ultralytics-thop 2.0.15__tar.gz → 2.0.16__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/PKG-INFO +1 -1
- ultralytics_thop-2.0.16/tests/test_conv2d.py +219 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/__init__.py +1 -1
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/profile.py +3 -3
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/vision/basic_hooks.py +15 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/vision/calc_func.py +9 -4
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/ultralytics_thop.egg-info/PKG-INFO +1 -1
- ultralytics_thop-2.0.15/tests/test_conv2d.py +0 -61
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/LICENSE +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/README.md +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/pyproject.toml +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/setup.cfg +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/tests/test_matmul.py +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/tests/test_relu.py +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/tests/test_utils.py +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/fx_profile.py +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/rnn_hooks.py +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/utils.py +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/thop/vision/__init__.py +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/ultralytics_thop.egg-info/SOURCES.txt +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/ultralytics_thop.egg-info/dependency_links.txt +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/ultralytics_thop.egg-info/requires.txt +0 -0
- {ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/ultralytics_thop.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics-thop
|
3
|
-
Version: 2.0.
|
3
|
+
Version: 2.0.16
|
4
4
|
Summary: Ultralytics THOP package for fast computation of PyTorch model FLOPs and parameters.
|
5
5
|
Author-email: Ligeng Zhu <ligeng.zhu+github@gmail.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -0,0 +1,219 @@
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
|
3
|
+
import torch
|
4
|
+
import torch.nn as nn
|
5
|
+
|
6
|
+
from thop import profile
|
7
|
+
|
8
|
+
|
9
|
+
class TestUtils:
|
10
|
+
"""Utility class for testing Conv2D layers with and without bias, profiling MACs and parameters using THOP."""
|
11
|
+
|
12
|
+
def test_conv2d_no_bias(self):
|
13
|
+
"""Tests a 2D Conv layer without bias using THOP profiling on predefined input dimensions and parameters."""
|
14
|
+
n, in_c, ih, iw = 1, 3, 32, 32 # torch.randint(1, 10, (4,)).tolist()
|
15
|
+
out_c, kh, kw = 12, 5, 5
|
16
|
+
s, p, d, g = 1, 1, 1, 1
|
17
|
+
|
18
|
+
net = nn.Conv2d(in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=False)
|
19
|
+
data = torch.randn(n, in_c, ih, iw)
|
20
|
+
out = net(data)
|
21
|
+
|
22
|
+
_, _, oh, ow = out.shape
|
23
|
+
print(f"Conv2d: in={ih}x{iw}, kernel={kh}x{kw}, stride={s}, padding={p}, out={oh}x{ow}")
|
24
|
+
macs, params = profile(net, inputs=(data,))
|
25
|
+
assert macs == 810000, f"{macs} v.s. 810000"
|
26
|
+
|
27
|
+
def test_conv2d(self):
|
28
|
+
"""Tests Conv2D layer with bias, profiling MACs and params for specific input dimensions and layer configs."""
|
29
|
+
n, in_c, ih, iw = 1, 3, 32, 32 # torch.randint(1, 10, (4,)).tolist()
|
30
|
+
out_c, kh, kw = 12, 5, 5
|
31
|
+
s, p, d, g = 1, 1, 1, 1
|
32
|
+
|
33
|
+
net = nn.Conv2d(in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=True)
|
34
|
+
data = torch.randn(n, in_c, ih, iw)
|
35
|
+
out = net(data)
|
36
|
+
|
37
|
+
_, _, oh, ow = out.shape
|
38
|
+
print(f"Conv2d: in={ih}x{iw}, kernel={kh}x{kw}, stride={s}, padding={p}, out={oh}x{ow}")
|
39
|
+
macs, params = profile(net, inputs=(data,))
|
40
|
+
assert macs == 810000, f"{macs} v.s. 810000"
|
41
|
+
|
42
|
+
def test_conv2d_random(self):
|
43
|
+
"""Test Conv2D layer with random parameters and validate the computed MACs and parameters using 'profile'."""
