ultralytics 8.1.29__tar.gz → 8.2.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (218) hide show
  1. {ultralytics-8.1.29/ultralytics.egg-info → ultralytics-8.2.2}/PKG-INFO +38 -36
  2. {ultralytics-8.1.29 → ultralytics-8.2.2}/README.md +34 -34
  3. {ultralytics-8.1.29 → ultralytics-8.2.2}/pyproject.toml +11 -4
  4. {ultralytics-8.1.29 → ultralytics-8.2.2}/tests/test_cli.py +1 -1
  5. {ultralytics-8.1.29 → ultralytics-8.2.2}/tests/test_cuda.py +7 -0
  6. {ultralytics-8.1.29 → ultralytics-8.2.2}/tests/test_engine.py +7 -2
  7. {ultralytics-8.1.29 → ultralytics-8.2.2}/tests/test_explorer.py +9 -9
  8. {ultralytics-8.1.29 → ultralytics-8.2.2}/tests/test_integrations.py +2 -1
  9. {ultralytics-8.1.29 → ultralytics-8.2.2}/tests/test_python.py +59 -26
  10. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/__init__.py +3 -2
  11. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/__init__.py +54 -40
  12. ultralytics-8.2.2/ultralytics/cfg/datasets/african-wildlife.yaml +24 -0
  13. ultralytics-8.2.2/ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
  14. ultralytics-8.2.2/ultralytics/cfg/datasets/lvis.yaml +1239 -0
  15. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/default.yaml +4 -3
  16. ultralytics-8.2.2/ultralytics/cfg/models/v9/yolov9c-seg.yaml +38 -0
  17. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v9/yolov9c.yaml +4 -2
  18. ultralytics-8.2.2/ultralytics/cfg/models/v9/yolov9e-seg.yaml +61 -0
  19. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v9/yolov9e.yaml +5 -4
  20. ultralytics-8.2.2/ultralytics/data/__init__.py +26 -0
  21. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/augment.py +150 -16
  22. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/base.py +21 -22
  23. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/build.py +27 -4
  24. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/converter.py +28 -9
  25. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/dataset.py +192 -68
  26. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/explorer/explorer.py +12 -12
  27. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/explorer/gui/dash.py +3 -3
  28. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/explorer/utils.py +3 -2
  29. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/loaders.py +13 -10
  30. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/split_dota.py +1 -1
  31. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/utils.py +35 -10
  32. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/exporter.py +33 -24
  33. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/model.py +44 -20
  34. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/results.py +29 -16
  35. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/trainer.py +86 -80
  36. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/tuner.py +2 -1
  37. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/validator.py +3 -3
  38. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/hub/__init__.py +1 -1
  39. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/hub/auth.py +3 -3
  40. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/hub/session.py +37 -21
  41. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/hub/utils.py +9 -9
  42. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/fastsam/model.py +2 -1
  43. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/fastsam/prompt.py +8 -6
  44. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/nas/model.py +2 -1
  45. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/rtdetr/train.py +1 -0
  46. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/rtdetr/val.py +1 -1
  47. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/build.py +1 -0
  48. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/model.py +2 -1
  49. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/modules/tiny_encoder.py +3 -3
  50. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/modules/transformer.py +1 -1
  51. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/predict.py +17 -13
  52. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/utils/loss.py +1 -0
  53. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/__init__.py +2 -2
  54. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/classify/train.py +4 -3
  55. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/classify/val.py +2 -2
  56. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/detect/train.py +1 -1
  57. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/detect/val.py +37 -18
  58. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/model.py +2 -1
  59. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/obb/val.py +1 -1
  60. ultralytics-8.2.2/ultralytics/models/yolo/world/__init__.py +5 -0
  61. ultralytics-8.2.2/ultralytics/models/yolo/world/train.py +92 -0
  62. ultralytics-8.2.2/ultralytics/models/yolo/world/train_world.py +108 -0
  63. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/autobackend.py +74 -43
  64. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/modules/block.py +11 -23
  65. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/modules/conv.py +1 -1
  66. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/modules/head.py +15 -5
  67. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/tasks.py +44 -26
  68. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/solutions/ai_gym.py +1 -9
  69. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/solutions/heatmap.py +77 -52
  70. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/solutions/object_counter.py +73 -68
  71. ultralytics-8.2.2/ultralytics/solutions/queue_management.py +187 -0
  72. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/byte_tracker.py +3 -3
  73. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/track.py +2 -1
  74. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/utils/gmc.py +2 -2
  75. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/utils/kalman_filter.py +4 -4
  76. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/utils/matching.py +1 -1
  77. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/__init__.py +112 -66
  78. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/benchmarks.py +7 -6
  79. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/base.py +0 -1
  80. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/clearml.py +4 -3
  81. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/comet.py +1 -1
  82. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/hub.py +1 -4
  83. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/mlflow.py +2 -2
  84. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/raytune.py +1 -1
  85. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/tensorboard.py +1 -0
  86. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/wb.py +5 -5
  87. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/checks.py +26 -25
  88. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/downloads.py +5 -5
  89. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/loss.py +2 -1
  90. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/metrics.py +5 -5
  91. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/ops.py +1 -1
  92. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/plotting.py +119 -51
  93. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/torch_utils.py +35 -10
  94. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/tuner.py +5 -3
  95. {ultralytics-8.1.29 → ultralytics-8.2.2/ultralytics.egg-info}/PKG-INFO +38 -36
  96. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics.egg-info/SOURCES.txt +9 -0
  97. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics.egg-info/requires.txt +5 -1
  98. ultralytics-8.1.29/ultralytics/data/__init__.py +0 -15
  99. {ultralytics-8.1.29 → ultralytics-8.2.2}/LICENSE +0 -0
  100. {ultralytics-8.1.29 → ultralytics-8.2.2}/setup.cfg +0 -0
  101. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/assets/bus.jpg +0 -0
  102. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/assets/zidane.jpg +0 -0
  103. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  104. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  105. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  106. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  107. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  108. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  109. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  110. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  111. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  112. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  113. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  114. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/coco.yaml +0 -0
