ultralytics 8.1.2__tar.gz → 8.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (225) hide show
  1. {ultralytics-8.1.2/ultralytics.egg-info → ultralytics-8.1.3}/PKG-INFO +1 -1
  2. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/__init__.py +1 -1
  3. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/Argoverse.yaml +4 -6
  4. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/DOTAv1.5.yaml +4 -4
  5. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/DOTAv1.yaml +4 -4
  6. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -3
  7. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/ImageNet.yaml +4 -6
  8. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/Objects365.yaml +3 -5
  9. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/SKU-110K.yaml +4 -6
  10. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/VOC.yaml +0 -2
  11. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/VisDrone.yaml +4 -6
  12. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco-pose.yaml +5 -6
  13. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco.yaml +4 -6
  14. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco128-seg.yaml +4 -6
  15. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco128.yaml +4 -6
  16. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco8-pose.yaml +5 -6
  17. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco8-seg.yaml +4 -6
  18. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco8.yaml +4 -6
  19. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/dota8.yaml +3 -3
  20. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/open-images-v7.yaml +4 -6
  21. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/tiger-pose.yaml +4 -5
  22. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/datasets/xView.yaml +3 -5
  23. ultralytics-8.1.3/ultralytics/cfg/default.yaml +125 -0
  24. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +50 -0
  25. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +42 -0
  26. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +42 -0
  27. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +54 -0
  28. ultralytics-8.1.3/ultralytics/cfg/models/v3/yolov3-spp.yaml +46 -0
  29. ultralytics-8.1.3/ultralytics/cfg/models/v3/yolov3-tiny.yaml +37 -0
  30. ultralytics-8.1.3/ultralytics/cfg/models/v3/yolov3.yaml +46 -0
  31. ultralytics-8.1.3/ultralytics/cfg/models/v5/yolov5-p6.yaml +59 -0
  32. ultralytics-8.1.3/ultralytics/cfg/models/v5/yolov5.yaml +48 -0
  33. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/models/v6/yolov6.yaml +17 -17
  34. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +25 -0
  35. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +25 -0
  36. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/models/v8/yolov8-cls.yaml +7 -7
  37. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +54 -0
  38. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +56 -0
  39. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-ghost.yaml +47 -0
  40. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-obb.yaml +46 -0
  41. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-p2.yaml +54 -0
  42. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-p6.yaml +56 -0
  43. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +57 -0
  44. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-pose.yaml +47 -0
  45. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +46 -0
  46. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +56 -0
  47. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-seg.yaml +46 -0
  48. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8.yaml +46 -0
  49. ultralytics-8.1.3/ultralytics/cfg/trackers/botsort.yaml +18 -0
  50. ultralytics-8.1.3/ultralytics/cfg/trackers/bytetrack.yaml +11 -0
  51. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/build.py +1 -1
  52. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/model.py +8 -6
  53. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/trainer.py +1 -4
  54. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/hub/session.py +1 -1
  55. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/ops.py +1 -1
  56. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/plotting.py +1 -1
  57. {ultralytics-8.1.2 → ultralytics-8.1.3/ultralytics.egg-info}/PKG-INFO +1 -1
  58. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics.egg-info/SOURCES.txt +2 -0
  59. ultralytics-8.1.2/ultralytics/cfg/default.yaml +0 -125
  60. ultralytics-8.1.2/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -50
  61. ultralytics-8.1.2/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -42
  62. ultralytics-8.1.2/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -42
  63. ultralytics-8.1.2/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -54
  64. ultralytics-8.1.2/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -46
  65. ultralytics-8.1.2/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -37
  66. ultralytics-8.1.2/ultralytics/cfg/models/v3/yolov3.yaml +0 -46
  67. ultralytics-8.1.2/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -59
  68. ultralytics-8.1.2/ultralytics/cfg/models/v5/yolov5.yaml +0 -49
  69. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -54
  70. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -56
  71. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -47
  72. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -46
  73. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -54
  74. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -56
  75. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -57
  76. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -47
  77. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -46
  78. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -56
  79. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -46
