ultralytics-opencv-headless 8.4.2__tar.gz → 8.4.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (315) hide show
  1. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/PKG-INFO +36 -36
  2. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/README.md +35 -35
  3. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/__init__.py +1 -1
  4. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/__init__.py +18 -18
  5. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/annotator.py +2 -2
  6. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/converter.py +9 -9
  7. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/exporter.py +22 -22
  8. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/model.py +33 -33
  9. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/predictor.py +17 -17
  10. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/results.py +2 -9
  11. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/trainer.py +19 -12
  12. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/tuner.py +4 -4
  13. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/validator.py +16 -16
  14. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/predict.py +1 -1
  15. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/train.py +1 -1
  16. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/val.py +1 -1
  17. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/predict.py +2 -2
  18. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/train.py +1 -1
  19. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/val.py +1 -1
  20. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/model.py +7 -7
  21. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/predict.py +1 -1
  22. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/train.py +2 -2
  23. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/val.py +1 -1
  24. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/predict.py +1 -1
  25. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/train.py +4 -2
  26. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/val.py +1 -1
  27. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/predict.py +2 -2
  28. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/train.py +3 -3
  29. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/val.py +1 -1
  30. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/autobackend.py +2 -2
  31. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/head.py +1 -1
  32. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/tasks.py +12 -12
  33. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/ai_gym.py +3 -3
  34. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/config.py +1 -1
  35. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/heatmap.py +1 -1
  36. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/instance_segmentation.py +2 -2
  37. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/parking_management.py +1 -1
  38. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/solutions.py +2 -2
  39. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/track.py +1 -1
  40. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/__init__.py +8 -8
  41. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/benchmarks.py +23 -23
  42. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/platform.py +11 -9
  43. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/checks.py +6 -6
  44. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/downloads.py +2 -2
  45. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/imx.py +3 -8
  46. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/files.py +2 -2
  47. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/loss.py +3 -3
  48. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/tuner.py +2 -2
  49. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/PKG-INFO +36 -36
  50. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/LICENSE +0 -0
  51. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/pyproject.toml +0 -0
  52. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/setup.cfg +0 -0
  53. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/__init__.py +0 -0
  54. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/conftest.py +0 -0
  55. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/test_cli.py +0 -0
  56. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/test_cuda.py +0 -0
  57. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/test_engine.py +0 -0
  58. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/test_exports.py +0 -0
  59. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/test_integrations.py +0 -0
  60. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/test_python.py +0 -0
  61. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/tests/test_solutions.py +0 -0
  62. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/assets/bus.jpg +0 -0
  63. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/assets/zidane.jpg +0 -0
  64. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  65. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  66. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  67. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  68. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
  69. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  70. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  71. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  72. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/TT100K.yaml +0 -0
  73. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  74. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  75. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  76. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  77. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  78. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  79. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco.yaml +0 -0
  80. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  81. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  82. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
  83. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
  84. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  85. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  86. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  87. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
  88. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  89. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  90. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/dota8-multispectral.yaml +0 -0
  91. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  92. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  93. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/kitti.yaml +0 -0
  94. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  95. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  96. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  97. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  98. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/signature.yaml +0 -0
  99. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  100. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/xView.yaml +0 -0
  101. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/default.yaml +0 -0
  102. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  103. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  104. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  105. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  106. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  107. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  108. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
  109. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
  110. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  111. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  112. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  113. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  114. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  115. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-cls.yaml +0 -0
  116. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-obb.yaml +0 -0
  117. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-p2.yaml +0 -0
  118. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-p6.yaml +0 -0
  119. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-pose.yaml +0 -0
  120. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-seg.yaml +0 -0
  121. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26.yaml +0 -0
  122. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yoloe-26-seg.yaml +0 -0
  123. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yoloe-26.yaml +0 -0
  124. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  125. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  126. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  127. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  128. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  129. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  130. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  131. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  132. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  133. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  134. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  135. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  136. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  137. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  138. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  139. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  140. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
  141. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
  142. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  143. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  144. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  145. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  146. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  147. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  148. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  149. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  150. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  151. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  152. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  153. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  154. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  155. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  156. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  157. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  158. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  159. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  160. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  161. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  162. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  163. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  164. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  165. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  166. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  167. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  168. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/__init__.py +0 -0
  169. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/augment.py +0 -0
