; python_version <= '3.11'", # TF.js export, automatically installs tensorflow
104
+ # "flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package: WARNING Dockerfile error https://github.com/ultralytics/ultralytics/actions/runs/8715942435/job/23908971614
104
105
  "numpy==1.23.5; platform_machine == 'aarch64'", # fix error: `np.bool` was a deprecated alias for the builtin `bool` when using TensorRT models on NVIDIA Jetson
105
106
  "h5py!=3.11.0; platform_machine == 'aarch64'", # fix h5py build issues due to missing aarch64 wheels in 3.11 release
106
107
  ]
@@ -126,7 +126,7 @@ def test_pycocotools():
126
126
  from ultralytics.models.yolo.segment import SegmentationValidator
127
127
 
128
128
  # Download annotations after each dataset downloads first
129
- url = "https://github.com/ultralytics/assets/releases/download/v8.1.0/"
129
+ url = "https://github.com/ultralytics/assets/releases/download/v8.2.0/"
130
130
 
131
131
  args = {"model": "yolov8n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64}
132
132
  validator = DetectionValidator(args=args)
@@ -27,6 +27,7 @@ from ultralytics.utils import (
27
27
  Retry,
28
28
  checks,
29
29
  is_dir_writeable,
30
+ IS_RASPBERRYPI,
30
31
  )
31
32
  from ultralytics.utils.downloads import download
32
33
  from ultralytics.utils.torch_utils import TORCH_1_9, TORCH_1_13
@@ -221,15 +222,16 @@ def test_export_openvino():
221
222
  YOLO(f)(SOURCE) # exported model inference
222
223
 
223
224
 
225
+ @pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded
226
+ @pytest.mark.skipif(IS_RASPBERRYPI, reason="CoreML not supported on Raspberry Pi")
224
227
  @pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
225
228
  def test_export_coreml():
226
229
  """Test exporting the YOLO model to CoreML format."""
227
- if not WINDOWS: # RuntimeError: BlobWriter not loaded with coremltools 7.0 on windows
228
- if MACOS:
229
- f = YOLO(MODEL).export(format="coreml")
230
- YOLO(f)(SOURCE) # model prediction only supported on macOS for nms=False models
231
- else:
232
- YOLO(MODEL).export(format="coreml", nms=True)
230
+ if MACOS:
231
+ f = YOLO(MODEL).export(format="coreml")
232
+ YOLO(f)(SOURCE) # model prediction only supported on macOS for nms=False models
233
+ else:
234
+ YOLO(MODEL).export(format="coreml", nms=True)
233
235
 
234
236
 
235
237
  def test_export_tflite(enabled=False):
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.1.47"
3
+ __version__ = "8.2.1"
4
4
 
5
5
  from ultralytics.data.explorer.explorer import Explorer
6
6
  from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
@@ -16,6 +16,7 @@ from ultralytics.utils.instance import Instances
16
16
  from ultralytics.utils.metrics import bbox_ioa
17
17
  from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr
18
18
  from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13
19
+
19
20
  from .utils import polygons2masks, polygons2masks_overlap
20
21
 
21
22
  DEFAULT_MEAN = (0.0, 0.0, 0.0)
@@ -15,6 +15,7 @@ import psutil
15
15
  from torch.utils.data import Dataset
16
16
 
17
17
  from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
18
+
18
19
  from .utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS
19
20
 
20
21
 
@@ -22,6 +22,7 @@ from ultralytics.data.loaders import (
22
22
  from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
23
23
  from ultralytics.utils import RANK, colorstr
24
24
  from ultralytics.utils.checks import check_file
25
+
25
26
  from .dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
26
27
  from .utils import PIN_MEMORY
27
28
 
@@ -15,6 +15,7 @@ from torch.utils.data import ConcatDataset
15
15
 
16
16
  from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr
17
17
  from ultralytics.utils.ops import resample_segments
18
+
18
19
  from .augment import (
19
20
  Compose,
20
21
  Format,
@@ -7,8 +7,8 @@ from typing import Any, List, Tuple, Union
7
7
  import cv2
8
8
  import numpy as np
9
9
  import torch
10
- from PIL import Image
11
10
  from matplotlib import pyplot as plt
11
+ from PIL import Image
12
12
  from tqdm import tqdm
13
13
 
