ultralytics-opencv-headless 8.4.2__tar.gz → 8.4.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (315) hide show
  1. {ultralytics_opencv_headless-8.4.2/ultralytics_opencv_headless.egg-info → ultralytics_opencv_headless-8.4.4}/PKG-INFO +44 -44
  2. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/README.md +43 -43
  3. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/__init__.py +1 -1
  4. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/__init__.py +19 -19
  5. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/annotator.py +2 -2
  6. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/converter.py +9 -9
  7. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/exporter.py +23 -24
  8. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/model.py +33 -33
  9. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/predictor.py +17 -17
  10. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/results.py +2 -9
  11. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/trainer.py +19 -12
  12. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/tuner.py +4 -4
  13. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/validator.py +16 -16
  14. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/classify/predict.py +1 -1
  15. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/classify/train.py +1 -1
  16. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/classify/val.py +1 -1
  17. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/detect/predict.py +2 -2
  18. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/detect/train.py +1 -1
  19. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/detect/val.py +1 -1
  20. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/model.py +7 -7
  21. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/obb/predict.py +1 -1
  22. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/obb/train.py +2 -2
  23. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/obb/val.py +1 -1
  24. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/pose/predict.py +1 -1
  25. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/pose/train.py +4 -2
  26. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/pose/val.py +1 -1
  27. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/segment/predict.py +3 -3
  28. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/segment/train.py +3 -3
  29. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/segment/val.py +2 -4
  30. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/autobackend.py +3 -3
  31. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/modules/head.py +1 -1
  32. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/tasks.py +12 -12
  33. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/ai_gym.py +3 -3
  34. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/config.py +1 -1
  35. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/heatmap.py +1 -1
  36. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/instance_segmentation.py +2 -2
  37. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/parking_management.py +1 -1
  38. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/solutions.py +2 -2
  39. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/track.py +1 -1
  40. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/__init__.py +8 -8
  41. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/benchmarks.py +25 -25
  42. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/platform.py +11 -9
  43. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/tensorboard.py +2 -0
  44. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/checks.py +6 -6
  45. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/downloads.py +2 -2
  46. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/export/imx.py +24 -17
  47. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/files.py +2 -2
  48. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/loss.py +3 -3
  49. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/tuner.py +2 -2
  50. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4/ultralytics_opencv_headless.egg-info}/PKG-INFO +44 -44
  51. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/LICENSE +0 -0
  52. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/pyproject.toml +0 -0
  53. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/setup.cfg +0 -0
  54. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/__init__.py +0 -0
  55. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/conftest.py +0 -0
  56. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/test_cli.py +0 -0
  57. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/test_cuda.py +0 -0
  58. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/test_engine.py +0 -0
  59. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/test_exports.py +0 -0
  60. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/test_integrations.py +0 -0
  61. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/test_python.py +0 -0
  62. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/tests/test_solutions.py +0 -0
  63. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/assets/bus.jpg +0 -0
  64. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/assets/zidane.jpg +0 -0
  65. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  66. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  67. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  68. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  69. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
  70. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  71. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  72. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  73. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/TT100K.yaml +0 -0
  74. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  75. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  76. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  77. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  78. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  79. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  80. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco.yaml +0 -0
  81. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  82. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  83. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
  84. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
  85. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  86. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  87. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  88. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
  89. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  90. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  91. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/dota8-multispectral.yaml +0 -0
  92. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  93. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  94. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/kitti.yaml +0 -0
  95. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  96. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  97. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  98. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  99. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/signature.yaml +0 -0
  100. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  101. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/datasets/xView.yaml +0 -0
  102. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/default.yaml +0 -0
  103. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  104. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  105. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  106. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  107. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  108. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  109. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
