ultralytics 8.1.43__tar.gz → 8.1.45__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- {ultralytics-8.1.43/ultralytics.egg-info → ultralytics-8.1.45}/PKG-INFO +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/pyproject.toml +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/tests/test_engine.py +2 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/tests/test_integrations.py +1 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/tests/test_python.py +3 -3
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/__init__.py +3 -2
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v9/yolov9c.yaml +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +2 -3
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v9/yolov9e.yaml +2 -3
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/__init__.py +3 -8
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/augment.py +2 -2
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/base.py +19 -23
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/build.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/converter.py +4 -3
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/dataset.py +3 -2
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/explorer/explorer.py +6 -5
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/loaders.py +3 -3
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/model.py +2 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/trainer.py +1 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/tuner.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/hub/auth.py +3 -3
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/hub/session.py +3 -3
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/hub/utils.py +6 -6
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/rtdetr/val.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/modules/tiny_encoder.py +2 -2
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/modules/transformer.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/predict.py +12 -12
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/detect/val.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/model.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/obb/val.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/world/train_world.py +2 -2
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/modules/head.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/solutions/object_counter.py +1 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/utils/kalman_filter.py +4 -4
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/utils/matching.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/__init__.py +53 -41
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/hub.py +1 -4
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/mlflow.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/tensorboard.py +1 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/checks.py +12 -12
- {ultralytics-8.1.43 → ultralytics-8.1.45/ultralytics.egg-info}/PKG-INFO +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/LICENSE +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/README.md +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/setup.cfg +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/tests/test_cli.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/tests/test_cuda.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/tests/test_explorer.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/annotator.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/explorer/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/explorer/gui/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/explorer/gui/dash.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/explorer/utils.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/split_dota.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/data/utils.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/exporter.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/predictor.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/results.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/engine/validator.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/hub/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/fastsam/prompt.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/nas/model.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/nas/val.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/build.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/model.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/classify/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/classify/train.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/classify/val.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/detect/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/detect/train.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/obb/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/obb/train.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/pose/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/pose/train.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/pose/val.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/segment/predict.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/segment/train.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/segment/val.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/autobackend.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/modules/__init__.py +8 -8
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/modules/block.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/nn/tasks.py +7 -7
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/solutions/ai_gym.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/solutions/heatmap.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/byte_tracker.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/track.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/benchmarks.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/dist.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/downloads.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/errors.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/files.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/instance.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/loss.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/metrics.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/ops.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/patches.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/plotting.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/tal.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/torch_utils.py +1 -1
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/triton.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics/utils/tuner.py +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics.egg-info/SOURCES.txt +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics.egg-info/dependency_links.txt +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics.egg-info/entry_points.txt +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics.egg-info/requires.txt +0 -0
- {ultralytics-8.1.43 → ultralytics-8.1.45}/ultralytics.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.1.
|
|
3
|
+
Version: 8.1.45
|
|
4
4
|
Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
6
6
|
Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
|
|
@@ -19,7 +19,7 @@
|
|
|
19
19
|
# For comprehensive documentation and usage instructions, visit: https://docs.ultralytics.com
|
|
20
20
|
|
|
21
21
|
[build-system]
|
|
22
|
-
requires = ["setuptools>=
|
|
22
|
+
requires = ["setuptools>=57.0.0", "wheel"]
|
|
23
23
|
build-backend = "setuptools.build_meta"
|
|
24
24
|
|
|
25
25
|
# Project settings -----------------------------------------------------------------------------------------------------
|
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
import sys
|
|
4
4
|
from unittest import mock
|
|
5
|
+
|
|
5
6
|
from ultralytics import YOLO
|
|
6
7
|
from ultralytics.cfg import get_cfg
|
|
7
8
|
from ultralytics.engine.exporter import Exporter
|
|
@@ -52,7 +53,7 @@ def test_detect():
|
|
|
52
53
|
pred.add_callback("on_predict_start", test_func)
|
|
53
54
|
assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
|
|
54
55
|
# Confirm there is no issue with sys.argv being empty.
|
|
55
|
-
with mock.patch.object(sys,
|
|
56
|
+
with mock.patch.object(sys, "argv", []):
|
|
56
57
|
result = pred(source=ASSETS, model=f"{MODEL}.pt")
|
|
57
58
|
assert len(result), "predictor test failed"
|
|
58
59
|
|
|
@@ -514,7 +514,8 @@ def test_utils_files():
|
|
|
514
514
|
@pytest.mark.slow
|
|
515
515
|
def test_utils_patches_torch_save():
|
|
516
516
|
"""Test torch_save backoff when _torch_save throws RuntimeError."""