  170. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/base.py +0 -0
  171. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/build.py +0 -0
  172. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/dataset.py +0 -0
  173. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/loaders.py +0 -0
  174. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/download_weights.sh +0 -0
  175. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/get_coco.sh +0 -0
  176. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/get_coco128.sh +0 -0
  177. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/get_imagenet.sh +0 -0
  178. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/split.py +0 -0
  179. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/split_dota.py +0 -0
  180. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/utils.py +0 -0
  181. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/__init__.py +0 -0
  182. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/__init__.py +0 -0
  183. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/auth.py +0 -0
  184. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/google/__init__.py +0 -0
  185. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/session.py +0 -0
  186. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/utils.py +0 -0
  187. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/__init__.py +0 -0
  188. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/__init__.py +0 -0
  189. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/model.py +0 -0
  190. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/predict.py +0 -0
  191. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/utils.py +0 -0
  192. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/val.py +0 -0
  193. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/__init__.py +0 -0
  194. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/model.py +0 -0
  195. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/predict.py +0 -0
  196. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/val.py +0 -0
  197. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/__init__.py +0 -0
  198. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/model.py +0 -0
  199. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/predict.py +0 -0
  200. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/train.py +0 -0
  201. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/val.py +0 -0
  202. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/__init__.py +0 -0
  203. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/amg.py +0 -0
  204. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/build.py +0 -0
  205. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/build_sam3.py +0 -0
  206. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/model.py +0 -0
  207. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/__init__.py +0 -0
  208. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/blocks.py +0 -0
  209. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/decoders.py +0 -0
  210. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/encoders.py +0 -0
  211. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  212. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/sam.py +0 -0
  213. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  214. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/transformer.py +0 -0
  215. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/utils.py +0 -0
  216. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/predict.py +0 -0
  217. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/__init__.py +0 -0
  218. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/decoder.py +0 -0
  219. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/encoder.py +0 -0
  220. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/geometry_encoders.py +0 -0
  221. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/maskformer_segmentation.py +0 -0
  222. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/model_misc.py +0 -0
  223. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/necks.py +0 -0
  224. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/sam3_image.py +0 -0
  225. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/text_encoder_ve.py +0 -0
  226. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/vitdet.py +0 -0
  227. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/vl_combiner.py +0 -0
  228. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/utils/__init__.py +0 -0
  229. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/utils/loss.py +0 -0
  230. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/utils/ops.py +0 -0
  231. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/__init__.py +0 -0
  232. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/__init__.py +0 -0
  233. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/__init__.py +0 -0
  234. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/__init__.py +0 -0
  235. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/__init__.py +0 -0
  236. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/__init__.py +0 -0
  237. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/world/__init__.py +0 -0
  238. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/world/train.py +0 -0
  239. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/world/train_world.py +0 -0
  240. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
  241. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/predict.py +0 -0
  242. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/train.py +0 -0
  243. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/train_seg.py +0 -0
  244. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/val.py +0 -0
  245. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/__init__.py +0 -0
  246. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/__init__.py +0 -0
  247. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/activation.py +0 -0
  248. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/block.py +0 -0
  249. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/conv.py +0 -0
  250. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/transformer.py +0 -0
  251. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/utils.py +0 -0
  252. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/text_model.py +0 -0
  253. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/optim/__init__.py +0 -0
  254. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/optim/muon.py +0 -0
  255. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/py.typed +0 -0
  256. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/__init__.py +0 -0
  257. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/analytics.py +0 -0
  258. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/distance_calculation.py +0 -0
  259. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/object_blurrer.py +0 -0
  260. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/object_counter.py +0 -0
  261. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/object_cropper.py +0 -0
  262. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/queue_management.py +0 -0
  263. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/region_counter.py +0 -0
  264. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/security_alarm.py +0 -0
  265. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/similarity_search.py +0 -0
  266. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/speed_estimation.py +0 -0
  267. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/streamlit_inference.py +0 -0
  268. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/templates/similarity-search.html +0 -0
  269. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/trackzone.py +0 -0
  270. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/vision_eye.py +0 -0
  271. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/__init__.py +0 -0
  272. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/basetrack.py +0 -0
  273. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/bot_sort.py +0 -0
  274. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/byte_tracker.py +0 -0
  275. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/__init__.py +0 -0
  276. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/gmc.py +0 -0
  277. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  278. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/matching.py +0 -0
  279. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/autobatch.py +0 -0
  280. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/autodevice.py +0 -0
  281. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/__init__.py +0 -0
  282. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/base.py +0 -0
  283. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/clearml.py +0 -0
  284. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/comet.py +0 -0
  285. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/dvc.py +0 -0
  286. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/hub.py +0 -0
  287. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/mlflow.py +0 -0
  288. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/neptune.py +0 -0
  289. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/raytune.py +0 -0
  290. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  291. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/wb.py +0 -0
  292. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/cpu.py +0 -0
  293. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/dist.py +0 -0
  294. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/errors.py +0 -0
  295. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/events.py +0 -0
  296. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/__init__.py +0 -0
  297. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/engine.py +0 -0
  298. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/tensorflow.py +0 -0
  299. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/git.py +0 -0
  300. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/instance.py +0 -0
  301. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/logger.py +0 -0
  302. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/metrics.py +0 -0
  303. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/nms.py +0 -0
  304. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/ops.py +0 -0
  305. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/patches.py +0 -0
  306. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/plotting.py +0 -0
  307. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/tal.py +0 -0
  308. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/torch_utils.py +0 -0
  309. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/tqdm.py +0 -0
  310. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/triton.py +0 -0
  311. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/SOURCES.txt +0 -0
  312. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/dependency_links.txt +0 -0
  313. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/entry_points.txt +0 -0
  314. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/requires.txt +0 -0
  315. {ultralytics_opencv_headless-8.4.2 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics-opencv-headless
3
- Version: 8.4.2
3
+ Version: 8.4.3
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -218,13 +218,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
218
218
 
