ultralytics 8.1.1__tar.gz → 8.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (225) hide show
  1. {ultralytics-8.1.1/ultralytics.egg-info → ultralytics-8.1.3}/PKG-INFO +15 -15
  2. {ultralytics-8.1.1 → ultralytics-8.1.3}/README.md +13 -13
  3. {ultralytics-8.1.1 → ultralytics-8.1.3}/pyproject.toml +1 -3
  4. {ultralytics-8.1.1 → ultralytics-8.1.3}/tests/test_python.py +1 -1
  5. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/__init__.py +1 -1
  6. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/__init__.py +1 -1
  7. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/Argoverse.yaml +5 -7
  8. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/DOTAv1.5.yaml +4 -4
  9. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/DOTAv1.yaml +4 -4
  10. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +2 -4
  11. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/ImageNet.yaml +4 -6
  12. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/Objects365.yaml +3 -5
  13. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/SKU-110K.yaml +4 -6
  14. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/VOC.yaml +0 -2
  15. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/VisDrone.yaml +4 -6
  16. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco-pose.yaml +6 -7
  17. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco.yaml +5 -7
  18. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco128-seg.yaml +4 -6
  19. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco128.yaml +4 -6
  20. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco8-pose.yaml +5 -6
  21. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco8-seg.yaml +4 -6
  22. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/coco8.yaml +4 -6
  23. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/dota8.yaml +3 -3
  24. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/open-images-v7.yaml +4 -6
  25. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/tiger-pose.yaml +4 -5
  26. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/datasets/xView.yaml +3 -5
  27. ultralytics-8.1.3/ultralytics/cfg/default.yaml +125 -0
  28. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +50 -0
  29. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +42 -0
  30. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +42 -0
  31. ultralytics-8.1.3/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +54 -0
  32. ultralytics-8.1.3/ultralytics/cfg/models/v3/yolov3-spp.yaml +46 -0
  33. ultralytics-8.1.3/ultralytics/cfg/models/v3/yolov3-tiny.yaml +37 -0
  34. ultralytics-8.1.3/ultralytics/cfg/models/v3/yolov3.yaml +46 -0
  35. ultralytics-8.1.3/ultralytics/cfg/models/v5/yolov5-p6.yaml +59 -0
  36. ultralytics-8.1.3/ultralytics/cfg/models/v5/yolov5.yaml +48 -0
  37. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/models/v6/yolov6.yaml +17 -17
  38. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +25 -0
  39. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +25 -0
  40. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/cfg/models/v8/yolov8-cls.yaml +7 -7
  41. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +54 -0
  42. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +56 -0
  43. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-ghost.yaml +47 -0
  44. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-obb.yaml +46 -0
  45. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-p2.yaml +54 -0
  46. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-p6.yaml +56 -0
  47. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +57 -0
  48. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-pose.yaml +47 -0
  49. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +46 -0
  50. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +56 -0
  51. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8-seg.yaml +46 -0
  52. ultralytics-8.1.3/ultralytics/cfg/models/v8/yolov8.yaml +46 -0
  53. ultralytics-8.1.3/ultralytics/cfg/trackers/botsort.yaml +18 -0
  54. ultralytics-8.1.3/ultralytics/cfg/trackers/bytetrack.yaml +11 -0
  55. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/annotator.py +1 -1
  56. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/augment.py +1 -2
  57. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/base.py +0 -1
  58. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/build.py +1 -2
  59. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/dataset.py +0 -1
  60. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/explorer/explorer.py +11 -12
  61. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/explorer/utils.py +3 -3
  62. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/split_dota.py +15 -23
  63. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/model.py +12 -11
  64. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/predictor.py +1 -1
  65. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/trainer.py +1 -4
  66. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/hub/__init__.py +5 -3
  67. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/hub/auth.py +1 -2
  68. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/hub/session.py +14 -6
  69. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/hub/utils.py +4 -0
  70. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/fastsam/model.py +0 -1
  71. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/nas/model.py +0 -1
  72. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/rtdetr/train.py +0 -1
  73. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/rtdetr/val.py +1 -2
  74. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/build.py +0 -1
  75. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/model.py +0 -1
  76. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/modules/encoders.py +1 -6
  77. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/predict.py +0 -1
  78. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/utils/loss.py +0 -1
  79. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/val.py +1 -2
  80. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/val.py +14 -39