|
|
517
|
-
from unittest.mock import
|
|
517
|
+
from unittest.mock import MagicMock, patch
|
|
518
|
+
|
|
518
519
|
from ultralytics.utils.patches import torch_save
|
|
519
520
|
|
|
520
521
|
mock = MagicMock(side_effect=RuntimeError)
|
|
@@ -651,9 +652,8 @@ def test_yolo_world():
|
|
|
651
652
|
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
|
|
652
653
|
|
|
653
654
|
model = YOLO("yolov8s-worldv2.yaml") # no YOLOv8n-world model yet
|
|
654
|
-
data = dict(train=dict(yolo_data=["coco8.yaml"]), val=dict(yolo_data=["coco8.yaml"]))
|
|
655
655
|
model.train(
|
|
656
|
-
data=
|
|
656
|
+
data={"train": {"yolo_data": ["coco8.yaml"]}, "val": {"yolo_data": ["coco8.yaml"]}},
|
|
657
657
|
epochs=2,
|
|
658
658
|
imgsz=32,
|
|
659
659
|
cache="disk",
|
|
@@ -1,15 +1,16 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
|
-
__version__ = "8.1.
|
|
3
|
+
__version__ = "8.1.45"
|
|
4
4
|
|
|
5
5
|
from ultralytics.data.explorer.explorer import Explorer
|
|
6
6
|
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
|
|
7
7
|
from ultralytics.models.fastsam import FastSAM
|
|
8
8
|
from ultralytics.models.nas import NAS
|
|
9
|
-
from ultralytics.utils import ASSETS, SETTINGS
|
|
9
|
+
from ultralytics.utils import ASSETS, SETTINGS
|
|
10
10
|
from ultralytics.utils.checks import check_yolo as checks
|
|
11
11
|
from ultralytics.utils.downloads import download
|
|
12
12
|
|
|
13
|
+
settings = SETTINGS
|
|
13
14
|
__all__ = (
|
|
14
15
|
"__version__",
|
|
15
16
|
"ASSETS",
|
|
@@ -17,13 +17,13 @@ backbone:
|
|
|
17
17
|
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
|
|
18
18
|
- [-1, 1, ADown, [1024]] # 8-P5/32
|
|
19
19
|
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
|
|
20
|
-
|
|
20
|
+
|
|
21
21
|
- [1, 1, CBLinear, [[64]]] # 10
|
|
22
22
|
- [3, 1, CBLinear, [[64, 128]]] # 11
|
|
23
23
|
- [5, 1, CBLinear, [[64, 128, 256]]] # 12
|
|
24
24
|
- [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
|
|
25
25
|
- [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
|
|
26
|
-
|
|
26
|
+
|
|
27
27
|
- [0, 1, Conv, [64, 3, 2]] # 15-P1/2
|
|
28
28
|
- [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
|
|
29
29
|
- [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
|
|
@@ -58,5 +58,4 @@ head:
|
|
|
58
58
|
- [[-1, 29], 1, Concat, [1]] # cat head P5
|
|
59
59
|
- [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
|
|
60
60
|
|
|
61
|
-
# segment
|
|
62
61
|
- [[35, 38, 41], 1, Segment, [nc, 32, 256]] # Segment (P3, P4, P5)
|
|
@@ -17,13 +17,13 @@ backbone:
|
|
|
17
17
|
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
|
|
18
18
|
- [-1, 1, ADown, [1024]] # 8-P5/32
|
|
19
19
|
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
|
|
20
|
-
|
|
20
|
+
|
|
21
21
|
- [1, 1, CBLinear, [[64]]] # 10
|
|
22
22
|
- [3, 1, CBLinear, [[64, 128]]] # 11
|
|
23
23
|
- [5, 1, CBLinear, [[64, 128, 256]]] # 12
|
|
24
24
|
- [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
|
|
25
25
|
- [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
|
|
26
|
-
|
|
26
|
+
|
|
27
27
|
- [0, 1, Conv, [64, 3, 2]] # 15-P1/2
|
|
28
28
|
- [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
|
|
29
29
|
- [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
|
|
@@ -58,5 +58,4 @@ head:
|
|
|
58
58
|
- [[-1, 29], 1, Concat, [1]] # cat head P5
|
|
59
59
|
- [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
|
|
60
60
|
|
|
61
|
-
# detect
|
|
62
61
|
- [[35, 38, 41], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
|
@@ -1,19 +1,14 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
3
|
from .base import BaseDataset
|
|
4
|
-
from .build import
|
|
5
|
-
build_dataloader,
|
|
6
|
-
build_yolo_dataset,
|
|
7
|
-
build_grounding,
|
|
8
|
-
load_inference_source,
|
|
9
|
-
)
|