  115. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  116. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  117. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  118. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  119. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  120. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  121. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  122. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  123. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  124. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  125. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/datasets/xView.yaml +0 -0
  126. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  127. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  128. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  129. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  130. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  131. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  132. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  133. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  134. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  135. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  136. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  137. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  138. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  139. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  140. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  141. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  142. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  143. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  144. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  145. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  146. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  147. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  148. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  149. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  150. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  151. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  152. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  153. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  154. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  155. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/annotator.py +0 -0
  156. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/explorer/__init__.py +0 -0
  157. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/data/explorer/gui/__init__.py +0 -0
  158. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/__init__.py +0 -0
  159. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/engine/predictor.py +0 -0
  160. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/__init__.py +0 -0
  161. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/fastsam/__init__.py +0 -0
  162. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/fastsam/predict.py +0 -0
  163. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/fastsam/utils.py +0 -0
  164. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/fastsam/val.py +0 -0
  165. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/nas/__init__.py +0 -0
  166. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/nas/predict.py +0 -0
  167. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/nas/val.py +0 -0
  168. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/rtdetr/__init__.py +0 -0
  169. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/rtdetr/model.py +0 -0
  170. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/rtdetr/predict.py +0 -0
  171. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/__init__.py +0 -0
  172. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/amg.py +0 -0
  173. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/modules/__init__.py +0 -0
  174. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/modules/decoders.py +0 -0
  175. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/modules/encoders.py +0 -0
  176. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/sam/modules/sam.py +0 -0
  177. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/utils/__init__.py +0 -0
  178. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/utils/ops.py +0 -0
  179. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/classify/__init__.py +0 -0
  180. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/classify/predict.py +0 -0
  181. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/detect/__init__.py +0 -0
  182. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/detect/predict.py +0 -0
  183. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/obb/__init__.py +0 -0
  184. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/obb/predict.py +0 -0
  185. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/obb/train.py +0 -0
  186. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/pose/__init__.py +0 -0
  187. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/pose/predict.py +0 -0
  188. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/pose/train.py +0 -0
  189. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/pose/val.py +0 -0
  190. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/segment/__init__.py +0 -0
  191. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/segment/predict.py +0 -0
  192. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/segment/train.py +0 -0
  193. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/models/yolo/segment/val.py +0 -0
  194. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/__init__.py +0 -0
  195. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/modules/__init__.py +8 -8
  196. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/modules/transformer.py +0 -0
  197. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/nn/modules/utils.py +0 -0
  198. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/solutions/__init__.py +0 -0
  199. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/solutions/distance_calculation.py +0 -0
  200. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/solutions/speed_estimation.py +0 -0
  201. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/__init__.py +0 -0
  202. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/basetrack.py +0 -0
  203. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/bot_sort.py +0 -0
  204. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/trackers/utils/__init__.py +0 -0
  205. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/autobatch.py +0 -0
  206. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/__init__.py +0 -0
  207. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/dvc.py +0 -0
  208. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/callbacks/neptune.py +0 -0
  209. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/dist.py +0 -0
  210. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/errors.py +0 -0
  211. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/files.py +0 -0
  212. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/instance.py +0 -0
  213. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/patches.py +0 -0
  214. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/tal.py +0 -0
  215. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics/utils/triton.py +0 -0
  216. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics.egg-info/dependency_links.txt +0 -0
  217. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics.egg-info/entry_points.txt +0 -0
  218. {ultralytics-8.1.29 → ultralytics-8.2.2}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.1.29
3
+ Version: 8.2.2
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -62,6 +62,8 @@ Requires-Dist: coremltools>=7.0; (platform_system != "Windows" and python_versio
62
62
  Requires-Dist: openvino>=2024.0.0; extra == "export"
63
63
  Requires-Dist: tensorflow<=2.13.1; python_version <= "3.11" and extra == "export"
64
64
  Requires-Dist: tensorflowjs>=3.9.0; python_version <= "3.11" and extra == "export"
65
+ Requires-Dist: numpy==1.23.5; platform_machine == "aarch64" and extra == "export"
66
+ Requires-Dist: h5py!=3.11.0; platform_machine == "aarch64" and extra == "export"
65
67
  Provides-Extra: explorer
66
68
  Requires-Dist: lancedb; extra == "explorer"
67
69
  Requires-Dist: duckdb<=0.9.2; extra == "explorer"
@@ -71,15 +73,15 @@ Requires-Dist: comet; extra == "logging"
71
73
  Requires-Dist: tensorboard>=2.13.0; extra == "logging"
72
74
  Requires-Dist: dvclive>=2.12.0; extra == "logging"
73
75
  Provides-Extra: extra
74
- Requires-Dist: hub-sdk>=0.0.2; extra == "extra"
76
+ Requires-Dist: hub-sdk>=0.0.5; extra == "extra"
75
77
  Requires-Dist: ipython; extra == "extra"
76
78
  Requires-Dist: albumentations>=1.0.3; extra == "extra"
77
79
  Requires-Dist: pycocotools>=2.0.7; extra == "extra"
78
80
 