|
44
|
+
for _ in range(10):
|
45
|
+
out_c, kh, kw = torch.randint(1, 20, (3,)).tolist()
|
46
|
+
n, in_c, ih, iw = torch.randint(1, 20, (4,)).tolist() # torch.randint(1, 10, (4,)).tolist()
|
47
|
+
ih += kh
|
48
|
+
iw += kw
|
49
|
+
s, p, d, g = 1, 1, 1, 1
|
50
|
+
|
51
|
+
net = nn.Conv2d(in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=False)
|
52
|
+
data = torch.randn(n, in_c, ih, iw)
|
53
|
+
out = net(data)
|
54
|
+
|
55
|
+
_, _, oh, ow = out.shape
|
56
|
+
print(f"Conv2d: in={ih}x{iw}, kernel={kh}x{kw}, stride={s}, padding={p}, out={oh}x{ow}")
|
57
|
+
macs, params = profile(net, inputs=(data,))
|
58
|
+
assert macs == n * out_c * oh * ow // g * in_c * kh * kw, (
|
59
|
+
f"{macs} v.s. {n * out_c * oh * ow // g * in_c * kh * kw}"
|
60
|
+
)
|
61
|
+
|
62
|
+
def test_convtranspose2d_no_bias(self):
|
63
|
+
"""Tests a 2D ConvTranspose layer without bias using THOP profiling on predefined input dimensions and
|
64
|
+
parameters.
|
65
|
+
"""
|
66
|
+
n, in_c, ih, iw = 1, 3, 2, 2
|
67
|
+
out_c, kh, kw = 1, 2, 2
|
68
|
+
s, p, d, g = 2, 0, 1, 1
|
69
|
+
|
70
|
+
net = nn.ConvTranspose2d(
|
71
|
+
in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=False
|
72
|
+
)
|
73
|
+
data = torch.randn(n, in_c, ih, iw)
|
74
|
+
out = net(data)
|
75
|
+
|
76
|
+
_, _, oh, ow = out.shape
|
77
|
+
|
78
|
+
profile_result = profile(net, inputs=(data,))
|
79
|
+
macs = profile_result[0]
|
80
|
+
profile_result[1]
|
81
|
+
# For ConvTranspose: MACs = input_size * (output_channels / groups) * kernel_size
|
82
|
+
print(f"ConvTranspose2d: in={ih}x{iw}, kernel={kh}x{kw}, stride={s}, padding={p}, out={oh}x{ow}")
|
83
|
+
expected_macs = n * in_c * ih * iw * (out_c // g) * kh * kw
|
84
|
+
assert macs == expected_macs, f"{macs} v.s. {expected_macs}"
|
85
|
+
|
86
|
+
def test_convtranspose2d(self):
|
87
|
+
"""Tests ConvTranspose2D layer with bias, profiling MACs and params for specific input dimensions and layer
|
88
|
+
configs.
|
89
|
+
"""
|
90
|
+
n, in_c, ih, iw = 1, 3, 2, 2
|
91
|
+
out_c, kh, kw = 1, 2, 2
|
92
|
+
s, p, d, g = 2, 0, 1, 1
|
93
|
+
|
94
|
+
net = nn.ConvTranspose2d(
|
95
|
+
in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=True
|
96
|
+
)
|
97
|
+
data = torch.randn(n, in_c, ih, iw)
|
98
|
+
out = net(data)
|
99
|
+
|
100
|
+
_, _, oh, ow = out.shape
|
101
|
+
|
102
|
+
profile_result = profile(net, inputs=(data,))
|
103
|
+
macs = profile_result[0]
|
104
|
+
profile_result[1]
|
105
|
+
# For ConvTranspose: MACs = input_size * (output_channels / groups) * kernel_size
|
106
|
+
print(f"ConvTranspose2d: in={ih}x{iw}, kernel={kh}x{kw}, stride={s}, padding={p}, out={oh}x{ow}")
|
107
|
+
expected_macs = n * in_c * ih * iw * (out_c // g) * kh * kw
|
108
|
+
assert macs == expected_macs, f"{macs} v.s. {expected_macs}"
|
109
|
+
|
110
|
+
def test_convtranspose2d_groups(self):
|
111
|
+
"""Tests ConvTranspose2D layer with groups, validating MAC calculation for grouped transposed convolution."""