  110. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
  111. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  112. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  113. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  114. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  115. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  116. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yolo26-cls.yaml +0 -0
  117. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yolo26-obb.yaml +0 -0
  118. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yolo26-p2.yaml +0 -0
  119. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yolo26-p6.yaml +0 -0
  120. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yolo26-pose.yaml +0 -0
  121. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yolo26-seg.yaml +0 -0
  122. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yolo26.yaml +0 -0
  123. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yoloe-26-seg.yaml +0 -0
  124. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/26/yoloe-26.yaml +0 -0
  125. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  126. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  127. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  128. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  129. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  130. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  131. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  132. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  133. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  134. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  135. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  136. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  137. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  138. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  139. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  140. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  141. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
  142. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
  143. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  144. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  145. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  146. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  147. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  148. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  149. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  150. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  151. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  152. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  153. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  154. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  155. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  156. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  157. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  158. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  159. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  160. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  161. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  162. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  163. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  164. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  165. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  166. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  167. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  168. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  169. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/__init__.py +0 -0
  170. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/augment.py +0 -0
  171. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/base.py +0 -0
  172. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/build.py +0 -0
  173. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/dataset.py +0 -0
  174. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/loaders.py +0 -0
  175. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/scripts/download_weights.sh +0 -0
  176. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/scripts/get_coco.sh +0 -0
  177. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/scripts/get_coco128.sh +0 -0
  178. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/scripts/get_imagenet.sh +0 -0
  179. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/split.py +0 -0
  180. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/split_dota.py +0 -0
  181. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/data/utils.py +0 -0
  182. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/engine/__init__.py +0 -0
  183. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/hub/__init__.py +0 -0
  184. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/hub/auth.py +0 -0
  185. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/hub/google/__init__.py +0 -0
  186. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/hub/session.py +0 -0
  187. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/hub/utils.py +0 -0
  188. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/__init__.py +0 -0
  189. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/fastsam/__init__.py +0 -0
  190. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/fastsam/model.py +0 -0
  191. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/fastsam/predict.py +0 -0
  192. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/fastsam/utils.py +0 -0
  193. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/fastsam/val.py +0 -0
  194. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/nas/__init__.py +0 -0
  195. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/nas/model.py +0 -0
  196. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/nas/predict.py +0 -0
  197. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/nas/val.py +0 -0
  198. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/rtdetr/__init__.py +0 -0
  199. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/rtdetr/model.py +0 -0
  200. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/rtdetr/predict.py +0 -0
  201. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/rtdetr/train.py +0 -0
  202. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/rtdetr/val.py +0 -0
  203. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/__init__.py +0 -0
  204. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/amg.py +0 -0
  205. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/build.py +0 -0
  206. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/build_sam3.py +0 -0
  207. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/model.py +0 -0
  208. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/__init__.py +0 -0
  209. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/blocks.py +0 -0
  210. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/decoders.py +0 -0
  211. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/encoders.py +0 -0
  212. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  213. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/sam.py +0 -0
  214. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  215. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/transformer.py +0 -0
  216. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/modules/utils.py +0 -0
  217. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/predict.py +0 -0
  218. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/__init__.py +0 -0
  219. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/decoder.py +0 -0
  220. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/encoder.py +0 -0
  221. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/geometry_encoders.py +0 -0