  80. ultralytics-8.1.2/ultralytics/cfg/models/v8/yolov8.yaml +0 -46
  81. ultralytics-8.1.2/ultralytics/cfg/trackers/botsort.yaml +0 -18
  82. ultralytics-8.1.2/ultralytics/cfg/trackers/bytetrack.yaml +0 -11
  83. {ultralytics-8.1.2 → ultralytics-8.1.3}/LICENSE +0 -0
  84. {ultralytics-8.1.2 → ultralytics-8.1.3}/README.md +0 -0
  85. {ultralytics-8.1.2 → ultralytics-8.1.3}/pyproject.toml +0 -0
  86. {ultralytics-8.1.2 → ultralytics-8.1.3}/setup.cfg +0 -0
  87. {ultralytics-8.1.2 → ultralytics-8.1.3}/tests/test_cli.py +0 -0
  88. {ultralytics-8.1.2 → ultralytics-8.1.3}/tests/test_cuda.py +0 -0
  89. {ultralytics-8.1.2 → ultralytics-8.1.3}/tests/test_engine.py +0 -0
  90. {ultralytics-8.1.2 → ultralytics-8.1.3}/tests/test_explorer.py +0 -0
  91. {ultralytics-8.1.2 → ultralytics-8.1.3}/tests/test_integrations.py +0 -0
  92. {ultralytics-8.1.2 → ultralytics-8.1.3}/tests/test_python.py +0 -0
  93. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/assets/bus.jpg +0 -0
  94. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/assets/zidane.jpg +0 -0
  95. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/cfg/__init__.py +0 -0
  96. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/__init__.py +0 -0
  97. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/annotator.py +0 -0
  98. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/augment.py +0 -0
  99. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/base.py +0 -0
  100. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/converter.py +0 -0
  101. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/dataset.py +0 -0
  102. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/explorer/__init__.py +0 -0
  103. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/explorer/explorer.py +0 -0
  104. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/explorer/gui/__init__.py +0 -0
  105. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/explorer/gui/dash.py +0 -0
  106. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/explorer/utils.py +0 -0
  107. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/loaders.py +0 -0
  108. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/split_dota.py +0 -0
  109. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/data/utils.py +0 -0
  110. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/__init__.py +0 -0
  111. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/exporter.py +0 -0
  112. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/predictor.py +0 -0
  113. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/results.py +0 -0
  114. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/tuner.py +0 -0
  115. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/engine/validator.py +0 -0
  116. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/hub/__init__.py +0 -0
  117. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/hub/auth.py +0 -0
  118. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/hub/utils.py +0 -0
  119. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/__init__.py +0 -0
  120. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/fastsam/__init__.py +0 -0
  121. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/fastsam/model.py +0 -0
  122. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/fastsam/predict.py +0 -0
  123. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/fastsam/prompt.py +0 -0
  124. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/fastsam/utils.py +0 -0
  125. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/fastsam/val.py +0 -0
  126. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/nas/__init__.py +0 -0
  127. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/nas/model.py +0 -0
  128. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/nas/predict.py +0 -0
  129. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/nas/val.py +0 -0
  130. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/rtdetr/__init__.py +0 -0
  131. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/rtdetr/model.py +0 -0
  132. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/rtdetr/predict.py +0 -0
  133. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/rtdetr/train.py +0 -0
  134. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/rtdetr/val.py +0 -0
  135. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/__init__.py +0 -0
  136. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/amg.py +0 -0
  137. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/build.py +0 -0
  138. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/model.py +0 -0
  139. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/modules/__init__.py +0 -0
  140. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/modules/decoders.py +0 -0
  141. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/modules/encoders.py +0 -0
  142. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/modules/sam.py +0 -0
  143. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  144. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/modules/transformer.py +0 -0
  145. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/sam/predict.py +0 -0
  146. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/utils/__init__.py +0 -0
  147. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/utils/loss.py +0 -0
  148. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/utils/ops.py +0 -0
  149. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/__init__.py +0 -0
  150. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/__init__.py +0 -0
  151. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/predict.py +0 -0
  152. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/train.py +0 -0
  153. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/val.py +0 -0