14
14
  from ultralytics.data.augment import Format
@@ -16,6 +16,7 @@ from ultralytics.data.dataset import YOLODataset
16
16
  from ultralytics.data.utils import check_det_dataset
17
17
  from ultralytics.models.yolo.model import YOLO
18
18
  from ultralytics.utils import LOGGER, USER_CONFIG_DIR, IterableSimpleNamespace, checks
19
+
19
20
  from .utils import get_sim_index_schema, get_table_schema, plot_query_result, prompt_sql_query, sanitize_batch
20
21
 
21
22
 
@@ -50,6 +50,7 @@ TensorFlow.js:
50
50
  $ npm start
51
51
  """
52
52
 
53
+ import gc
53
54
  import json
54
55
  import os
55
56
  import shutil
@@ -530,8 +531,9 @@ class Exporter:
530
531
  )
531
532
  system = "macos" if MACOS else "windows" if WINDOWS else "linux-aarch64" if ARM64 else "linux"
532
533
  try:
533
- _, assets = get_github_assets(repo="pnnx/pnnx", retry=True)
534
+ _, assets = get_github_assets(repo="pnnx/pnnx")
534
535
  url = [x for x in assets if f"{system}.zip" in x][0]
536
+ assert url, "Unable to retrieve PNNX repo assets"
535
537
  except Exception as e:
536
538
  url = f"https://github.com/pnnx/pnnx/releases/download/20240410/pnnx-20240410-{system}.zip"
537
539
  LOGGER.warning(f"{prefix} WARNING ⚠️ PNNX GitHub assets not found: {e}, using default {url}")
@@ -712,6 +714,7 @@ class Exporter:
712
714
 
713
715
  # Free CUDA memory
714
716
  del self.model
717
+ gc.collect()
715
718
  torch.cuda.empty_cache()
716
719
 
717
720
  # Write file
@@ -641,7 +641,12 @@ class Model(nn.Module):
641
641
  checks.check_pip_update_available()
642
642
 
643
643
  overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
644
- custom = {"data": DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task]} # method defaults
644
+ custom = {
645
+ # NOTE: handle the case when 'cfg' includes 'data'.
646
+ "data": overrides.get("data") or DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task],
647
+ "model": self.overrides["model"],
648
+ "task": self.task,
649
+ } # method defaults
645
650
  args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
646
651
  if args.get("resume"):
647
652
  args["resume"] = self.ckpt_path
@@ -6,6 +6,7 @@ Usage:
6
6
  $ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16
7
7
  """
8
8
 
9
+ import gc
9
10
  import math
10
11
  import os
11
12
  import subprocess
@@ -437,6 +438,7 @@ class BaseTrainer:
437
438
  self.scheduler.last_epoch = self.epoch # do not move
438
439
  self.stop |= epoch >= self.epochs # stop if exceeded epochs
439
440
  self.run_callbacks("on_fit_epoch_end")
441
+ gc.collect()
440
442
  torch.cuda.empty_cache() # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors
441
443
 
442
444
  # Early Stopping
@@ -458,6 +460,7 @@ class BaseTrainer:
458
460
  if self.args.plots:
459
461
  self.plot_metrics()
460
462
  self.run_callbacks("on_train_end")
463
+ gc.collect()
461
464
  torch.cuda.empty_cache()
462
465
  self.run_callbacks("teardown")
463
466
 
@@ -213,6 +213,7 @@ class HUBTrainingSession:
213
213
  thread=True,
214
214
  verbose=True,
215
215
  progress_total=None,
216
+ stream_reponse=None,
216
217
  *args,
217
218
  **kwargs,
218
219
  ):
@@ -232,6 +233,8 @@ class HUBTrainingSession:
232
233
 
233
234
  if progress_total:
234
235
  self._show_upload_progress(progress_total, response)
236
+ elif stream_reponse:
237
+ self._iterate_content(response)
235
238
 