  222. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/maskformer_segmentation.py +0 -0
  223. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/model_misc.py +0 -0
  224. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/necks.py +0 -0
  225. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/sam3_image.py +0 -0
  226. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/text_encoder_ve.py +0 -0
  227. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/vitdet.py +0 -0
  228. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/sam/sam3/vl_combiner.py +0 -0
  229. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/utils/__init__.py +0 -0
  230. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/utils/loss.py +0 -0
  231. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/utils/ops.py +0 -0
  232. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/__init__.py +0 -0
  233. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/classify/__init__.py +0 -0
  234. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/detect/__init__.py +0 -0
  235. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/obb/__init__.py +0 -0
  236. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/pose/__init__.py +0 -0
  237. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/segment/__init__.py +0 -0
  238. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/world/__init__.py +0 -0
  239. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/world/train.py +0 -0
  240. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/world/train_world.py +0 -0
  241. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
  242. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/yoloe/predict.py +0 -0
  243. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/yoloe/train.py +0 -0
  244. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/yoloe/train_seg.py +0 -0
  245. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/models/yolo/yoloe/val.py +0 -0
  246. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/__init__.py +0 -0
  247. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/modules/__init__.py +0 -0
  248. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/modules/activation.py +0 -0
  249. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/modules/block.py +0 -0
  250. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/modules/conv.py +0 -0
  251. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/modules/transformer.py +0 -0
  252. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/modules/utils.py +0 -0
  253. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/nn/text_model.py +0 -0
  254. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/optim/__init__.py +0 -0
  255. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/optim/muon.py +0 -0
  256. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/py.typed +0 -0
  257. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/__init__.py +0 -0
  258. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/analytics.py +0 -0
  259. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/distance_calculation.py +0 -0
  260. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/object_blurrer.py +0 -0
  261. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/object_counter.py +0 -0
  262. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/object_cropper.py +0 -0
  263. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/queue_management.py +0 -0
  264. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/region_counter.py +0 -0
  265. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/security_alarm.py +0 -0
  266. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/similarity_search.py +0 -0
  267. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/speed_estimation.py +0 -0
  268. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/streamlit_inference.py +0 -0
  269. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/templates/similarity-search.html +0 -0
  270. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/trackzone.py +0 -0
  271. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/solutions/vision_eye.py +0 -0
  272. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/__init__.py +0 -0
  273. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/basetrack.py +0 -0
  274. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/bot_sort.py +0 -0
  275. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/byte_tracker.py +0 -0
  276. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/utils/__init__.py +0 -0
  277. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/utils/gmc.py +0 -0
  278. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  279. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/trackers/utils/matching.py +0 -0
  280. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/autobatch.py +0 -0
  281. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/autodevice.py +0 -0
  282. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/__init__.py +0 -0
  283. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/base.py +0 -0
  284. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/clearml.py +0 -0
  285. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/comet.py +0 -0
  286. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/dvc.py +0 -0
  287. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/hub.py +0 -0
  288. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/mlflow.py +0 -0
  289. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/neptune.py +0 -0
  290. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/raytune.py +0 -0
  291. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/callbacks/wb.py +0 -0
  292. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/cpu.py +0 -0
  293. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/dist.py +0 -0
  294. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/errors.py +0 -0
  295. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/events.py +0 -0
  296. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/export/__init__.py +0 -0
  297. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/export/engine.py +0 -0
  298. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/export/tensorflow.py +0 -0
  299. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/git.py +0 -0
  300. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/instance.py +0 -0
  301. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/logger.py +0 -0
  302. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/metrics.py +0 -0
  303. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/nms.py +0 -0
  304. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/ops.py +0 -0
  305. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/patches.py +0 -0
  306. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/plotting.py +0 -0
  307. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/tal.py +0 -0
  308. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/torch_utils.py +0 -0
  309. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/tqdm.py +0 -0
  310. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics/utils/triton.py +0 -0
  311. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics_opencv_headless.egg-info/SOURCES.txt +0 -0
  312. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics_opencv_headless.egg-info/dependency_links.txt +0 -0
  313. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics_opencv_headless.egg-info/entry_points.txt +0 -0
  314. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics_opencv_headless.egg-info/requires.txt +0 -0
  315. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.4}/ultralytics_opencv_headless.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics-opencv-headless
3
- Version: 8.4.2
3
+ Version: 8.4.4
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -89,7 +89,7 @@ Dynamic: license-file
89
89
 