  81. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/modules/head.py +5 -6
  82. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/modules/utils.py +1 -1
  83. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/tasks.py +1 -1
  84. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/solutions/ai_gym.py +9 -1
  85. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/solutions/distance_calculation.py +4 -8
  86. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/solutions/heatmap.py +16 -21
  87. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/solutions/object_counter.py +30 -29
  88. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/solutions/speed_estimation.py +19 -24
  89. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/track.py +0 -1
  90. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/utils/gmc.py +1 -1
  91. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/utils/matching.py +1 -3
  92. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/benchmarks.py +2 -7
  93. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/base.py +1 -0
  94. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/comet.py +4 -22
  95. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/hub.py +1 -3
  96. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/neptune.py +1 -3
  97. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/tensorboard.py +2 -1
  98. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/checks.py +2 -2
  99. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/loss.py +3 -6
  100. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/ops.py +8 -9
  101. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/plotting.py +13 -15
  102. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/tal.py +1 -2
  103. {ultralytics-8.1.1 → ultralytics-8.1.3/ultralytics.egg-info}/PKG-INFO +15 -15
  104. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics.egg-info/SOURCES.txt +2 -0
  105. ultralytics-8.1.1/ultralytics/cfg/default.yaml +0 -125
  106. ultralytics-8.1.1/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -50
  107. ultralytics-8.1.1/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -42
  108. ultralytics-8.1.1/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -42
  109. ultralytics-8.1.1/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -54
  110. ultralytics-8.1.1/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -48
  111. ultralytics-8.1.1/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -39
  112. ultralytics-8.1.1/ultralytics/cfg/models/v3/yolov3.yaml +0 -48
  113. ultralytics-8.1.1/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -61
  114. ultralytics-8.1.1/ultralytics/cfg/models/v5/yolov5.yaml +0 -50
  115. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -54
  116. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -56
  117. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -47
  118. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -46
  119. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -54
  120. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -56
  121. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -57
  122. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -47
  123. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -46
  124. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -56
  125. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -46
  126. ultralytics-8.1.1/ultralytics/cfg/models/v8/yolov8.yaml +0 -46
  127. ultralytics-8.1.1/ultralytics/cfg/trackers/botsort.yaml +0 -18
  128. ultralytics-8.1.1/ultralytics/cfg/trackers/bytetrack.yaml +0 -11
  129. {ultralytics-8.1.1 → ultralytics-8.1.3}/LICENSE +0 -0
  130. {ultralytics-8.1.1 → ultralytics-8.1.3}/setup.cfg +0 -0
  131. {ultralytics-8.1.1 → ultralytics-8.1.3}/tests/test_cli.py +0 -0
  132. {ultralytics-8.1.1 → ultralytics-8.1.3}/tests/test_cuda.py +0 -0
  133. {ultralytics-8.1.1 → ultralytics-8.1.3}/tests/test_engine.py +0 -0
  134. {ultralytics-8.1.1 → ultralytics-8.1.3}/tests/test_explorer.py +0 -0
  135. {ultralytics-8.1.1 → ultralytics-8.1.3}/tests/test_integrations.py +0 -0
  136. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/assets/bus.jpg +0 -0
  137. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/assets/zidane.jpg +0 -0
  138. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/__init__.py +0 -0
  139. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/converter.py +0 -0
  140. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/explorer/__init__.py +0 -0
  141. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/explorer/gui/__init__.py +0 -0
  142. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/explorer/gui/dash.py +0 -0
  143. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/loaders.py +0 -0
  144. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/data/utils.py +0 -0
  145. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/__init__.py +0 -0
  146. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/exporter.py +0 -0
  147. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/results.py +0 -0
  148. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/tuner.py +0 -0
  149. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/engine/validator.py +0 -0
  150. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/__init__.py +0 -0
  151. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/fastsam/__init__.py +0 -0
  152. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/fastsam/predict.py +0 -0
  153. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/fastsam/prompt.py +0 -0
  154. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/fastsam/utils.py +0 -0
  155. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/fastsam/val.py +0 -0
  156. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/nas/__init__.py +0 -0
  157. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/nas/predict.py +0 -0
  158. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/nas/val.py +0 -0
  159. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/rtdetr/__init__.py +0 -0
  160. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/rtdetr/model.py +0 -0