  154. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/__init__.py +0 -0
  155. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/predict.py +0 -0
  156. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/train.py +0 -0
  157. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/val.py +0 -0
  158. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/model.py +0 -0
  159. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/__init__.py +0 -0
  160. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/predict.py +0 -0
  161. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/train.py +0 -0
  162. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/val.py +0 -0
  163. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/__init__.py +0 -0
  164. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/predict.py +0 -0
  165. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/train.py +0 -0
  166. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/val.py +0 -0
  167. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/__init__.py +0 -0
  168. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/predict.py +0 -0
  169. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/train.py +0 -0
  170. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/val.py +0 -0
  171. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/__init__.py +0 -0
  172. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/autobackend.py +0 -0
  173. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/modules/__init__.py +0 -0
  174. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/modules/block.py +0 -0
  175. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/modules/conv.py +0 -0
  176. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/modules/head.py +0 -0
  177. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/modules/transformer.py +0 -0
  178. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/modules/utils.py +0 -0
  179. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/nn/tasks.py +0 -0
  180. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/solutions/__init__.py +0 -0
  181. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/solutions/ai_gym.py +0 -0
  182. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/solutions/distance_calculation.py +0 -0
  183. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/solutions/heatmap.py +0 -0
  184. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/solutions/object_counter.py +0 -0
  185. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/solutions/speed_estimation.py +0 -0
  186. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/__init__.py +0 -0
  187. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/basetrack.py +0 -0
  188. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/bot_sort.py +0 -0
  189. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/byte_tracker.py +0 -0
  190. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/track.py +0 -0
  191. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/utils/__init__.py +0 -0
  192. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/utils/gmc.py +0 -0
  193. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  194. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/trackers/utils/matching.py +0 -0
  195. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/__init__.py +0 -0
  196. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/autobatch.py +0 -0
  197. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/benchmarks.py +0 -0
  198. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/__init__.py +0 -0
  199. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/base.py +0 -0
  200. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/clearml.py +0 -0
  201. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/comet.py +0 -0
  202. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/dvc.py +0 -0
  203. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/hub.py +0 -0
  204. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/mlflow.py +0 -0
  205. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/neptune.py +0 -0
  206. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/raytune.py +0 -0
  207. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  208. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/callbacks/wb.py +0 -0
  209. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/checks.py +0 -0
  210. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/dist.py +0 -0
  211. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/downloads.py +0 -0
  212. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/errors.py +0 -0
  213. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/files.py +0 -0
  214. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/instance.py +0 -0
  215. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/loss.py +0 -0
  216. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/metrics.py +0 -0
  217. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/patches.py +0 -0
  218. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/tal.py +0 -0
  219. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/torch_utils.py +0 -0
  220. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/triton.py +0 -0
  221. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics/utils/tuner.py +0 -0
  222. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics.egg-info/dependency_links.txt +0 -0
  223. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics.egg-info/entry_points.txt +0 -0
  224. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics.egg-info/requires.txt +0 -0
  225. {ultralytics-8.1.2 → ultralytics-8.1.3}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.1.2
3
+ Version: 8.1.3
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.1.2"
3
+ __version__ = "8.1.3"
4
4
 