|
4
|
+
from .build import build_dataloader, build_grounding, build_yolo_dataset, load_inference_source
|
|
10
5
|
from .dataset import (
|
|
11
6
|
ClassificationDataset,
|
|
7
|
+
GroundingDataset,
|
|
12
8
|
SemanticDataset,
|
|
9
|
+
YOLOConcatDataset,
|
|
13
10
|
YOLODataset,
|
|
14
11
|
YOLOMultiModalDataset,
|
|
15
|
-
GroundingDataset,
|
|
16
|
-
YOLOConcatDataset,
|
|
17
12
|
)
|
|
18
13
|
|
|
19
14
|
__all__ = (
|
|
@@ -20,7 +20,7 @@ from .utils import polygons2masks, polygons2masks_overlap
|
|
|
20
20
|
|
|
21
21
|
DEFAULT_MEAN = (0.0, 0.0, 0.0)
|
|
22
22
|
DEFAULT_STD = (1.0, 1.0, 1.0)
|
|
23
|
-
|
|
23
|
+
DEFAULT_CROP_FRACTION = 1.0
|
|
24
24
|
|
|
25
25
|
|
|
26
26
|
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
|
|
@@ -1134,7 +1134,7 @@ def classify_transforms(
|
|
|
1134
1134
|
mean=DEFAULT_MEAN,
|
|
1135
1135
|
std=DEFAULT_STD,
|
|
1136
1136
|
interpolation=Image.BILINEAR,
|
|
1137
|
-
crop_fraction: float =
|
|
1137
|
+
crop_fraction: float = DEFAULT_CROP_FRACTION,
|
|
1138
1138
|
):
|
|
1139
1139
|
"""
|
|
1140
1140
|
Classification transforms for evaluation/inference. Inspired by timm/data/transforms_factory.py.
|
|
@@ -15,7 +15,7 @@ import psutil
|
|
|
15
15
|
from torch.utils.data import Dataset
|
|
16
16
|
|
|
17
17
|
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
|
|
18
|
-
from .utils import
|
|
18
|
+
from .utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS
|
|
19
19
|
|
|
20
20
|
|
|
21
21
|
class BaseDataset(Dataset):
|
|
@@ -81,20 +81,17 @@ class BaseDataset(Dataset):
|
|
|
81
81
|
if self.rect:
|
|
82
82
|
assert self.batch_size is not None
|
|
83
83
|
self.set_rectangle()
|
|
84
|
-
if isinstance(cache, str):
|
|
85
|
-
cache = cache.lower()
|
|
86
84
|
|
|
87
85
|
# Buffer thread for mosaic images
|
|
88
86
|
self.buffer = [] # buffer size = batch size
|
|
89
87
|
self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0
|
|
90
88
|
|
|
91
|
-
# Cache images
|
|
92
|
-
if cache == "ram" and not self.check_cache_ram():
|
|
93
|
-
cache = False
|
|
89
|
+
# Cache images (options are cache = True, False, None, "ram", "disk")
|
|
94
90
|
self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
|
|
95
91
|
self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
|
|
96
|
-
if cache
|
|
97
|
-
|
|
92
|
+
self.cache = cache.lower() if isinstance(cache, str) else "ram" if cache is True else None
|
|
93
|
+
if (self.cache == "ram" and self.check_cache_ram()) or self.cache == "disk":
|
|
94
|
+
self.cache_images()
|
|
98
95
|
|
|
99
96
|
# Transforms
|
|
100
97
|
self.transforms = self.build_transforms(hyp=hyp)
|
|
@@ -122,9 +119,7 @@ class BaseDataset(Dataset):
|
|
|
122
119
|
except Exception as e:
|
|
123
120
|
raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e
|
|
124
121
|
if self.fraction < 1:
|
|
125
|
-
|
|
126
|
-
num_elements_to_select = round(len(im_files) * self.fraction)
|
|
127
|
-
im_files = random.sample(im_files, num_elements_to_select)
|
|
122
|
+
im_files = im_files[: round(len(im_files) * self.fraction)] # retain a fraction of the dataset
|
|
128
123
|
return im_files
|
|
129
124
|
|
|
130
125
|
def update_labels(self, include_class: Optional[list]):
|
|
@@ -177,26 +172,27 @@ class BaseDataset(Dataset):
|
|
|
177
172
|
self.buffer.append(i)
|
|
178
173
|
if len(self.buffer) >= self.max_buffer_length:
|
|
179
174
|
j = self.buffer.pop(0)
|
|
180
|
-
|
|
175
|
+
if self.cache != "ram":
|
|
176
|
+
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None
|
|
181
177
|
|
|
182
178
|
return im, (h0, w0), im.shape[:2]
|
|
183
179
|
|
|
184
180
|
return self.ims[i], self.im_hw0[i], self.im_hw[i]
|
|
185
181
|
|
|
186
|
-
def cache_images(self
|
|
182
|
+
def cache_images(self):
|
|
187
183
|
"""Cache images to memory or disk."""