  161. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/rtdetr/predict.py +0 -0
  162. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/__init__.py +0 -0
  163. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/amg.py +0 -0
  164. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/modules/__init__.py +0 -0
  165. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/modules/decoders.py +0 -0
  166. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/modules/sam.py +0 -0
  167. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  168. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/sam/modules/transformer.py +0 -0
  169. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/utils/__init__.py +0 -0
  170. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/utils/ops.py +0 -0
  171. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/__init__.py +0 -0
  172. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/__init__.py +0 -0
  173. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/predict.py +0 -0
  174. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/train.py +0 -0
  175. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/classify/val.py +0 -0
  176. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/__init__.py +0 -0
  177. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/predict.py +0 -0
  178. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/detect/train.py +0 -0
  179. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/model.py +0 -0
  180. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/__init__.py +0 -0
  181. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/predict.py +0 -0
  182. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/obb/train.py +0 -0
  183. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/__init__.py +0 -0
  184. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/predict.py +0 -0
  185. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/train.py +0 -0
  186. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/pose/val.py +0 -0
  187. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/__init__.py +0 -0
  188. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/predict.py +0 -0
  189. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/train.py +0 -0
  190. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/models/yolo/segment/val.py +0 -0
  191. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/__init__.py +0 -0
  192. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/autobackend.py +0 -0
  193. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/modules/__init__.py +0 -0
  194. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/modules/block.py +0 -0
  195. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/modules/conv.py +0 -0
  196. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/nn/modules/transformer.py +0 -0
  197. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/solutions/__init__.py +0 -0
  198. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/__init__.py +0 -0
  199. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/basetrack.py +0 -0
  200. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/bot_sort.py +0 -0
  201. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/byte_tracker.py +0 -0
  202. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/utils/__init__.py +0 -0
  203. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  204. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/__init__.py +0 -0
  205. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/autobatch.py +0 -0
  206. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/__init__.py +0 -0
  207. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/clearml.py +0 -0
  208. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/dvc.py +0 -0
  209. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/mlflow.py +0 -0
  210. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/raytune.py +0 -0
  211. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/callbacks/wb.py +0 -0
  212. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/dist.py +0 -0
  213. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/downloads.py +0 -0
  214. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/errors.py +0 -0
  215. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/files.py +0 -0
  216. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/instance.py +0 -0
  217. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/metrics.py +0 -0
  218. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/patches.py +0 -0
  219. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/torch_utils.py +0 -0
  220. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/triton.py +0 -0
  221. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics/utils/tuner.py +0 -0
  222. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics.egg-info/dependency_links.txt +0 -0
  223. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics.egg-info/entry_points.txt +0 -0
  224. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics.egg-info/requires.txt +1 -1
  225. {ultralytics-8.1.1 → ultralytics-8.1.3}/ultralytics.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.1.1
3
+ Version: 8.1.3
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -44,7 +44,6 @@ Requires-Dist: py-cpuinfo
44
44
  Requires-Dist: thop>=0.1.1
45
45
  Requires-Dist: pandas>=1.1.4
46
46
  Requires-Dist: seaborn>=0.11.0
47
- Requires-Dist: hub-sdk>=0.0.2
48
47
  Provides-Extra: dev
49
48
  Requires-Dist: ipython; extra == "dev"
50
49
  Requires-Dist: check-manifest; extra == "dev"
@@ -72,6 +71,7 @@ Requires-Dist: comet; extra == "logging"
72
71
  Requires-Dist: tensorboard>=2.13.0; extra == "logging"
73
72
  Requires-Dist: dvclive>=2.12.0; extra == "logging"
74
73
  Provides-Extra: extra
74
+ Requires-Dist: hub-sdk>=0.0.2; extra == "extra"
75
75
  Requires-Dist: ipython; extra == "extra"
76
76
  Requires-Dist: albumentations>=1.0.3; extra == "extra"
77
77
  Requires-Dist: pycocotools>=2.0.6; extra == "extra"
@@ -180,14 +180,14 @@ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more exa
180
180
 