79
81
  <div align="center">
80
82
  <p>
81
- <a href="https://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
82
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png" alt="YOLO Vision banner"></a>
83
+ <a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
84
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
83
85
  </p>
84
86
 
85
87
  [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
@@ -166,7 +168,7 @@ model = YOLO("yolov8n.yaml") # build a new model from scratch
166
168
  model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
167
169
 
168
170
  # Use the model
169
- model.train(data="coco128.yaml", epochs=3) # train the model
171
+ model.train(data="coco8.yaml", epochs=3) # train the model
170
172
  metrics = model.val() # evaluate model performance on the validation set
171
173
  results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
172
174
  path = model.export(format="onnx") # export the model to ONNX format
@@ -203,11 +205,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
203
205
 
204
206
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
205
207
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
206
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
207
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
208
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
209
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
210
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
208
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
209
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
210
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
211
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
212
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
211
213
 
212
214
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
213
215
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -220,11 +222,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
220
222
 
221
223
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
222
224
  | ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
223
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
224
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
225
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
226
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
227
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
225
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
226
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
227
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
228
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
229
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
228
230
 
229
231
  - **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
230
232
  - **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
@@ -237,11 +239,11 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
237
239
 
238
240
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
239
241
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
240
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
241
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
242
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
243
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
244
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
242
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
243
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
244
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
245
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
246
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
245
247
 
246
248
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
247
249
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -254,12 +256,12 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
254
256
 
255
257
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
256
258
  | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
257
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
258
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
259
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
260
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
261
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
262
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
259
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
260
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
261
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
262
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
263
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
264
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
263
265
 
264
266
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
265
267
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -272,11 +274,11 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
272
274
 
273
275
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
274
276
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
275
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
276
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
277
- | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
278
- | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
279
- | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
277
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
278
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
279
+ | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
280
+ | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
281
+ | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
280
282
 
281
283
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
282
284
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -289,11 +291,11 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
289
291
 
290
292
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
291
293
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
292
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
293
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
294
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
295
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
296
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
294
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
295
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
296
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
297
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
298
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
297
299
 
298
300
  - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
299
301
  - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -1,7 +1,7 @@
1
1
  <div align="center">
2
2
  <p>
3
- <a href="https://www.ultralytics.com/blog/ultralytics-yolov8-turns-one-a-year-of-breakthroughs-and-innovations" target="_blank">
4
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png" alt="YOLO Vision banner"></a>
3
+ <a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
4
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
5
5
  </p>
6
6
 