|
112
|
+
n, in_c, ih, iw = 1, 8, 4, 4
|
113
|
+
out_c, kh, kw = 4, 3, 3
|
114
|
+
s, p, d, g = 1, 1, 1, 2
|
115
|
+
|
116
|
+
net = nn.ConvTranspose2d(
|
117
|
+
in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=False
|
118
|
+
)
|
119
|
+
data = torch.randn(n, in_c, ih, iw)
|
120
|
+
out = net(data)
|
121
|
+
|
122
|
+
_, _, oh, ow = out.shape
|
123
|
+
|
124
|
+
profile_result = profile(net, inputs=(data,))
|
125
|
+
macs = profile_result[0]
|
126
|
+
profile_result[1]
|
127
|
+
# For ConvTranspose with groups: MACs = input_size * (output_channels / groups) * kernel_size
|
128
|
+
print(f"ConvTranspose2d: in={ih}x{iw}, kernel={kh}x{kw}, stride={s}, padding={p}, out={oh}x{ow}")
|
129
|
+
expected_macs = n * in_c * ih * iw * (out_c // g) * kh * kw
|
130
|
+
assert macs == expected_macs, f"{macs} v.s. {expected_macs}"
|
131
|
+
|
132
|
+
def test_convtranspose2d_random(self):
|
133
|
+
"""Test ConvTranspose2D layer with random parameters and validate the computed MACs and parameters using
|
134
|
+
'profile'.
|
135
|
+
"""
|
136
|
+
for _ in range(10):
|
137
|
+
# Generate random parameters ensuring valid ConvTranspose configurations
|
138
|
+
out_c, kh, kw = torch.randint(1, 10, (3,)).tolist()
|
139
|
+
n, in_c = torch.randint(1, 5, (2,)).tolist()
|
140
|
+
stride = int(torch.randint(1, 3, (1,)).item()) # stride
|
141
|
+
padding = int(torch.randint(0, 2, (1,)).item()) # padding
|
142
|
+
dilation, groups = 1, 1 # Keep dilation=1 and groups=1 for simplicity
|
143
|
+
|
144
|
+
# Ensure input size is large enough to produce valid output
|
145
|
+
# ConvTranspose output size formula: (input_size - 1) * stride - 2 * padding + kernel_size
|
146
|
+
# To ensure positive output, we need: input_size >= (2 * padding + 1) / stride + 1
|
147
|
+
min_input_size = max(3, (2 * padding + kh) // stride + 1, (2 * padding + kw) // stride + 1)
|
148
|
+
ih, iw = torch.randint(min_input_size, min_input_size + 10, (2,)).tolist()
|
149
|
+
|
150
|
+
net = nn.ConvTranspose2d(
|
151
|
+
in_c,
|
152
|
+
out_c,
|
153
|
+
kernel_size=(kh, kw),
|
154
|
+
stride=stride,
|
155
|
+
padding=padding,
|
156
|
+
dilation=dilation,
|
157
|
+
groups=groups,
|
158
|
+
bias=False,
|
159
|
+
)
|
160
|
+
data = torch.randn(n, in_c, ih, iw)
|
161
|
+
out = net(data)
|
162
|
+
|
163
|
+
_, _, oh, ow = out.shape
|
164
|
+
|
165
|
+
profile_result = profile(net, inputs=(data,))
|
166
|
+
macs = profile_result[0]
|
167
|
+
profile_result[1]
|
168
|
+
# For ConvTranspose: MACs = input_size * (output_channels / groups) * kernel_size
|
169
|
+
expected_macs = n * in_c * ih * iw * (out_c // groups) * kh * kw
|
170
|
+
print(
|
171
|
+
f"ConvTranspose2d: in={ih}x{iw}, kernel={kh}x{kw}, stride={stride}, padding={padding}, out={oh}x{ow}, macs={macs}"
|
172
|
+
)
|
173
|
+
assert macs == expected_macs, f"ConvTranspose2d MACs: {macs} v.s. {expected_macs}"
|
174
|
+
|
175
|
+
def test_conv_vs_convtranspose_symmetry(self):
|
176
|
+
"""
|
177
|
+
Test that Conv2d and ConvTranspose2d with symmetric configurations have equal MAC counts.