|
|
188
184
|
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
|
189
|
-
fcn = self.cache_images_to_disk if cache == "disk" else self.load_image
|
|
185
|
+
fcn, storage = (self.cache_images_to_disk, "Disk") if self.cache == "disk" else (self.load_image, "RAM")
|
|
190
186
|
with ThreadPool(NUM_THREADS) as pool:
|
|
191
187
|
results = pool.imap(fcn, range(self.ni))
|
|
192
188
|
pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0)
|
|
193
189
|
for i, x in pbar:
|
|
194
|
-
if cache == "disk":
|
|
190
|
+
if self.cache == "disk":
|
|
195
191
|
b += self.npy_files[i].stat().st_size
|
|
196
192
|
else: # 'ram'
|
|
197
193
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
|
198
194
|
b += self.ims[i].nbytes
|
|
199
|
-
pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {
|
|
195
|
+
pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {storage})"
|
|
200
196
|
pbar.close()
|
|
201
197
|
|
|
202
198
|
def cache_images_to_disk(self, i):
|
|
@@ -215,15 +211,15 @@ class BaseDataset(Dataset):
|
|
|
215
211
|
b += im.nbytes * ratio**2
|
|
216
212
|
mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM
|
|
217
213
|
mem = psutil.virtual_memory()
|
|
218
|
-
|
|
219
|
-
if not
|
|
214
|
+
success = mem_required < mem.available # to cache or not to cache, that is the question
|
|
215
|
+
if not success:
|
|
216
|
+
self.cache = None
|
|
220
217
|
LOGGER.info(
|
|
221
|
-
f
|
|
222
|
-
f
|
|
223
|
-
f
|
|
224
|
-
f"{'caching images ✅' if cache else 'not caching images ⚠️'}"
|
|
218
|
+
f"{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images "
|
|
219
|
+
f"with {int(safety_margin * 100)}% safety margin but only "
|
|
220
|
+
f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, not caching images ⚠️"
|
|
225
221
|
)
|
|
226
|
-
return
|
|
222
|
+
return success
|
|
227
223
|
|
|
228
224
|
def set_rectangle(self):
|
|
229
225
|
"""Sets the shape of bounding boxes for YOLO detections as rectangles."""
|
|
@@ -22,7 +22,7 @@ from ultralytics.data.loaders import (
|
|
|
22
22
|
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
|
|
23
23
|
from ultralytics.utils import RANK, colorstr
|
|
24
24
|
from ultralytics.utils.checks import check_file
|
|
25
|
-
from .dataset import YOLODataset, YOLOMultiModalDataset
|
|
25
|
+
from .dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
|
|
26
26
|
from .utils import PIN_MEMORY
|
|
27
27
|
|
|
28
28
|
|
|
@@ -519,11 +519,12 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
|
|
|
519
519
|
├─ ..