5
5
  from ultralytics.data.explorer.explorer import Explorer
6
6
  from ultralytics.models import RTDETR, SAM, YOLO
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── Argoverse ← downloads here (31.5 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Argoverse # dataset root dir
13
- train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
14
- val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
15
- test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
11
+ path: ../datasets/Argoverse # dataset root dir
12
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
16
15
 
17
16
  # Classes
18
17
  names:
@@ -25,7 +24,6 @@ names:
25
24
  6: traffic_light
26
25
  7: stop_sign
27
26
 
28
-
29
27
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
30
28
  download: |
31
29
  import json
@@ -8,10 +8,10 @@
8
8
  # └── dota1.5 ← downloads here (2GB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/DOTAv1.5 # dataset root dir
12
- train: images/train # train images (relative to 'path') 1411 images
13
- val: images/val # val images (relative to 'path') 458 images
14
- test: images/test # test images (optional) 937 images
11
+ path: ../datasets/DOTAv1.5 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1411 images
13
+ val: images/val # val images (relative to 'path') 458 images
14
+ test: images/test # test images (optional) 937 images
15
15
 
16
16
  # Classes for DOTA 1.5
17
17
  names:
@@ -8,10 +8,10 @@
8
8
  # └── dota1 ← downloads here (2GB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/DOTAv1 # dataset root dir
12
- train: images/train # train images (relative to 'path') 1411 images
13
- val: images/val # val images (relative to 'path') 458 images
14
- test: images/test # test images (optional) 937 images
11
+ path: ../datasets/DOTAv1 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1411 images
13
+ val: images/val # val images (relative to 'path') 458 images
14
+ test: images/test # test images (optional) 937 images
15
15
 
16
16
  # Classes for DOTA 1.0
17
17
  names:
@@ -7,9 +7,8 @@
7
7
  # └── datasets
8
8
  # └── GlobalWheat2020 ← downloads here (7.0 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/GlobalWheat2020 # dataset root dir
11
+ path: ../datasets/GlobalWheat2020 # dataset root dir
13
12
  train: # train images (relative to 'path') 3422 images
14
13
  - images/arvalis_1
15
14
  - images/arvalis_2
@@ -30,7 +29,6 @@ test: # test images (optional) 1276 images
30
29
  names:
31
30
  0: wheat_head
32
31
 
33
-
34
32
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
35
33
  download: |
36
34
  from ultralytics.utils.downloads import download
@@ -8,12 +8,11 @@
8
8
  # └── datasets
9
9
  # └── imagenet ← downloads here (144 GB)
10
10
 
11
-
12
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
- path: ../datasets/imagenet # dataset root dir
14
- train: train # train images (relative to 'path') 1281167 images
15
- val: val # val images (relative to 'path') 50000 images
16
- test: # test images (optional)
12
+ path: ../datasets/imagenet # dataset root dir
13
+ train: train # train images (relative to 'path') 1281167 images
14
+ val: val # val images (relative to 'path') 50000 images
15
+ test: # test images (optional)
17
16
 
18
17
  # Classes
19
18
  names:
@@ -2021,6 +2020,5 @@ map:
2021
2020
  n13133613: ear
2022
2021
  n15075141: toilet_tissue
2023
2022
 
2024
-
2025
2023
  # Download script/URL (optional)
2026
2024
  download: yolo/data/scripts/get_imagenet.sh
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Objects365 # dataset root dir
13
- train: images/train # train images (relative to 'path') 1742289 images
11
+ path: ../datasets/Objects365 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1742289 images
14
13
  val: images/val # val images (relative to 'path') 80000 images
15
- test: # test images (optional)
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -382,7 +381,6 @@ names:
382
381
  363: Curling
383
382
  364: Table Tennis
384
383
 
385
-
386
384
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
387
385
  download: |
388
386
  from tqdm import tqdm
@@ -7,18 +7,16 @@
7
7
  # └── datasets
8
8
  # └── SKU-110K ← downloads here (13.6 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/SKU-110K # dataset root dir
13
- train: train.txt # train images (relative to 'path') 8219 images
14
- val: val.txt # val images (relative to 'path') 588 images
15
- test: test.txt # test images (optional) 2936 images
11
+ path: ../datasets/SKU-110K # dataset root dir
12
+ train: train.txt # train images (relative to 'path') 8219 images
13
+ val: val.txt # val images (relative to 'path') 588 images
14
+ test: test.txt # test images (optional) 2936 images
16
15
 