90
90
  <div align="center">
91
91
  <p>
92
- <a href="https://www.ultralytics.com/events/yolovision?utm_source=github&utm_medium=org&utm_campaign=yv25_event" target="_blank">
92
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
93
93
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
94
94
  </p>
95
95
 
@@ -116,8 +116,8 @@ Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.c
116
116
 
117
117
  Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
118
118
 
119
- <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
120
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
119
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
120
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO26 performance plots">
121
121
  </a>
122
122
 
123
123
  <div align="center">
@@ -218,13 +218,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
218
218
 
219
219
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
220
220
 
221
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
222
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
223
- | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
224
- | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
225
- | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
226
- | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
227
- | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
221
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
222
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
223
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
224
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
225
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
226
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
227
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
228
228
 
229
229
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
230
230
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -235,13 +235,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
235
235
 
236
236
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
237
237
 
238
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
239
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
240
- | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
241
- | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
242
- | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
243
- | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
244
- | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
238
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
239
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
240
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
241
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
242
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
243
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
244
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
245
245
 
246
246
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
247
247
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -252,13 +252,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
252
252
 
253
253
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
254
254
 
255
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
256
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
257
- | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
258
- | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
259
- | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
260
- | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
261
- | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
255
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
256
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
257
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
258
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
259
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
260
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
261
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
262
262
 
263
263
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
264
264
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -269,13 +269,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
269
269
 
270
270
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
271
271
 
272
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
273
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
274
- | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
275
- | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
276
- | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
277
- | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
278
- | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
272
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
273
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
274
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
275
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
276
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
277
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
278
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
279
279
 
280
280
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
281
281
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -286,13 +286,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
286
286
 
287
287
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
288
288
 
289
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
290
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
291
- | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
292
- | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
293
- | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
294
- | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
295
- | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
289
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
290
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
291
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
292
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
293
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
294
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
295
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
296
296
 
297
297
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
298
298
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -310,8 +310,8 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
310
310
  <br>
311
311
 
312
312
  <div align="center">
313
- <a href="https://www.ultralytics.com/hub">
314
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
313
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26">
314
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics Platform logo"></a>
315
315
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
316
316
  <a href="https://docs.ultralytics.com/integrations/weights-biases/">
317
317
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
@@ -323,9 +323,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
323
323
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
324
324
  </div>
325
325
 
326
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
327
- | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
328
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
326
+ | Ultralytics Platform 🌟 | Weights & Biases | Comet | Neural Magic |
327
+ | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
328
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics Platform](https://platform.ultralytics.com/ultralytics/yolo26). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
329
329
 
330
330
  ## 🤝 Contribute
331
331
 
@@ -1,6 +1,6 @@
1
1
  <div align="center">
2
2
  <p>
3
- <a href="https://www.ultralytics.com/events/yolovision?utm_source=github&utm_medium=org&utm_campaign=yv25_event" target="_blank">
3
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
4
4
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
5
5
  </p>
6
6
 
@@ -27,8 +27,8 @@ Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.c
27
27
 
28
28
  Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
29
29
 
30
- <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
31
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
30
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
31
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO26 performance plots">
32
32
  </a>
33
33
 
34
34
  <div align="center">
@@ -129,13 +129,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
129
129
 
130
130
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
131
131
 
132
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
133
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
134
- | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
135
- | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
136
- | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
137
- | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
138
- | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
132
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
133
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
134
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
135
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
136
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
137
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
138
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
139
139
 
140
140
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
141
141
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -146,13 +146,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
146
146
 
147
147
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
148
148
 
149
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
150
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
151
- | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
152
- | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
153
- | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
154
- | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
155
- | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
149
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
150
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
151
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
152
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
153
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
154
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
155
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
156
156
 
157
157
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
158
158
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -163,13 +163,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
163
163
 
164
164
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
165
165
 
166
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
167
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
168
- | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
169
- | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
170
- | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
171
- | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
172
- | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
166
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
167
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
168
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
169
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
170
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
171
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
172
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
173
173
 
174
174
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
175
175
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -180,13 +180,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
180
180
 
181
181
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
182
182
 
183
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
184
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
185
- | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
186
- | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
187
- | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
188
- | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
189
- | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
183
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
184
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
185
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
186
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
187
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
188
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
189
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
190
190
 