181
181
  Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics) tutorial, making it easy to learn and implement advanced YOLOv8 features.
182
182
 
183
- | Docs | Notebook | YouTube |
184
- | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
185
- | <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
186
- | <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
187
- | <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
188
- | <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
189
- | <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
190
- | <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
183
+ | Docs | Notebook | YouTube |
184
+ | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
185
+ | <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
186
+ | <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
187
+ | <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
188
+ | <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
189
+ | <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
190
+ | <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
191
191
 
192
192
  ## <div align="center">Models</div>
193
193
 
@@ -209,7 +209,7 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
209
209
  | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
210
210
  | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
211
211
 
212
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
212
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
213
213
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
214
214
 
215
215
  </details>
@@ -243,7 +243,7 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
243
243
  | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
244
244
  | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
245
245
 
246
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
246
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
247
247
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
248
248
 
249
249
  </details>
@@ -261,7 +261,7 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
261
261
  | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
262
262
  | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
263
263
 
264
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
264
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
265
265
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
266
266
 
267
267
  </details>
@@ -272,8 +272,8 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
272
272
 
273
273
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
274
274
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
275
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
276
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
275
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
276
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
277
277
  | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
278
278
  | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
279
279
  | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
@@ -102,14 +102,14 @@ See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more exa
102
102
 
103
103
  Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics) tutorial, making it easy to learn and implement advanced YOLOv8 features.
104
104
 
105
- | Docs | Notebook | YouTube |
106
- | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
107
- | <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
108
- | <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
109
- | <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
110
- | <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
111
- | <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
112
- | <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
105
+ | Docs | Notebook | YouTube |
106
+ | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
107
+ | <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
108
+ | <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
109
+ | <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
110
+ | <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
111
+ | <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
112
+ | <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | Coming Soon |
113
113
 
114
114
  ## <div align="center">Models</div>
115
115
 
@@ -131,7 +131,7 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
131
131
  | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
132
132
  | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
133
133
 
134
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
134
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
135
135
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
136
136
 
137
137
  </details>
@@ -165,7 +165,7 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
165
165
  | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
166
166
  | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
167
167
 
168
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
168
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
169
169
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
170
170
 
171
171
  </details>
@@ -183,7 +183,7 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
183
183
  | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
184
184
  | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
185
185
 
186
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
186
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
187
187
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
188
188
 
189
189
  </details>
@@ -194,8 +194,8 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
194
194
 
195
195
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
196
196
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
197
- | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 76.9 | 204.77 | 3.57 | 3.1 | 23.3 |
198
- | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 78.0 | 424.88 | 4.07 | 11.4 | 76.3 |
197
+ | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
198
+ | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
199
199
  | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
200
200
  | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
201
201
  | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
@@ -78,7 +78,6 @@ dependencies = [
78
78
  "thop>=0.1.1", # FLOPs computation
79
79
  "pandas>=1.1.4",
80
80
  "seaborn>=0.11.0", # plotting
81
- "hub-sdk>=0.0.2", # Ultralytics HUB
82
81
  ]
83
82
 
84
83
  # Optional dependencies ------------------------------------------------------------------------------------------------
@@ -103,13 +102,11 @@ export = [
103
102
  "tensorflow<=2.13.1", # TF bug https://github.com/ultralytics/ultralytics/issues/5161
104
103
  "tensorflowjs>=3.9.0", # TF.js export, automatically installs tensorflow
105
104
  ]
106
-
107
105
  explorer = [
108
106
  "lancedb", # vector search
109
107
  "duckdb", # SQL queries, supports lancedb tables
110
108
  "streamlit", # visualizing with GUI
111
109
  ]
112
-
113
110
  # tensorflow>=2.4.1,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
114
111
  # tflite-support # for TFLite model metadata
115
112
  # scikit-learn==0.19.2 # CoreML quantization
@@ -121,6 +118,7 @@ logging = [
121
118
  "dvclive>=2.12.0",
122
119
  ]
123
120
  extra = [
121
+ "hub-sdk>=0.0.2", # Ultralytics HUB
124
122
  "ipython", # interactive notebook
125
123
  "albumentations>=1.0.3", # training augmentations
126
124
  "pycocotools>=2.0.6", # COCO mAP
@@ -520,7 +520,7 @@ def test_hub():
520
520
 
521
521
  export_fmts_hub()
522
522
  logout()
523
- smart_request('GET', 'http://github.com', progress=True)
523
+ smart_request('GET', 'https://github.com', progress=True)
524
524
 
525
525
 
526
526
  @pytest.fixture
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.1.1"
3
+ __version__ = "8.1.3"
4
4
 