|
178
|
+
|
179
|
+
Test case: Conv2d downsamples 4x4 -> 2x2, ConvTranspose2d upsamples 2x2 -> 4x4.
|
180
|
+
"""
|
181
|
+
# Conv2d: 4x4 -> 2x2
|
182
|
+
conv_net = nn.Conv2d(1, 3, kernel_size=2, stride=2, bias=False)
|
183
|
+
conv_data = torch.randn(1, 1, 4, 4)
|
184
|
+
conv_out = conv_net(conv_data)
|
185
|
+
conv_profile_result = profile(conv_net, inputs=(conv_data,))
|
186
|
+
conv_macs = conv_profile_result[0]
|
187
|
+
conv_params = conv_profile_result[1]
|
188
|
+
|
189
|
+
# ConvTranspose2d: 2x2 -> 4x4 (symmetric operation)
|
190
|
+
convt_net = nn.ConvTranspose2d(3, 1, kernel_size=2, stride=2, bias=False)
|
191
|
+
convt_data = torch.randn(1, 3, 2, 2)
|
192
|
+
convt_out = convt_net(convt_data)
|
193
|
+
convt_profile_result = profile(convt_net, inputs=(convt_data,))
|
194
|
+
convt_macs = convt_profile_result[0]
|
195
|
+
convt_params = convt_profile_result[1]
|
196
|
+
|
197
|
+
# Verify symmetric operations have equal MAC counts
|
198
|
+
assert conv_macs == convt_macs, f"Symmetric operations should have equal MACs: {conv_macs} != {convt_macs}"
|
199
|
+
|
200
|
+
# Manual verification
|
201
|
+
# Conv: output_size * (input_channels / groups) * kernel_size
|
202
|
+
conv_expected = (
|
203
|
+
conv_out.numel()
|
204
|
+
* (conv_net.in_channels // conv_net.groups)
|
205
|
+
* (conv_net.kernel_size[0] * conv_net.kernel_size[1])
|
206
|
+
)
|
207
|
+
# ConvTranspose: input_size * (output_channels / groups) * kernel_size
|
208
|
+
convt_expected = (
|
209
|
+
convt_data.numel()
|
210
|
+
* (convt_net.out_channels // convt_net.groups)
|
211
|
+
* (convt_net.kernel_size[0] * convt_net.kernel_size[1])
|
212
|
+
)
|
213
|
+
print(f"Conv2d: {conv_data.shape} -> {conv_out.shape}, MACs: {conv_macs}, Params: {conv_params}")
|
214
|
+
print(f"ConvTranspose2d: {convt_data.shape} -> {convt_out.shape}, MACs: {convt_macs}, Params: {convt_params}")
|
215
|
+
print(f"Conv2d expected MACs: {conv_expected}, ConvTranspose2d expected MACs: {convt_expected}")
|
216
|
+
assert conv_macs == conv_expected, f"Conv2d MAC calculation incorrect: {conv_macs} != {conv_expected}"
|
217
|
+
assert convt_macs == convt_expected, (
|
218
|
+
f"ConvTranspose2d MAC calculation incorrect: {convt_macs} != {convt_expected}"
|
219
|
+
)
|
@@ -12,9 +12,9 @@ register_hooks = {
|
|
12
12
|
nn.Conv1d: count_convNd,
|
13
13
|
nn.Conv2d: count_convNd,
|
14
14
|
nn.Conv3d: count_convNd,
|
15
|
-
nn.ConvTranspose1d:
|
16
|
-
nn.ConvTranspose2d:
|
17
|
-
nn.ConvTranspose3d:
|
15
|
+
nn.ConvTranspose1d: count_convtNd,
|
16
|
+
nn.ConvTranspose2d: count_convtNd,
|
17
|
+
nn.ConvTranspose3d: count_convtNd,
|
18
18
|
nn.BatchNorm1d: count_normalization,
|
19
19
|
nn.BatchNorm2d: count_normalization,
|
20
20
|
nn.BatchNorm3d: count_normalization,
|
@@ -30,6 +30,7 @@ def count_convNd(m: _ConvNd, x, y: torch.Tensor):
|
|
30
30
|
kernel_size=list(m.weight.shape),
|
31
31
|
groups=m.groups,
|
32
32
|
bias=m.bias,
|
33
|
+
transpose=False,
|
33
34
|
)
|
34
35
|
# N x Cout x H x W x (Cin x Kw x Kh + bias)
|
35
36
|
# m.total_ops += calculate_conv(
|
@@ -41,6 +42,20 @@ def count_convNd(m: _ConvNd, x, y: torch.Tensor):
|
|
41
42
|
# )
|
42
43
|
|
43
44
|
|
45
|
+
def count_convtNd(m: _ConvNd, x, y: torch.Tensor):
|
46
|
+
"""Calculate and add the number of convolutional operations (FLOPs) for a ConvNd layer to the model's total ops."""
|
47
|
+
x = x[0]
|
48
|
+
|
49
|
+
m.total_ops += calculate_conv2d_flops(
|
50
|
+
input_size=list(x.shape),
|
51
|
+
output_size=list(y.shape),
|
52
|
+
kernel_size=list(m.weight.shape),
|
53
|
+
groups=m.groups,
|
54
|
+
bias=m.bias,
|
55
|
+
transpose=True,
|
56
|
+
)
|
57
|
+
|
58
|
+
|
44
59
|
def count_convNd_ver2(m: _ConvNd, x, y: torch.Tensor):
|
45
60
|
"""Calculates and updates total operations (FLOPs) for a convolutional layer in a PyTorch model."""
|
46
61
|
x = x[0]
|
@@ -29,13 +29,18 @@ def calculate_zero_ops():
|
|
29
29
|
return torch.DoubleTensor([0])
|
30
30
|
|
31
31
|
|
32
|
-
def calculate_conv2d_flops(
|
32
|
+
def calculate_conv2d_flops(
|
33
|
+
input_size: list, output_size: list, kernel_size: list, groups: int, bias: bool = False, transpose: bool = False
|
34
|
+
):
|
33
35
|
"""Calculate FLOPs for a Conv2D layer using input/output sizes, kernel size, groups, and the bias flag."""
|
34
36
|
# n, in_c, ih, iw = input_size
|
35
37
|
# out_c, in_c, kh, kw = kernel_size
|
36
|
-
|
37
|
-
|
38
|
-
|
38
|
+
if transpose:
|
39
|
+
out_c = output_size[1]
|
40
|
+
return l_prod(input_size) * (out_c // groups) * l_prod(kernel_size[2:])
|
41
|
+
else:
|
42
|
+
in_c = input_size[1]
|
43
|
+
return l_prod(output_size) * (in_c // groups) * l_prod(kernel_size[2:])
|
39
44
|
|
40
45
|
|
41
46
|
def calculate_conv(bias, kernel_size, output_size, in_channel, group):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics-thop
|
3
|
-
Version: 2.0.