7
7
  [中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
@@ -88,7 +88,7 @@ model = YOLO("yolov8n.yaml") # build a new model from scratch
88
88
  model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
89
89
 
90
90
  # Use the model
91
- model.train(data="coco128.yaml", epochs=3) # train the model
91
+ model.train(data="coco8.yaml", epochs=3) # train the model
92
92
  metrics = model.val() # evaluate model performance on the validation set
93
93
  results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
94
94
  path = model.export(format="onnx") # export the model to ONNX format
@@ -125,11 +125,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
125
125
 
126
126
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
127
127
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
128
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
129
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
130
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
131
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
132
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
128
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
129
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
130
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
131
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
132
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
133
133
 
134
134
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
135
135
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -142,11 +142,11 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
142
142
 
143
143
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
144
144
  | ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
145
- | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
146
- | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
147
- | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
148
- | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
149
- | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
145
+ | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
146
+ | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
147
+ | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
148
+ | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
149
+ | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
150
150
 
151
151
  - **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
152
152
  - **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
@@ -159,11 +159,11 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
159
159
 
160
160
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
161
161
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
162
- | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
163
- | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
164
- | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
165
- | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
166
- | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
162
+ | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
163
+ | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
164
+ | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
165
+ | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
166
+ | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
167
167
 
168
168
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
169
169
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -176,12 +176,12 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
176
176
 
177
177
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
178
178
  | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
179
- | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
180
- | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
181
- | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
182
- | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
183
- | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
184
- | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
179
+ | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
180
+ | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
181
+ | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
182
+ | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
183
+ | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
184
+ | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
185
185
 
186
186
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
187
187
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -194,11 +194,11 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
194
194
 
195
195
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
196
196
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
197
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
198
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
199
- | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
200
- | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
201
- | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
197
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
198
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
199
+ | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
200
+ | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
201
+ | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
202
202
 
203
203
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
204
204
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -211,11 +211,11 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
211
211
 
212
212
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
213
213
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
214
- | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
215
- | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
216
- | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
217
- | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
218
- | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
214
+ | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
215
+ | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
216
+ | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
217
+ | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
218
+ | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
219
219
 
220
220
  - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
221
221
  - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -19,7 +19,7 @@
19
19
  # For comprehensive documentation and usage instructions, visit: https://docs.ultralytics.com
20
20
 
21
21
  [build-system]
22
- requires = ["setuptools>=43.0.0", "wheel"]
22
+ requires = ["setuptools>=57.0.0", "wheel"]
23
23
  build-backend = "setuptools.build_meta"
24
24
 
25
25
  # Project settings -----------------------------------------------------------------------------------------------------
@@ -101,6 +101,9 @@ export = [
101
101
  "openvino>=2024.0.0", # OpenVINO export
102
102
  "tensorflow<=2.13.1; python_version <= '3.11'", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
103
103
  "tensorflowjs>=3.9.0; python_version <= '3.11'", # TF.js export, automatically installs tensorflow
104
+ # "flatbuffers>=23.5.26,<100", # update old 'flatbuffers' included inside tensorflow package: WARNING Dockerfile error https://github.com/ultralytics/ultralytics/actions/runs/8715942435/job/23908971614
105
+ "numpy==1.23.5; platform_machine == 'aarch64'", # fix error: `np.bool` was a deprecated alias for the builtin `bool` when using TensorRT models on NVIDIA Jetson
106
+ "h5py!=3.11.0; platform_machine == 'aarch64'", # fix h5py build issues due to missing aarch64 wheels in 3.11 release
104
107
  ]
105
108
  explorer = [
106
109
  "lancedb", # vector search
@@ -117,7 +120,7 @@ logging = [
117
120
  "dvclive>=2.12.0",
118
121
  ]
119
122
  extra = [
120
- "hub-sdk>=0.0.2", # Ultralytics HUB
123
+ "hub-sdk>=0.0.5", # Ultralytics HUB
121
124
  "ipython", # interactive notebook
122
125
  "albumentations>=1.0.3", # training augmentations
123
126
  "pycocotools>=2.0.7", # COCO mAP
@@ -140,9 +143,13 @@ package-data = { "ultralytics" = ["**/*.yaml"], "ultralytics.assets" = ["*.jpg"]
140
143
  [tool.setuptools.dynamic]
141
144
  version = { attr = "ultralytics.__version__" }
142
145
 