5
5
  from ultralytics.data.explorer.explorer import Explorer
6
6
  from ultralytics.models import RTDETR, SAM, YOLO
@@ -37,7 +37,7 @@ TASK2DATA = {
37
37
  "segment": "coco8-seg.yaml",
38
38
  "classify": "imagenet10",
39
39
  "pose": "coco8-pose.yaml",
40
- "obb": "dota8-obb.yaml",
40
+ "obb": "dota8.yaml",
41
41
  }
42
42
  TASK2MODEL = {
43
43
  "detect": "yolov8n.pt",
@@ -1,5 +1,5 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
2
+ # Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
3
  # Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
4
4
  # Example usage: yolo train data=Argoverse.yaml
5
5
  # parent
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── Argoverse ← downloads here (31.5 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Argoverse # dataset root dir
13
- train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
14
- val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
15
- test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
11
+ path: ../datasets/Argoverse # dataset root dir
12
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
16
15
 
17
16
  # Classes
18
17
  names:
@@ -25,7 +24,6 @@ names:
25
24
  6: traffic_light
26
25
  7: stop_sign
27
26
 
28
-
29
27
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
30
28
  download: |
31
29
  import json
@@ -8,10 +8,10 @@
8
8
  # └── dota1.5 ← downloads here (2GB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/DOTAv1.5 # dataset root dir
12
- train: images/train # train images (relative to 'path') 1411 images
13
- val: images/val # val images (relative to 'path') 458 images
14
- test: images/test # test images (optional) 937 images
11
+ path: ../datasets/DOTAv1.5 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1411 images
13
+ val: images/val # val images (relative to 'path') 458 images
14
+ test: images/test # test images (optional) 937 images
15
15
 
16
16
  # Classes for DOTA 1.5
17
17
  names:
@@ -8,10 +8,10 @@
8
8
  # └── dota1 ← downloads here (2GB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/DOTAv1 # dataset root dir
12
- train: images/train # train images (relative to 'path') 1411 images
13
- val: images/val # val images (relative to 'path') 458 images
14
- test: images/test # test images (optional) 937 images
11
+ path: ../datasets/DOTAv1 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1411 images
13
+ val: images/val # val images (relative to 'path') 458 images
14
+ test: images/test # test images (optional) 937 images
15
15
 
16
16
  # Classes for DOTA 1.0
17
17
  names:
@@ -1,5 +1,5 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
2
+ # Global Wheat 2020 dataset https://www.global-wheat.com/ by University of Saskatchewan
3
3
  # Documentation: https://docs.ultralytics.com/datasets/detect/globalwheat2020/
4
4
  # Example usage: yolo train data=GlobalWheat2020.yaml
5
5
  # parent
@@ -7,9 +7,8 @@
7
7
  # └── datasets
8
8
  # └── GlobalWheat2020 ← downloads here (7.0 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/GlobalWheat2020 # dataset root dir
11
+ path: ../datasets/GlobalWheat2020 # dataset root dir
13
12
  train: # train images (relative to 'path') 3422 images
14
13
  - images/arvalis_1
15
14
  - images/arvalis_2
@@ -30,7 +29,6 @@ test: # test images (optional) 1276 images
30
29
  names:
31
30
  0: wheat_head
32
31
 
33
-
34
32
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
35
33
  download: |
36
34
  from ultralytics.utils.downloads import download
@@ -8,12 +8,11 @@
8
8
  # └── datasets
9
9
  # └── imagenet ← downloads here (144 GB)
10
10
 
11
-
12
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
- path: ../datasets/imagenet # dataset root dir
14
- train: train # train images (relative to 'path') 1281167 images
15
- val: val # val images (relative to 'path') 50000 images
16
- test: # test images (optional)
12
+ path: ../datasets/imagenet # dataset root dir
13
+ train: train # train images (relative to 'path') 1281167 images
14
+ val: val # val images (relative to 'path') 50000 images
15
+ test: # test images (optional)
17
16
 
18
17
  # Classes
19
18
  names:
@@ -2021,6 +2020,5 @@ map:
2021
2020
  n13133613: ear
2022
2021
  n15075141: toilet_tissue
2023
2022
 