|
|
520
520
|
└─ NNN.txt
|
|
521
521
|
"""
|
|
522
|
+
from tqdm import tqdm
|
|
523
|
+
|
|
524
|
+
from ultralytics import SAM
|
|
522
525
|
from ultralytics.data import YOLODataset
|
|
523
|
-
from ultralytics.utils.ops import xywh2xyxy
|
|
524
526
|
from ultralytics.utils import LOGGER
|
|
525
|
-
from ultralytics import
|
|
526
|
-
from tqdm import tqdm
|
|
527
|
+
from ultralytics.utils.ops import xywh2xyxy
|
|
527
528
|
|
|
528
529
|
# NOTE: add placeholder to pass class index check
|
|
529
530
|
dataset = YOLODataset(im_dir, data=dict(names=list(range(1000))))
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
2
3
|
import contextlib
|
|
3
4
|
import json
|
|
4
5
|
from collections import defaultdict
|
|
@@ -30,10 +31,10 @@ from .utils import (
|
|
|
30
31
|
LOGGER,
|
|
31
32
|
get_hash,
|
|
32
33
|
img2label_paths,
|
|
33
|
-
verify_image,
|
|
34
|
-
verify_image_label,
|
|
35
34
|
load_dataset_cache_file,
|
|
36
35
|
save_dataset_cache_file,
|
|
36
|
+
verify_image,
|
|
37
|
+
verify_image_label,
|
|
37
38
|
)
|
|
38
39
|
|
|
39
40
|
# Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8
|
|
@@ -15,7 +15,7 @@ from ultralytics.data.augment import Format
|
|
|
15
15
|
from ultralytics.data.dataset import YOLODataset
|
|
16
16
|
from ultralytics.data.utils import check_det_dataset
|
|
17
17
|
from ultralytics.models.yolo.model import YOLO
|
|
18
|
-
from ultralytics.utils import LOGGER, IterableSimpleNamespace, checks
|
|
18
|
+
from ultralytics.utils import LOGGER, USER_CONFIG_DIR, IterableSimpleNamespace, checks
|
|
19
19
|
from .utils import get_sim_index_schema, get_table_schema, plot_query_result, prompt_sql_query, sanitize_batch
|
|
20
20
|
|
|
21
21
|
|
|
@@ -203,7 +203,8 @@ class Explorer:
|
|
|
203
203
|
table = self.table.to_arrow() # noqa NOTE: Don't comment this. This line is used by DuckDB
|
|
204
204
|
if not query.startswith("SELECT") and not query.startswith("WHERE"):
|
|
205
205
|
raise ValueError(
|
|
206
|
-
f"Query must start with SELECT or WHERE. You can either pass the entire query or just the WHERE
|
|
206
|
+
f"Query must start with SELECT or WHERE. You can either pass the entire query or just the WHERE "
|
|
207
|
+
f"clause. found {query}"
|
|
207
208
|
)
|
|
208
209
|
if query.startswith("WHERE"):
|
|
209
210
|
query = f"SELECT * FROM 'table' {query}"
|
|
@@ -318,13 +319,13 @@ class Explorer:
|
|
|
318
319
|
|
|
319
320
|
Args:
|
|
320
321
|
max_dist (float): maximum L2 distance between the embeddings to consider. Defaults to 0.2.
|
|
321
|
-
top_k (float): Percentage of the closest data points to consider when counting. Used to apply limit
|
|
322
|
+
top_k (float): Percentage of the closest data points to consider when counting. Used to apply limit.
|
|
322
323
|
vector search. Defaults: None.
|
|
323
324
|
force (bool): Whether to overwrite the existing similarity index or not. Defaults to True.
|
|
324
325
|
|
|
325
326
|
Returns:
|
|
326
|
-
(pandas.DataFrame): A dataframe containing the similarity index. Each row corresponds to an image,
|
|
327
|
-
|
|
327
|
+
(pandas.DataFrame): A dataframe containing the similarity index. Each row corresponds to an image,
|
|
328
|
+
and columns include indices of similar images and their respective distances.
|
|
328
329
|
|
|
329
330
|
Example:
|
|
330
331
|
```python
|
|
@@ -15,8 +15,8 @@ import requests
|
|
|
15
15
|
import torch
|
|
16
16
|
from PIL import Image
|
|
17
17
|
|
|
18
|
-
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
|
|
19
|
-
from ultralytics.utils import
|
|
18
|
+
from ultralytics.data.utils import FORMATS_HELP_MSG, IMG_FORMATS, VID_FORMATS
|
|
19
|
+
from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, ops
|
|
20
20
|
from ultralytics.utils.checks import check_requirements
|
|
21
21
|
|
|
22
22
|
|
|
@@ -87,7 +87,7 @@ class LoadStreams:
|
|
|
87
87
|
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
|
|
88
88
|
s = get_best_youtube_url(s)
|
|
89
89
|
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
|
90
|
-
if s == 0 and (
|
|
90
|
+
if s == 0 and (IS_COLAB or IS_KAGGLE):
|
|
91
91
|
raise NotImplementedError(
|
|
92
92
|
"'source=0' webcam not supported in Colab and Kaggle notebooks. "
|
|
93
93
|
"Try running 'source=0' in a local environment."
|
|
@@ -321,9 +321,10 @@ class Model(nn.Module):
|
|
|
321
321
|
AssertionError: If the model is not a PyTorch model.