236
239
  if HTTPStatus.OK <= response.status_code < HTTPStatus.MULTIPLE_CHOICES:
237
240
  # if request related to metrics upload
@@ -335,6 +338,7 @@ class HUBTrainingSession:
335
338
  timeout=3600,
336
339
  thread=not final,
337
340
  progress_total=progress_total,
341
+ stream_reponse=True,
338
342
  )
339
343
  else:
340
344
  LOGGER.warning(f"{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.")
@@ -353,3 +357,16 @@ class HUBTrainingSession:
353
357
  with TQDM(total=content_length, unit="B", unit_scale=True, unit_divisor=1024) as pbar:
354
358
  for data in response.iter_content(chunk_size=1024):
355
359
  pbar.update(len(data))
360
+
361
+ def _iterate_content(self, response: requests.Response) -> None:
362
+ """
363
+ Process the streamed HTTP response data.
364
+
365
+ Args:
366
+ response (requests.Response): The response object from the file download request.
367
+
368
+ Returns:
369
+ None
370
+ """
371
+ for data in response.iter_content(chunk_size=1024):
372
+ pass # Do nothing with data chunks
@@ -3,6 +3,7 @@
3
3
  from pathlib import Path
4
4
 
5
5
  from ultralytics.engine.model import Model
6
+
6
7
  from .predict import FastSAMPredictor
7
8
  from .val import FastSAMValidator
8
9
 
@@ -17,6 +17,7 @@ import torch
17
17
 
18
18
  from ultralytics.engine.model import Model
19
19
  from ultralytics.utils.torch_utils import model_info, smart_inference_mode
20
+
20
21
  from .predict import NASPredictor
21
22
  from .val import NASValidator
22
23
 
@@ -7,6 +7,7 @@ import torch
7
7
  from ultralytics.models.yolo.detect import DetectionTrainer
8
8
  from ultralytics.nn.tasks import RTDETRDetectionModel
9
9
  from ultralytics.utils import RANK, colorstr
10
+
10
11
  from .val import RTDETRDataset, RTDETRValidator
11
12
 
12
13
 
@@ -11,6 +11,7 @@ from functools import partial
11
11
  import torch
12
12
 
13
13
  from ultralytics.utils.downloads import attempt_download_asset
14
+
14
15
  from .modules.decoders import MaskDecoder
15
16
  from .modules.encoders import ImageEncoderViT, PromptEncoder
16
17
  from .modules.sam import Sam
@@ -18,6 +18,7 @@ from pathlib import Path
18
18
 
19
19
  from ultralytics.engine.model import Model
20
20
  from ultralytics.utils.torch_utils import model_info
21
+
21
22
  from .build import build_sam
22
23
  from .predict import Predictor
23
24
 
@@ -17,6 +17,7 @@ from ultralytics.engine.predictor import BasePredictor
17
17
  from ultralytics.engine.results import Results
18
18
  from ultralytics.utils import DEFAULT_CFG, ops
19
19
  from ultralytics.utils.torch_utils import select_device
20
+
20
21
  from .amg import (
21
22
  batch_iterator,
22
23
  batched_mask_to_box,
@@ -6,6 +6,7 @@ import torch.nn.functional as F
6
6
 
7
7
  from ultralytics.utils.loss import FocalLoss, VarifocalLoss
8
8
  from ultralytics.utils.metrics import bbox_iou
9
+
9
10
  from .ops import HungarianMatcher
10
11
 
11
12
 
@@ -56,8 +56,8 @@ class ClassificationValidator(BaseValidator):
56
56
  def update_metrics(self, preds, batch):
57
57
  """Updates running metrics with model predictions and batch targets."""
58
58
  n5 = min(len(self.names), 5)
59
- self.pred.append(preds.argsort(1, descending=True)[:, :n5])
60
- self.targets.append(batch["cls"])
59
+ self.pred.append(preds.argsort(1, descending=True)[:, :n5].type(torch.int32).cpu())
60
+ self.targets.append(batch["cls"].type(torch.int32).cpu())
61
61
 
62
62
  def finalize_metrics(self, *args, **kwargs):
63
63
  """Finalizes metrics of the model such as confusion_matrix and speed."""