219
219
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
220
220
 
221
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
222
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
223
- | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
224
- | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
225
- | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
226
- | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
227
- | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
221
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
222
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
223
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
224
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
225
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
226
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
227
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
228
228
 
229
229
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
230
230
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -235,13 +235,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
235
235
 
236
236
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
237
237
 
238
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
239
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
240
- | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
241
- | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
242
- | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
243
- | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
244
- | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
238
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
239
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
240
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
241
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
242
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
243
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
244
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
245
245
 
246
246
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
247
247
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -252,13 +252,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
252
252
 
253
253
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
254
254
 
255
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
256
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
257
- | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
258
- | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
259
- | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
260
- | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
261
- | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
255
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
256
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
257
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
258
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
259
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
260
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
261
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
262
262
 
263
263
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
264
264
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -269,13 +269,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
269
269
 
270
270
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
271
271
 
272
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
273
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
274
- | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
275
- | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
276
- | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
277
- | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
278
- | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
272
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
273
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
274
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
275
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
276
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
277
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
278
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
279
279
 
280
280
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
281
281
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -286,13 +286,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
286
286
 
287
287
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
288
288
 
289
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
290
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
291
- | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
292
- | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
293
- | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
294
- | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
295
- | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
289
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
290
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
291
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
292
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
293
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
294
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
295
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
296
296
 
297
297
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
298
298
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -129,13 +129,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
129
129
 
130
130
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
131
131
 
132
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
133
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
134
- | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
135
- | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
136
- | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
137
- | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
138
- | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
132
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
133
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
134
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
135
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
136
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
137
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
138
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
139
139
 
140
140
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
141
141
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -146,13 +146,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
146
146
 
147
147
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
148
148
 
149
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
150
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
151
- | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
152
- | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
153
- | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
154
- | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
155
- | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
149
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
150
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
151
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
152
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
153
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
154
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
155
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
156
156
 