|
|
322
322
|
"""
|
|
323
323
|
self._check_is_pytorch_model()
|
|
324
|
-
from ultralytics import __version__
|
|
325
324
|
from datetime import datetime
|
|
326
325
|
|
|
326
|
+
from ultralytics import __version__
|
|
327
|
+
|
|
327
328
|
updates = {
|
|
328
329
|
"date": datetime.now().isoformat(),
|
|
329
330
|
"version": __version__,
|
|
@@ -464,6 +464,7 @@ class BaseTrainer:
|
|
|
464
464
|
def save_model(self):
|
|
465
465
|
"""Save model training checkpoints with additional metadata."""
|
|
466
466
|
import io
|
|
467
|
+
|
|
467
468
|
import pandas as pd # scope for faster 'import ultralytics'
|
|
468
469
|
|
|
469
470
|
# Serialize ckpt to a byte buffer once (faster than repeated torch.save() calls)
|
|
@@ -218,7 +218,7 @@ class Tuner:
|
|
|
218
218
|
for ckpt in weights_dir.glob("*.pt"):
|
|
219
219
|
shutil.copy2(ckpt, self.tune_dir / "weights")
|
|
220
220
|
elif cleanup:
|
|
221
|
-
shutil.rmtree(
|
|
221
|
+
shutil.rmtree(weights_dir, ignore_errors=True) # remove iteration weights/ dir to reduce storage space
|
|
222
222
|
|
|
223
223
|
# Plot tune results
|
|
224
224
|
plot_tune_results(self.tune_csv)
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
import requests
|
|
4
4
|
|
|
5
5
|
from ultralytics.hub.utils import HUB_API_ROOT, HUB_WEB_ROOT, PREFIX, request_with_credentials
|
|
6
|
-
from ultralytics.utils import LOGGER, SETTINGS, emojis
|
|
6
|
+
from ultralytics.utils import IS_COLAB, LOGGER, SETTINGS, emojis
|
|
7
7
|
|
|
8
8
|
API_KEY_URL = f"{HUB_WEB_ROOT}/settings?tab=api+keys"
|
|
9
9
|
|
|
@@ -50,7 +50,7 @@ class Auth:
|
|
|
50
50
|
# Attempt to authenticate with the provided API key
|
|
51
51
|
success = self.authenticate()
|
|
52
52
|
# If the API key is not provided and the environment is a Google Colab notebook
|
|
53
|
-
elif
|
|
53
|
+
elif IS_COLAB:
|
|
54
54
|
# Attempt to authenticate using browser cookies
|
|
55
55
|
success = self.auth_with_cookies()
|
|
56
56
|
else:
|
|
@@ -109,7 +109,7 @@ class Auth:
|
|
|
109
109
|
Returns:
|
|
110
110
|
(bool): True if authentication is successful, False otherwise.
|
|
111
111
|
"""
|
|
112
|
-
if not
|
|
112
|
+
if not IS_COLAB:
|
|
113
113
|
return False # Currently only works with Colab
|
|
114
114
|
try:
|
|
115
115
|
authn = request_with_credentials(f"{HUB_API_ROOT}/v1/auth/auto")
|
|
@@ -7,11 +7,11 @@ from pathlib import Path
|
|
|
7
7
|
|
|
8
8
|
import requests
|
|
9
9
|
|
|
10
|
-
from ultralytics.hub.utils import
|
|
11
|
-
from ultralytics.utils import LOGGER, SETTINGS, __version__, checks, emojis
|
|
10
|
+
from ultralytics.hub.utils import HELP_MSG, HUB_WEB_ROOT, PREFIX, TQDM
|
|
11
|
+
from ultralytics.utils import IS_COLAB, LOGGER, SETTINGS, __version__, checks, emojis
|
|
12
12
|
from ultralytics.utils.errors import HUBModelError
|
|
13
13
|
|
|
14
|
-
AGENT_NAME = f"python-{__version__}-colab" if
|
|
14
|
+
AGENT_NAME = f"python-{__version__}-colab" if IS_COLAB else f"python-{__version__}-local"
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class HUBTrainingSession:
|
|
@@ -12,6 +12,9 @@ import requests
|
|
|
12
12
|
from ultralytics.utils import (
|
|
13
13
|
ARGV,
|
|
14
14
|
ENVIRONMENT,
|
|
15
|
+
IS_COLAB,
|
|
16
|
+
IS_GIT_DIR,
|
|
17
|
+
IS_PIP_PACKAGE,
|
|
15
18
|
LOGGER,
|
|
16
19
|
ONLINE,
|
|
17
20
|
RANK,
|
|
@@ -22,9 +25,6 @@ from ultralytics.utils import (
|
|
|
22
25
|
__version__,
|
|
23
26
|
colorstr,
|
|
24
27
|
get_git_origin_url,
|
|
25
|
-
is_colab,
|
|
26
|
-
is_git_dir,
|
|
27
|
-
is_pip_package,
|
|
28
28
|
)
|
|
29
29
|
from ultralytics.utils.downloads import GITHUB_ASSETS_NAMES
|
|
30
30
|
|
|
@@ -48,7 +48,7 @@ def request_with_credentials(url: str) -> any:
|
|
|
48
48
|
Raises:
|
|
49
49
|
OSError: If the function is not run in a Google Colab environment.