17
16
  # Classes
18
17
  names:
19
18
  0: object
20
19
 
21
-
22
20
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
23
21
  download: |
24
22
  import shutil
@@ -7,7 +7,6 @@
7
7
  # └── datasets
8
8
  # └── VOC ← downloads here (2.8 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
11
  path: ../datasets/VOC
13
12
  train: # train images (relative to 'path') 16551 images
@@ -43,7 +42,6 @@ names:
43
42
  18: train
44
43
  19: tvmonitor
45
44
 
46
-
47
45
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
48
46
  download: |
49
47
  import xml.etree.ElementTree as ET
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── VisDrone ← downloads here (2.3 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/VisDrone # dataset root dir
13
- train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
14
- val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
15
- test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
11
+ path: ../datasets/VisDrone # dataset root dir
12
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -27,7 +26,6 @@ names:
27
26
  8: bus
28
27
  9: motor
29
28
 
30
-
31
29
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
32
30
  download: |
33
31
  import os
@@ -7,15 +7,14 @@
7
7
  # └── datasets
8
8
  # └── coco-pose ← downloads here (20.1 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco-pose # dataset root dir
13
- train: train2017.txt # train images (relative to 'path') 118287 images
14
- val: val2017.txt # val images (relative to 'path') 5000 images
15
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
11
+ path: ../datasets/coco-pose # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
15
 
17
16
  # Keypoints
18
- kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
18
  flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
19
 
21
20
  # Classes
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco ← downloads here (20.1 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco # dataset root dir
13
- train: train2017.txt # train images (relative to 'path') 118287 images
14
- val: val2017.txt # val images (relative to 'path') 5000 images
15
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
11
+ path: ../datasets/coco # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,7 +96,6 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: |
103
101
  from ultralytics.utils.downloads import download
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco128-seg ← downloads here (7 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128-seg # dataset root dir
13
- train: images/train2017 # train images (relative to 'path') 128 images
14
- val: images/train2017 # val images (relative to 'path') 128 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco128-seg # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco128-seg.zip
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco128 ← downloads here (7 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128 # dataset root dir
13
- train: images/train2017 # train images (relative to 'path') 128 images
14
- val: images/train2017 # val images (relative to 'path') 128 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco128 # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco128.zip
@@ -7,15 +7,14 @@
7
7
  # └── datasets
8
8
  # └── coco8-pose ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-pose # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8-pose # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Keypoints
18
- kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
18
  flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
19
 
21
20
  # Classes
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco8-seg ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-seg # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8-seg # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco8-seg.zip
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco8 ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8 # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco8.zip
@@ -8,9 +8,9 @@
8
8
  # └── dota8 ← downloads here (1MB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/dota8 # dataset root dir
12
- train: images/train # train images (relative to 'path') 4 images
13
- val: images/val # val images (relative to 'path') 4 images
11
+ path: ../datasets/dota8 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
14
 
15
15
  # Classes for DOTA 1.0
16
16
  names:
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── open-images-v7 ← downloads here (561 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/open-images-v7 # dataset root dir
13
- train: images/train # train images (relative to 'path') 1743042 images
14
- val: images/val # val images (relative to 'path') 41620 images
15
- test: # test images (optional)
11
+ path: ../datasets/open-images-v7 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1743042 images
13
+ val: images/val # val images (relative to 'path') 41620 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -618,7 +617,6 @@ names:
618
617
  599: Zebra
619
618
  600: Zucchini
620
619
 
621
-
622
620
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
623
621
  download: |
624
622
  from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version
@@ -7,14 +7,13 @@
7
7
  # └── datasets
8
8
  # └── tiger-pose ← downloads here (75.3 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/tiger-pose # dataset root dir
13
- train: train # train images (relative to 'path') 210 images
14
- val: val # val images (relative to 'path') 53 images
11
+ path: ../datasets/tiger-pose # dataset root dir
12
+ train: train # train images (relative to 'path') 210 images
13
+ val: val # val images (relative to 'path') 53 images
15
14
 
16
15
  # Keypoints
17
- kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
16
+ kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
17
  flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
19
18
 