157
157
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
158
158
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -163,13 +163,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
163
163
 
164
164
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
165
165
 
166
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
167
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
168
- | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
169
- | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
170
- | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
171
- | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
172
- | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
166
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
167
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
168
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
169
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
170
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
171
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
172
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
173
173
 
174
174
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
175
175
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -180,13 +180,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
180
180
 
181
181
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
182
182
 
183
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
184
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
185
- | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
186
- | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
187
- | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
188
- | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
189
- | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
183
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
184
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
185
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
186
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
187
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
188
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
189
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
190
190
 
191
191
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
192
192
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -197,13 +197,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
197
197
 
198
198
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
199
199
 
200
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
201
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
202
- | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
203
- | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
204
- | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
205
- | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
206
- | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
200
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
201
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
202
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
203
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
204
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
205
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
206
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
207
207
 
208
208
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
209
209
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.4.2"
3
+ __version__ = "8.4.3"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -90,13 +90,13 @@ SOLUTIONS_HELP_MSG = f"""
90
90
  yolo solutions count source="path/to/video.mp4" region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]"
91
91
 
92
92
  2. Call heatmap solution
93
- yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo11n.pt
93
+ yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo26n.pt
94
94
 
95
95
  3. Call queue management solution
96
- yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo11n.pt
96
+ yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo26n.pt
97
97
 
98
98
  4. Call workout monitoring solution for push-ups
99
- yolo solutions workout model=yolo11n-pose.pt kpts=[6, 8, 10]
99
+ yolo solutions workout model=yolo26n-pose.pt kpts=[6, 8, 10]
100
100
 
101
101
  5. Generate analytical graphs
102
102
  yolo solutions analytics analytics_type="pie"
@@ -118,16 +118,16 @@ CLI_HELP_MSG = f"""
118
118
  See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
119
119
 
120
120
  1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
121
- yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
121
+ yolo train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01
122
122
 
123
123
  2. Predict a YouTube video using a pretrained segmentation model at image size 320:
124
- yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
124
+ yolo predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
125
125
 
126
126
  3. Validate a pretrained detection model at batch-size 1 and image size 640:
127
- yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
127
+ yolo val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640
128
128
 
129
- 4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
- yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
129
+ 4. Export a YOLO26n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
+ yolo export model=yolo26n-cls.pt format=onnx imgsz=224,128
131
131
 
132
132
  5. Ultralytics solutions usage
133
133
  yolo solutions count or any of {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
@@ -604,7 +604,7 @@ def handle_yolo_settings(args: list[str]) -> None:
604
604
 
605
605
  Examples:
606
606
  >>> handle_yolo_settings(["reset"]) # Reset YOLO settings
607
- >>> handle_yolo_settings(["default_cfg_path=yolo11n.yaml"]) # Update a specific setting
607
+ >>> handle_yolo_settings(["default_cfg_path=yolo26n.yaml"]) # Update a specific setting
608
608
 
609
609
  Notes:
610
610
  - If no arguments are provided, the function will display the current settings.
@@ -649,7 +649,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
649
649
  >>> handle_yolo_solutions(["analytics", "conf=0.25", "source=path/to/video.mp4"])
650
650
 
651
651
  Run inference with custom configuration, requires Streamlit version 1.29.0 or higher.
652
- >>> handle_yolo_solutions(["inference", "model=yolo11n.pt"])
652
+ >>> handle_yolo_solutions(["inference", "model=yolo26n.pt"])
653
653
 
654
654
  Notes:
655
655
  - Arguments can be provided in the format 'key=value' or as boolean flags
@@ -707,7 +707,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
707
707
  str(ROOT / "solutions/streamlit_inference.py"),
708
708
  "--server.headless",
709
709
  "true",
710
- overrides.pop("model", "yolo11n.pt"),
710
+ overrides.pop("model", "yolo26n.pt"),
711
711
  ]
712
712
  )
713
713
  else:
@@ -758,9 +758,9 @@ def parse_key_value_pair(pair: str = "key=value") -> tuple:
758
758
  AssertionError: If the value is missing or empty.
759
759
 