|
|
50
50
|
"""
|
|
51
|
-
if not
|
|
51
|
+
if not IS_COLAB:
|
|
52
52
|
raise OSError("request_with_credentials() must run in a Colab environment")
|
|
53
53
|
from google.colab import output # noqa
|
|
54
54
|
from IPython import display # noqa
|
|
@@ -189,7 +189,7 @@ class Events:
|
|
|
189
189
|
self.t = 0.0 # rate limit timer (seconds)
|
|
190
190
|
self.metadata = {
|
|
191
191
|
"cli": Path(ARGV[0]).name == "yolo",
|
|
192
|
-
"install": "git" if
|
|
192
|
+
"install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other",
|
|
193
193
|
"python": ".".join(platform.python_version_tuple()[:2]), # i.e. 3.10
|
|
194
194
|
"version": __version__,
|
|
195
195
|
"env": ENVIRONMENT,
|
|
@@ -201,7 +201,7 @@ class Events:
|
|
|
201
201
|
and RANK in {-1, 0}
|
|
202
202
|
and not TESTS_RUNNING
|
|
203
203
|
and ONLINE
|
|
204
|
-
and (
|
|
204
|
+
and (IS_PIP_PACKAGE or get_git_origin_url() == "https://github.com/ultralytics/ultralytics.git")
|
|
205
205
|
)
|
|
206
206
|
|
|
207
207
|
def __call__(self, cfg):
|
|
@@ -125,7 +125,7 @@ class RTDETRValidator(DetectionValidator):
|
|
|
125
125
|
bbox = ops.xywh2xyxy(bbox) # target boxes
|
|
126
126
|
bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
|
|
127
127
|
bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
|
|
128
|
-
return
|
|
128
|
+
return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
|
|
129
129
|
|
|
130
130
|
def _prepare_pred(self, pred, pbatch):
|
|
131
131
|
"""Prepares and returns a batch with transformed bounding boxes and class labels."""
|
|
@@ -584,9 +584,9 @@ class TinyViT(nn.Module):
|
|
|
584
584
|
img_size (int, optional): The input image size. Defaults to 224.
|
|
585
585
|
in_chans (int, optional): Number of input channels. Defaults to 3.
|
|
586
586
|
num_classes (int, optional): Number of classification classes. Defaults to 1000.
|
|
587
|
-
embed_dims (List[int], optional): List of embedding dimensions
|
|
587
|
+
embed_dims (List[int], optional): List of embedding dimensions per layer. Defaults to [96, 192, 384, 768].
|
|
588
588
|
depths (List[int], optional): List of depths for each layer. Defaults to [2, 2, 6, 2].
|
|
589
|
-
num_heads (List[int], optional): List of number of attention heads
|
|
589
|
+
num_heads (List[int], optional): List of number of attention heads per layer. Defaults to [3, 6, 12, 24].
|
|
590
590
|
window_sizes (List[int], optional): List of window sizes for each layer. Defaults to [7, 7, 14, 7].
|
|
591
591
|
mlp_ratio (float, optional): Ratio of MLP hidden dimension to embedding dimension. Defaults to 4.
|
|
592
592
|
drop_rate (float, optional): Dropout rate. Defaults to 0.
|
|
@@ -222,7 +222,7 @@ class Attention(nn.Module):
|
|
|
222
222
|
downsample_rate (int, optional): The factor by which the internal dimensions are downsampled. Defaults to 1.
|
|
223
223
|
|
|
224
224
|
Raises:
|
|
225
|
-
AssertionError: If 'num_heads' does not evenly divide the internal
|
|
225
|
+
AssertionError: If 'num_heads' does not evenly divide the internal dim (embedding_dim / downsample_rate).
|
|
226
226
|
"""
|
|
227
227
|
super().__init__()
|
|
228
228
|
self.embedding_dim = embedding_dim
|
|
@@ -127,10 +127,10 @@ class Predictor(BasePredictor):
|
|
|
127
127
|
Args:
|
|
128
128
|
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
|
|
129
129
|
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
|
|
130
|
-
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in
|
|
131
|
-
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1
|
|
132
|
-
masks (np.ndarray, optional): Low-resolution masks from previous predictions
|
|
133
|
-
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts.