20
19
  # Classes
@@ -8,11 +8,10 @@
8
8
  # └── datasets
9
9
  # └── xView ← downloads here (20.7 GB)
10
10
 
11
-
12
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
- path: ../datasets/xView # dataset root dir
14
- train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
15
- val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
12
+ path: ../datasets/xView # dataset root dir
13
+ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
14
+ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -77,7 +76,6 @@ names:
77
76
  58: Pylon
78
77
  59: Tower
79
78
 
80
-
81
79
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
82
80
  download: |
83
81
  import json
@@ -0,0 +1,125 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Default training settings and hyperparameters for medium-augmentation COCO training
3
+
4
+ task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
5
+ mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
6
+
7
+ # Train settings -------------------------------------------------------------------------------------------------------
8
+ model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
9
+ data: # (str, optional) path to data file, i.e. coco128.yaml
10
+ epochs: 100 # (int) number of epochs to train for
11
+ time: # (float, optional) number of hours to train for, overrides epochs if supplied
12
+ patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
13
+ batch: 16 # (int) number of images per batch (-1 for AutoBatch)
14
+ imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
15
+ save: True # (bool) save train checkpoints and predict results
16
+ save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
17
+ cache: False # (bool) True/ram, disk or False. Use cache for data loading
18
+ device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
19
+ workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
20
+ project: # (str, optional) project name
21
+ name: # (str, optional) experiment name, results saved to 'project/name' directory
22
+ exist_ok: False # (bool) whether to overwrite existing experiment
23
+ pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
24
+ optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
25
+ verbose: True # (bool) whether to print verbose output
26
+ seed: 0 # (int) random seed for reproducibility
27
+ deterministic: True # (bool) whether to enable deterministic mode
28
+ single_cls: False # (bool) train multi-class data as single-class
29
+ rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
30
+ cos_lr: False # (bool) use cosine learning rate scheduler
31
+ close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
32
+ resume: False # (bool) resume training from last checkpoint
33
+ amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
34
+ fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
35
+ profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
36
+ freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
37
+ multi_scale: False # (bool) Whether to use multi-scale during training
38
+ # Segmentation
39
+ overlap_mask: True # (bool) masks should overlap during training (segment train only)
40
+ mask_ratio: 4 # (int) mask downsample ratio (segment train only)
41
+ # Classification
42
+ dropout: 0.0 # (float) use dropout regularization (classify train only)
43
+
44
+ # Val/Test settings ----------------------------------------------------------------------------------------------------
45
+ val: True # (bool) validate/test during training
46
+ split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
47
+ save_json: False # (bool) save results to JSON file
48
+ save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
49
+ conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
50
+ iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
51
+ max_det: 300 # (int) maximum number of detections per image
52
+ half: False # (bool) use half precision (FP16)
53
+ dnn: False # (bool) use OpenCV DNN for ONNX inference
54
+ plots: True # (bool) save plots and images during train/val
55
+
56
+ # Predict settings -----------------------------------------------------------------------------------------------------
57
+ source: # (str, optional) source directory for images or videos
58
+ vid_stride: 1 # (int) video frame-rate stride
59
+ stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
60
+ visualize: False # (bool) visualize model features
61
+ augment: False # (bool) apply image augmentation to prediction sources
62
+ agnostic_nms: False # (bool) class-agnostic NMS
63
+ classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
64
+ retina_masks: False # (bool) use high-resolution segmentation masks
65
+ embed: # (list[int], optional) return feature vectors/embeddings from given layers
66
+
67
+ # Visualize settings ---------------------------------------------------------------------------------------------------
68
+ show: False # (bool) show predicted images and videos if environment allows
69
+ save_frames: False # (bool) save predicted individual video frames
70
+ save_txt: False # (bool) save results as .txt file