191
191
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
192
192
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -197,13 +197,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
197
197
 
198
198
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
199
199
 
200
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
201
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
202
- | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
203
- | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
204
- | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
205
- | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
206
- | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
200
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
201
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
202
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
203
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
204
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
205
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
206
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
207
207
 
208
208
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
209
209
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -221,8 +221,8 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
221
221
  <br>
222
222
 
223
223
  <div align="center">
224
- <a href="https://www.ultralytics.com/hub">
225
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
224
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26">
225
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics Platform logo"></a>
226
226
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
227
227
  <a href="https://docs.ultralytics.com/integrations/weights-biases/">
228
228
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
@@ -234,9 +234,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
234
234
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
235
235
  </div>
236
236
 
237
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
238
- | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
239
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
237
+ | Ultralytics Platform 🌟 | Weights & Biases | Comet | Neural Magic |
238
+ | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
239
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics Platform](https://platform.ultralytics.com/ultralytics/yolo26). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
240
240
 
241
241
  ## 🤝 Contribute
242
242
 
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.4.2"
3
+ __version__ = "8.4.4"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -90,13 +90,13 @@ SOLUTIONS_HELP_MSG = f"""
90
90
  yolo solutions count source="path/to/video.mp4" region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]"
91
91
 
92
92
  2. Call heatmap solution
93
- yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo11n.pt
93
+ yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo26n.pt
94
94
 
95
95
  3. Call queue management solution
96
- yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo11n.pt
96
+ yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo26n.pt
97
97
 
98
98
  4. Call workout monitoring solution for push-ups
99
- yolo solutions workout model=yolo11n-pose.pt kpts=[6, 8, 10]
99
+ yolo solutions workout model=yolo26n-pose.pt kpts=[6, 8, 10]
100
100
 
101
101
  5. Generate analytical graphs
102
102
  yolo solutions analytics analytics_type="pie"
@@ -118,16 +118,16 @@ CLI_HELP_MSG = f"""
118
118
  See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
119
119
 
120
120
  1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
121
- yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
121
+ yolo train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01
122
122
 
123
123
  2. Predict a YouTube video using a pretrained segmentation model at image size 320:
124
- yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
124
+ yolo predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
125
125
 
126
126
  3. Validate a pretrained detection model at batch-size 1 and image size 640:
127
- yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
127
+ yolo val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640
128
128
 
129
- 4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
- yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
129
+ 4. Export a YOLO26n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
+ yolo export model=yolo26n-cls.pt format=onnx imgsz=224,128
131
131
 
132
132
  5. Ultralytics solutions usage
133
133
  yolo solutions count or any of {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
@@ -412,7 +412,7 @@ def get_save_dir(args: SimpleNamespace, name: str | None = None) -> Path:
412
412
  nested = args.project and len(Path(args.project).parts) > 1 # e.g. "user/project" or "org\repo"
413
413
  project = runs / args.project if nested else args.project or runs
414
414
  name = name or args.name or f"{args.mode}"
415
- save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True, mkdir=True)
415
+ save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True)
416
416
 
417
417
  return Path(save_dir).resolve() # resolve to display full path in console
418
418
 
@@ -604,7 +604,7 @@ def handle_yolo_settings(args: list[str]) -> None:
604
604
 
605
605
  Examples:
606
606
  >>> handle_yolo_settings(["reset"]) # Reset YOLO settings
607
- >>> handle_yolo_settings(["default_cfg_path=yolo11n.yaml"]) # Update a specific setting
607
+ >>> handle_yolo_settings(["default_cfg_path=yolo26n.yaml"]) # Update a specific setting
608
608
 
609
609
  Notes:
610
610
  - If no arguments are provided, the function will display the current settings.
@@ -649,7 +649,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
649
649
  >>> handle_yolo_solutions(["analytics", "conf=0.25", "source=path/to/video.mp4"])
650
650
 