760
760
  Examples:
761
- >>> key, value = parse_key_value_pair("model=yolo11n.pt")
761
+ >>> key, value = parse_key_value_pair("model=yolo26n.pt")
762
762
  >>> print(f"Key: {key}, Value: {value}")
763
- Key: model, Value: yolo11n.pt
763
+ Key: model, Value: yolo26n.pt
764
764
 
765
765
  >>> key, value = parse_key_value_pair("epochs=100")
766
766
  >>> print(f"Key: {key}, Value: {value}")
@@ -832,13 +832,13 @@ def entrypoint(debug: str = "") -> None:
832
832
 
833
833
  Examples:
834
834
  Train a detection model for 10 epochs with an initial learning_rate of 0.01:
835
- >>> entrypoint("train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01")
835
+ >>> entrypoint("train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01")
836
836
 
837
837
  Predict a YouTube video using a pretrained segmentation model at image size 320:
838
- >>> entrypoint("predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
838
+ >>> entrypoint("predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
839
839
 
840
840
  Validate a pretrained detection model at batch-size 1 and image size 640:
841
- >>> entrypoint("val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640")
841
+ >>> entrypoint("val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640")
842
842
 
843
843
  Notes:
844
844
  - If no arguments are passed, the function will display the usage help message.
@@ -933,7 +933,7 @@ def entrypoint(debug: str = "") -> None:
933
933
  # Model
934
934
  model = overrides.pop("model", DEFAULT_CFG.model)
935
935
  if model is None:
936
- model = "yolo11n.pt"
936
+ model = "yolo26n.pt"
937
937
  LOGGER.warning(f"'model' argument is missing. Using default 'model={model}'.")
938
938
  overrides["model"] = model
939
939
  stem = Path(model).stem.lower()
@@ -1022,5 +1022,5 @@ def copy_default_cfg() -> None:
1022
1022
 
1023
1023
 
1024
1024
  if __name__ == "__main__":
1025
- # Example: entrypoint(debug='yolo predict model=yolo11n.pt')
1025
+ # Example: entrypoint(debug='yolo predict model=yolo26n.pt')
1026
1026
  entrypoint(debug="")
@@ -9,7 +9,7 @@ from ultralytics import SAM, YOLO
9
9
 
10
10
  def auto_annotate(
11
11
  data: str | Path,
12
- det_model: str = "yolo11x.pt",
12
+ det_model: str = "yolo26x.pt",
13
13
  sam_model: str = "sam_b.pt",
14
14
  device: str = "",
15
15
  conf: float = 0.25,
@@ -39,7 +39,7 @@ def auto_annotate(
39
39
 
40
40
  Examples:
41
41
  >>> from ultralytics.data.annotator import auto_annotate
42
- >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
42
+ >>> auto_annotate(data="ultralytics/assets", det_model="yolo26n.pt", sam_model="mobile_sam.pt")
43
43
  """
44
44
  det_model = YOLO(det_model)
45
45
  sam_model = SAM(sam_model)
@@ -15,7 +15,7 @@ import numpy as np
15
15
  from PIL import Image
16
16
 
17
17
  from ultralytics.utils import ASSETS_URL, DATASETS_DIR, LOGGER, NUM_THREADS, TQDM, YAML
18
- from ultralytics.utils.checks import check_file, check_requirements
18
+ from ultralytics.utils.checks import check_file
19
19
  from ultralytics.utils.downloads import download, zip_directory
20
20
  from ultralytics.utils.files import increment_path
21
21
 
@@ -747,7 +747,7 @@ def convert_to_multispectral(path: str | Path, n_channels: int = 10, replace: bo
747
747
 
748
748
 
749
749
  async def convert_ndjson_to_yolo(ndjson_path: str | Path, output_path: str | Path | None = None) -> Path:
750
- """Convert NDJSON dataset format to Ultralytics YOLO11 dataset structure.
750
+ """Convert NDJSON dataset format to Ultralytics YOLO dataset structure.
751
751
 