|
3
|
+
Version: 2.0.16
|
4
4
|
Summary: Ultralytics THOP package for fast computation of PyTorch model FLOPs and parameters.
|
5
5
|
Author-email: Ligeng Zhu <ligeng.zhu+github@gmail.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,61 +0,0 @@
|
|
1
|
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
-
|
3
|
-
import torch
|
4
|
-
import torch.nn as nn
|
5
|
-
|
6
|
-
from thop import profile
|
7
|
-
|
8
|
-
|
9
|
-
class TestUtils:
|
10
|
-
"""Utility class for testing Conv2D layers with and without bias, profiling FLOPs and parameters using THOP."""
|
11
|
-
|
12
|
-
def test_conv2d_no_bias(self):
|
13
|
-
"""Tests a 2D Conv layer without bias using THOP profiling on predefined input dimensions and parameters."""
|
14
|
-
n, in_c, ih, iw = 1, 3, 32, 32 # torch.randint(1, 10, (4,)).tolist()
|
15
|
-
out_c, kh, kw = 12, 5, 5
|
16
|
-
s, p, d, g = 1, 1, 1, 1
|
17
|
-
|
18
|
-
net = nn.Conv2d(in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=False)
|
19
|
-
data = torch.randn(n, in_c, ih, iw)
|
20
|
-
out = net(data)
|
21
|
-
|
22
|
-
_, _, oh, ow = out.shape
|
23
|
-
|
24
|
-
flops, params = profile(net, inputs=(data,))
|
25
|
-
assert flops == 810000, f"{flops} v.s. 810000"
|
26
|
-
|
27
|
-
def test_conv2d(self):
|
28
|
-
"""Tests Conv2D layer with bias, profiling FLOPs and params for specific input dimensions and layer configs."""
|
29
|
-
n, in_c, ih, iw = 1, 3, 32, 32 # torch.randint(1, 10, (4,)).tolist()
|
30
|
-
out_c, kh, kw = 12, 5, 5
|
31
|
-
s, p, d, g = 1, 1, 1, 1
|
32
|
-
|
33
|
-
net = nn.Conv2d(in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=True)
|
34
|
-
data = torch.randn(n, in_c, ih, iw)
|
35
|
-
out = net(data)
|
36
|
-
|
37
|
-
_, _, oh, ow = out.shape
|
38
|
-
|
39
|
-
flops, params = profile(net, inputs=(data,))
|
40
|
-
assert flops == 810000, f"{flops} v.s. 810000"
|
41
|
-
|
42
|
-
def test_conv2d_random(self):
|
43
|
-
"""Test Conv2D layer with random parameters and validate the computed FLOPs and parameters using 'profile'."""
|
44
|
-
for _ in range(10):
|
45
|
-
out_c, kh, kw = torch.randint(1, 20, (3,)).tolist()
|
46
|
-
n, in_c, ih, iw = torch.randint(1, 20, (4,)).tolist() # torch.randint(1, 10, (4,)).tolist()
|
47
|
-
ih += kh
|
48
|
-
iw += kw
|
49
|
-
s, p, d, g = 1, 1, 1, 1
|
50
|
-
|
51
|
-
net = nn.Conv2d(in_c, out_c, kernel_size=(kh, kw), stride=s, padding=p, dilation=d, groups=g, bias=False)
|
52
|
-
data = torch.randn(n, in_c, ih, iw)
|
53
|
-
out = net(data)
|
54
|
-
|
55
|
-
_, _, oh, ow = out.shape
|
56
|
-
|
57
|
-
flops, params = profile(net, inputs=(data,))
|
58
|
-
print(flops, params)
|
59
|
-
assert flops == n * out_c * oh * ow // g * in_c * kh * kw, (
|
60
|
-
f"{flops} v.s. {n * out_c * oh * ow // g * in_c * kh * kw}"
|
61
|
-
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{ultralytics_thop-2.0.15 → ultralytics_thop-2.0.16}/ultralytics_thop.egg-info/dependency_links.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|