143
- [tool.pytest]
144
- norecursedirs = [".git", "dist", "build"]
146
+ [tool.pytest.ini_options]
145
147
  addopts = "--doctest-modules --durations=30 --color=yes"
148
+ markers = [
149
+ "slow: skip slow tests unless --slow is set",
150
+ ]
151
+ norecursedirs = [".git", "dist", "build"]
152
+
146
153
 
147
154
  [tool.coverage.run]
148
155
  source = ["ultralytics/"]
@@ -69,7 +69,7 @@ def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"):
69
69
  run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt")
70
70
 
71
71
 
72
- @pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="MobileSAM Clip is not supported in Python 3.12")
72
+ @pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="MobileSAM with CLIP is not supported in Python 3.12")
73
73
  def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"):
74
74
  """Test FastSAM segmentation functionality within Ultralytics."""
75
75
  source = ASSETS / "bus.jpg"
@@ -19,6 +19,13 @@ def test_checks():
19
19
  assert torch.cuda.is_available() == CUDA_IS_AVAILABLE
20
20
  assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
21
21
 
22
+ @pytest.mark.slow
23
+ @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
24
+ def test_export_engine():
25
+ """Test exporting the YOLO model to NVIDIA TensorRT format."""
26
+ f = YOLO(MODEL).export(format="engine", device=0)
27
+ YOLO(f)(BUS, device=0)
28
+
22
29
 
23
30
  @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
24
31
  def test_train():
@@ -1,5 +1,8 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
+ import sys
4
+ from unittest import mock
5
+
3
6
  from ultralytics import YOLO
4
7
  from ultralytics.cfg import get_cfg
5
8
  from ultralytics.engine.exporter import Exporter
@@ -49,8 +52,10 @@ def test_detect():
49
52
  pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]})
50
53
  pred.add_callback("on_predict_start", test_func)
51
54
  assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
52
- result = pred(source=ASSETS, model=f"{MODEL}.pt")
53
- assert len(result), "predictor test failed"
55
+ # Confirm there is no issue with sys.argv being empty.
56
+ with mock.patch.object(sys, "argv", []):
57
+ result = pred(source=ASSETS, model=f"{MODEL}.pt")
58
+ assert len(result), "predictor test failed"
54
59
 
55
60
  overrides["resume"] = trainer.last
56
61
  trainer = detect.DetectionTrainer(overrides=overrides)
@@ -10,18 +10,18 @@ from ultralytics.utils import ASSETS
10
10
  @pytest.mark.slow
11
11
  def test_similarity():
12
12
  """Test similarity calculations and SQL queries for correctness and response length."""
13
- exp = Explorer()
13
+ exp = Explorer(data="coco8.yaml")
14
14
  exp.create_embeddings_table()
15
15
  similar = exp.get_similar(idx=1)
16
- assert len(similar) == 25
17
- similar = exp.get_similar(img=ASSETS / "zidane.jpg")
18
- assert len(similar) == 25
19
- similar = exp.get_similar(idx=[1, 2], limit=10)
20
- assert len(similar) == 10
16
+ assert len(similar) == 4
17
+ similar = exp.get_similar(img=ASSETS / "bus.jpg")
18
+ assert len(similar) == 4
19
+ similar = exp.get_similar(idx=[1, 2], limit=2)
20
+ assert len(similar) == 2
21
21
  sim_idx = exp.similarity_index()
22
- assert len(sim_idx) > 0
23
- sql = exp.sql_query("WHERE labels LIKE '%person%'")
24
- assert len(sql) > 0
22
+ assert len(sim_idx) == 4
23
+ sql = exp.sql_query("WHERE labels LIKE '%zebra%'")
24
+ assert len(sql) == 1
25
25
 
26
26
 
27
27
  @pytest.mark.slow
@@ -34,6 +34,7 @@ def test_mlflow():
34
34
  @pytest.mark.skipif(not check_requirements("mlflow", install=False), reason="mlflow not installed")
35
35
  def test_mlflow_keep_run_active():
36
36
  import os
37
+
37
38
  import mlflow
38
39
 
39
40
  """Test training with MLflow tracking enabled."""
@@ -125,7 +126,7 @@ def test_pycocotools():
125
126
  from ultralytics.models.yolo.segment import SegmentationValidator
126
127
 
127
128
  # Download annotations after each dataset downloads first
128
- url = "https://github.com/ultralytics/assets/releases/download/v8.1.0/"
129
+ url = "https://github.com/ultralytics/assets/releases/download/v8.2.0/"
129
130
 
130
131
  args = {"model": "yolov8n.pt", "data": "coco8.yaml", "save_json": True, "imgsz": 64}
131
132
  validator = DetectionValidator(args=args)