71
+ save_conf: False # (bool) save results with confidence scores
72
+ save_crop: False # (bool) save cropped images with results
73
+ show_labels: True # (bool) show prediction labels, i.e. 'person'
74
+ show_conf: True # (bool) show prediction confidence, i.e. '0.99'
75
+ show_boxes: True # (bool) show prediction boxes
76
+ line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
77
+
78
+ # Export settings ------------------------------------------------------------------------------------------------------
79
+ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
80
+ keras: False # (bool) use Kera=s
81
+ optimize: False # (bool) TorchScript: optimize for mobile
82
+ int8: False # (bool) CoreML/TF INT8 quantization
83
+ dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
84
+ simplify: False # (bool) ONNX: simplify model
85
+ opset: # (int, optional) ONNX: opset version
86
+ workspace: 4 # (int) TensorRT: workspace size (GB)
87
+ nms: False # (bool) CoreML: add NMS
88
+
89
+ # Hyperparameters ------------------------------------------------------------------------------------------------------
90
+ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
91
+ lrf: 0.01 # (float) final learning rate (lr0 * lrf)
92
+ momentum: 0.937 # (float) SGD momentum/Adam beta1
93
+ weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
94
+ warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
95
+ warmup_momentum: 0.8 # (float) warmup initial momentum
96
+ warmup_bias_lr: 0.1 # (float) warmup initial bias lr
97
+ box: 7.5 # (float) box loss gain
98
+ cls: 0.5 # (float) cls loss gain (scale with pixels)
99
+ dfl: 1.5 # (float) dfl loss gain
100
+ pose: 12.0 # (float) pose loss gain
101
+ kobj: 1.0 # (float) keypoint obj loss gain
102
+ label_smoothing: 0.0 # (float) label smoothing (fraction)
103
+ nbs: 64 # (int) nominal batch size
104
+ hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
105
+ hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
106
+ hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
107
+ degrees: 0.0 # (float) image rotation (+/- deg)
108
+ translate: 0.1 # (float) image translation (+/- fraction)
109
+ scale: 0.5 # (float) image scale (+/- gain)
110
+ shear: 0.0 # (float) image shear (+/- deg)
111
+ perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
112
+ flipud: 0.0 # (float) image flip up-down (probability)
113
+ fliplr: 0.5 # (float) image flip left-right (probability)
114
+ mosaic: 1.0 # (float) image mosaic (probability)
115
+ mixup: 0.0 # (float) image mixup (probability)
116
+ copy_paste: 0.0 # (float) segment copy-paste (probability)
117
+ auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
118
+ erasing: 0.4 # (float) probability of random erasing during classification training (0-1)
119
+ crop_fraction: 1.0 # (float) image crop fraction for classification evaluation/inference (0-1)
120
+
121
+ # Custom config.yaml ---------------------------------------------------------------------------------------------------
122
+ cfg: # (str, optional) for overriding defaults.yaml
123
+
124
+ # Tracker settings ------------------------------------------------------------------------------------------------------
125
+ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
@@ -0,0 +1,50 @@
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ l: [1.00, 1.00, 1024]
9
+
10
+ backbone:
11
+ # [from, repeats, module, args]
12
+ - [-1, 1, HGStem, [32, 48]] # 0-P2/4
13
+ - [-1, 6, HGBlock, [48, 128, 3]] # stage 1
14
+
15
+ - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
16
+ - [-1, 6, HGBlock, [96, 512, 3]] # stage 2
17
+
18
+ - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
19
+ - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
20
+ - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
21
+ - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
22
+
23
+ - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
24
+ - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
25
+
26
+ head:
27
+ - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
28
+ - [-1, 1, AIFI, [1024, 8]]
29
+ - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
30
+
31
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
32
+ - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
33
+ - [[-2, -1], 1, Concat, [1]]
34
+ - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
35
+ - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
36
+
37
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
38
+ - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
39
+ - [[-2, -1], 1, Concat, [1]] # cat backbone P4
40
+ - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
41
+
42
+ - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
43
+ - [[-1, 17], 1, Concat, [1]] # cat Y4
44
+ - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
45
+
46
+ - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
47
+ - [[-1, 12], 1, Concat, [1]] # cat Y5
48
+ - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
49
+
50
+ - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)