651
651
  Run inference with custom configuration, requires Streamlit version 1.29.0 or higher.
652
- >>> handle_yolo_solutions(["inference", "model=yolo11n.pt"])
652
+ >>> handle_yolo_solutions(["inference", "model=yolo26n.pt"])
653
653
 
654
654
  Notes:
655
655
  - Arguments can be provided in the format 'key=value' or as boolean flags
@@ -707,7 +707,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
707
707
  str(ROOT / "solutions/streamlit_inference.py"),
708
708
  "--server.headless",
709
709
  "true",
710
- overrides.pop("model", "yolo11n.pt"),
710
+ overrides.pop("model", "yolo26n.pt"),
711
711
  ]
712
712
  )
713
713
  else:
@@ -758,9 +758,9 @@ def parse_key_value_pair(pair: str = "key=value") -> tuple:
758
758
  AssertionError: If the value is missing or empty.
759
759
 
760
760
  Examples:
761
- >>> key, value = parse_key_value_pair("model=yolo11n.pt")
761
+ >>> key, value = parse_key_value_pair("model=yolo26n.pt")
762
762
  >>> print(f"Key: {key}, Value: {value}")
763
- Key: model, Value: yolo11n.pt
763
+ Key: model, Value: yolo26n.pt
764
764
 
765
765
  >>> key, value = parse_key_value_pair("epochs=100")
766
766
  >>> print(f"Key: {key}, Value: {value}")
@@ -832,13 +832,13 @@ def entrypoint(debug: str = "") -> None:
832
832
 
833
833
  Examples:
834
834
  Train a detection model for 10 epochs with an initial learning_rate of 0.01:
835
- >>> entrypoint("train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01")
835
+ >>> entrypoint("train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01")
836
836
 
837
837
  Predict a YouTube video using a pretrained segmentation model at image size 320:
838
- >>> entrypoint("predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
838
+ >>> entrypoint("predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
839
839
 
840
840
  Validate a pretrained detection model at batch-size 1 and image size 640:
841
- >>> entrypoint("val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640")
841
+ >>> entrypoint("val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640")
842
842
 
843
843
  Notes:
844
844
  - If no arguments are passed, the function will display the usage help message.
@@ -933,7 +933,7 @@ def entrypoint(debug: str = "") -> None:
933
933
  # Model
934
934
  model = overrides.pop("model", DEFAULT_CFG.model)
935
935
  if model is None:
936
- model = "yolo11n.pt"
936
+ model = "yolo26n.pt"
937
937
  LOGGER.warning(f"'model' argument is missing. Using default 'model={model}'.")
938
938
  overrides["model"] = model
939
939
  stem = Path(model).stem.lower()
@@ -1022,5 +1022,5 @@ def copy_default_cfg() -> None:
1022
1022
 
1023
1023
 
1024
1024
  if __name__ == "__main__":
1025
- # Example: entrypoint(debug='yolo predict model=yolo11n.pt')
1025
+ # Example: entrypoint(debug='yolo predict model=yolo26n.pt')
1026
1026
  entrypoint(debug="")
@@ -9,7 +9,7 @@ from ultralytics import SAM, YOLO
9
9
 
10
10
  def auto_annotate(
11
11
  data: str | Path,
12
- det_model: str = "yolo11x.pt",
12
+ det_model: str = "yolo26x.pt",
13
13
  sam_model: str = "sam_b.pt",
14
14
  device: str = "",
15
15
  conf: float = 0.25,
@@ -39,7 +39,7 @@ def auto_annotate(
39
39
 
40
40
  Examples:
41
41
  >>> from ultralytics.data.annotator import auto_annotate
42
- >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
42
+ >>> auto_annotate(data="ultralytics/assets", det_model="yolo26n.pt", sam_model="mobile_sam.pt")
43
43
  """
44
44
  det_model = YOLO(det_model)
45
45
  sam_model = SAM(sam_model)