|
|
130
|
+
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
|
|
131
|
+
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
|
|
132
|
+
masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.
|
|
133
|
+
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts.
|
|
134
134
|
|
|
135
135
|
Returns:
|
|
136
136
|
(tuple): Contains the following three elements.
|
|
@@ -156,10 +156,10 @@ class Predictor(BasePredictor):
|
|
|
156
156
|
Args:
|
|
157
157
|
im (torch.Tensor): The preprocessed input image in tensor format, with shape (N, C, H, W).
|
|
158
158
|
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
|
|
159
|
-
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in
|
|
160
|
-
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1
|
|
161
|
-
masks (np.ndarray, optional): Low-resolution masks from previous predictions
|
|
162
|
-
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts.
|
|
159
|
+
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
|
|
160
|
+
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
|
|
161
|
+
masks (np.ndarray, optional): Low-resolution masks from previous predictions shape (N,H,W). For SAM H=W=256.
|
|
162
|
+
multimask_output (bool, optional): Flag to return multiple masks. Helpful for ambiguous prompts.
|
|
163
163
|
|
|
164
164
|
Returns:
|
|
165
165
|
(tuple): Contains the following three elements.
|
|
@@ -230,7 +230,7 @@ class Predictor(BasePredictor):
|
|
|
230
230
|
im (torch.Tensor): Input tensor representing the preprocessed image with dimensions (N, C, H, W).
|
|
231
231
|
crop_n_layers (int): Specifies the number of layers for additional mask predictions on image crops.
|
|
232
232
|
Each layer produces 2**i_layer number of image crops.
|
|
233
|
-
crop_overlap_ratio (float): Determines the
|
|
233
|
+
crop_overlap_ratio (float): Determines the overlap between crops. Scaled down in subsequent layers.
|
|
234
234
|
crop_downscale_factor (int): Scaling factor for the number of sampled points-per-side in each layer.
|
|
235
235
|
point_grids (list[np.ndarray], optional): Custom grids for point sampling normalized to [0,1].
|
|
236
236
|
Used in the nth crop layer.
|
|
@@ -240,7 +240,7 @@ class Predictor(BasePredictor):
|
|
|
240
240
|
conf_thres (float): Confidence threshold [0,1] for filtering based on the model's mask quality prediction.
|
|
241
241
|
stability_score_thresh (float): Stability threshold [0,1] for mask filtering based on mask stability.
|
|
242
242
|
stability_score_offset (float): Offset value for calculating stability score.
|
|
243
|
-
crop_nms_thresh (float): IoU cutoff for
|
|
243
|
+
crop_nms_thresh (float): IoU cutoff for NMS to remove duplicate masks between crops.
|
|
244
244
|
|
|
245
245
|
Returns:
|
|
246
246
|
(tuple): A tuple containing segmented masks, confidence scores, and bounding boxes.
|
|
@@ -351,8 +351,8 @@ class Predictor(BasePredictor):
|
|
|
351
351
|
"""
|
|
352
352
|
Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.
|
|
353
353
|
|
|
354
|
-
The method scales masks and boxes to the original image size and applies a threshold to the mask predictions.
|
|
355
|
-
SAM model uses advanced architecture and promptable segmentation tasks to achieve real-time performance.
|
|
354
|
+
The method scales masks and boxes to the original image size and applies a threshold to the mask predictions.
|
|
355
|
+
The SAM model uses advanced architecture and promptable segmentation tasks to achieve real-time performance.
|
|
356
356
|
|
|
357
357
|
Args:
|
|
358
358
|
preds (tuple): The output from SAM model inference, containing masks, scores, and optional bounding boxes.
|
|
@@ -106,7 +106,7 @@ class DetectionValidator(BaseValidator):
|
|
|
106
106
|
if len(cls):
|
|
107
107
|
bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes
|
|
108
108
|
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels
|
|
109
|
-
return
|
|
109
|
+
return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
|
|
110
110
|
|
|
111
111
|
def _prepare_pred(self, pred, pbatch):
|
|
112
112
|
"""Prepares a batch of images and annotations for validation."""
|
|
@@ -5,7 +5,7 @@ from pathlib import Path
|
|
|
5
5
|
from ultralytics.engine.model import Model
|
|
6
6
|
from ultralytics.models import yolo
|
|
7
7
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
|
|
8
|
-
from ultralytics.utils import
|
|
8
|
+
from ultralytics.utils import ROOT, yaml_load
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class YOLO(Model):
|