2024
-
2025
2023
  # Download script/URL (optional)
2026
2024
  download: yolo/data/scripts/get_imagenet.sh
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Objects365 # dataset root dir
13
- train: images/train # train images (relative to 'path') 1742289 images
11
+ path: ../datasets/Objects365 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1742289 images
14
13
  val: images/val # val images (relative to 'path') 80000 images
15
- test: # test images (optional)
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -382,7 +381,6 @@ names:
382
381
  363: Curling
383
382
  364: Table Tennis
384
383
 
385
-
386
384
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
387
385
  download: |
388
386
  from tqdm import tqdm
@@ -7,18 +7,16 @@
7
7
  # └── datasets
8
8
  # └── SKU-110K ← downloads here (13.6 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/SKU-110K # dataset root dir
13
- train: train.txt # train images (relative to 'path') 8219 images
14
- val: val.txt # val images (relative to 'path') 588 images
15
- test: test.txt # test images (optional) 2936 images
11
+ path: ../datasets/SKU-110K # dataset root dir
12
+ train: train.txt # train images (relative to 'path') 8219 images
13
+ val: val.txt # val images (relative to 'path') 588 images
14
+ test: test.txt # test images (optional) 2936 images
16
15
 
17
16
  # Classes
18
17
  names:
19
18
  0: object
20
19
 
21
-
22
20
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
23
21
  download: |
24
22
  import shutil
@@ -7,7 +7,6 @@
7
7
  # └── datasets
8
8
  # └── VOC ← downloads here (2.8 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
11
  path: ../datasets/VOC
13
12
  train: # train images (relative to 'path') 16551 images
@@ -43,7 +42,6 @@ names:
43
42
  18: train
44
43
  19: tvmonitor
45
44
 
46
-
47
45
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
48
46
  download: |
49
47
  import xml.etree.ElementTree as ET
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── VisDrone ← downloads here (2.3 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/VisDrone # dataset root dir
13
- train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
14
- val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
15
- test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
11
+ path: ../datasets/VisDrone # dataset root dir
12
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -27,7 +26,6 @@ names:
27
26
  8: bus
28
27
  9: motor
29
28
 
30
-
31
29
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
32
30
  download: |
33
31
  import os
@@ -1,5 +1,5 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # COCO 2017 dataset http://cocodataset.org by Microsoft
2
+ # COCO 2017 dataset https://cocodataset.org by Microsoft
3
3
  # Documentation: https://docs.ultralytics.com/datasets/pose/coco/
4
4
  # Example usage: yolo train data=coco-pose.yaml
5
5
  # parent
@@ -7,15 +7,14 @@
7
7
  # └── datasets
8
8
  # └── coco-pose ← downloads here (20.1 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco-pose # dataset root dir
13
- train: train2017.txt # train images (relative to 'path') 118287 images
14
- val: val2017.txt # val images (relative to 'path') 5000 images
15
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
11
+ path: ../datasets/coco-pose # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
15
 
17
16
  # Keypoints
18
- kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
18
  flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
19
 
21
20
  # Classes
@@ -1,5 +1,5 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # COCO 2017 dataset http://cocodataset.org by Microsoft
2
+ # COCO 2017 dataset https://cocodataset.org by Microsoft
3
3
  # Documentation: https://docs.ultralytics.com/datasets/detect/coco/
4
4
  # Example usage: yolo train data=coco.yaml
5
5
  # parent
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco ← downloads here (20.1 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco # dataset root dir
13
- train: train2017.txt # train images (relative to 'path') 118287 images
14
- val: val2017.txt # val images (relative to 'path') 5000 images
15
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
11
+ path: ../datasets/coco # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,7 +96,6 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: |
103
101
  from ultralytics.utils.downloads import download
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco128-seg ← downloads here (7 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128-seg # dataset root dir
13
- train: images/train2017 # train images (relative to 'path') 128 images
14
- val: images/train2017 # val images (relative to 'path') 128 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco128-seg # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco128-seg.zip
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco128 ← downloads here (7 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128 # dataset root dir
13
- train: images/train2017 # train images (relative to 'path') 128 images
14
- val: images/train2017 # val images (relative to 'path') 128 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco128 # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco128.zip
@@ -7,15 +7,14 @@
7
7
  # └── datasets
8
8
  # └── coco8-pose ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-pose # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8-pose # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Keypoints
18
- kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
18
  flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
19
 
21
20
  # Classes
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco8-seg ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-seg # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8-seg # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco8-seg.zip