752
752
  This function converts datasets stored in NDJSON (Newline Delimited JSON) format to the standard YOLO format. For
753
753
  detection/segmentation/pose/obb tasks, it creates separate directories for images and labels. For classification
@@ -776,9 +776,11 @@ async def convert_ndjson_to_yolo(ndjson_path: str | Path, output_path: str | Pat
776
776
 
777
777
  Use with YOLO training
778
778
  >>> from ultralytics import YOLO
779
- >>> model = YOLO("yolo11n.pt")
779
+ >>> model = YOLO("yolo26n.pt")
780
780
  >>> model.train(data="https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-ndjson.ndjson")
781
781
  """
782
+ from ultralytics.utils.checks import check_requirements
783
+
782
784
  check_requirements("aiohttp")
783
785
  import aiohttp
784
786
 
@@ -835,21 +837,19 @@ async def convert_ndjson_to_yolo(ndjson_path: str | Path, output_path: str | Pat
835
837
  # Download image if URL provided and file doesn't exist
836
838
  if http_url := record.get("url"):
837
839
  if not image_path.exists():
838
- image_path.parent.mkdir(parents=True, exist_ok=True) # Ensure parent dir exists
840
+ image_path.parent.mkdir(parents=True, exist_ok=True)
839
841
  try:
840
842
  async with session.get(http_url, timeout=aiohttp.ClientTimeout(total=30)) as response:
841
843
  response.raise_for_status()
842
- with open(image_path, "wb") as f:
843
- async for chunk in response.content.iter_chunked(8192):
844
- f.write(chunk)
844
+ image_path.write_bytes(await response.read())
845
845
  return True
846
846
  except Exception as e:
847
847
  LOGGER.warning(f"Failed to download {http_url}: {e}")
848
848
  return False
849
849
  return True
850
850
 
851
- # Process all images with async downloads
852
- semaphore = asyncio.Semaphore(64)
851
+ # Process all images with async downloads (limit connections for small datasets)
852
+ semaphore = asyncio.Semaphore(min(128, len(image_records)))
853
853
  async with aiohttp.ClientSession() as session:
854
854
  pbar = TQDM(
855
855
  total=len(image_records),
@@ -4,38 +4,38 @@ Export a YOLO PyTorch model to other formats. TensorFlow exports authored by htt
4
4
 
5
5
  Format | `format=argument` | Model
6
6
  --- | --- | ---
7
- PyTorch | - | yolo11n.pt
8
- TorchScript | `torchscript` | yolo11n.torchscript
9
- ONNX | `onnx` | yolo11n.onnx
10
- OpenVINO | `openvino` | yolo11n_openvino_model/
11
- TensorRT | `engine` | yolo11n.engine
12
- CoreML | `coreml` | yolo11n.mlpackage
13
- TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
14
- TensorFlow GraphDef | `pb` | yolo11n.pb
15
- TensorFlow Lite | `tflite` | yolo11n.tflite
16
- TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
17
- TensorFlow.js | `tfjs` | yolo11n_web_model/
18
- PaddlePaddle | `paddle` | yolo11n_paddle_model/
19
- MNN | `mnn` | yolo11n.mnn
20
- NCNN | `ncnn` | yolo11n_ncnn_model/
21
- IMX | `imx` | yolo11n_imx_model/
22
- RKNN | `rknn` | yolo11n_rknn_model/
23
- ExecuTorch | `executorch` | yolo11n_executorch_model/
24
- Axelera | `axelera` | yolo11n_axelera_model/
7
+ PyTorch | - | yolo26n.pt
8
+ TorchScript | `torchscript` | yolo26n.torchscript
9
+ ONNX | `onnx` | yolo26n.onnx
10
+ OpenVINO | `openvino` | yolo26n_openvino_model/
11
+ TensorRT | `engine` | yolo26n.engine
12
+ CoreML | `coreml` | yolo26n.mlpackage
13
+ TensorFlow SavedModel | `saved_model` | yolo26n_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolo26n.pb
15
+ TensorFlow Lite | `tflite` | yolo26n.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolo26n_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolo26n_web_model/
18
+ PaddlePaddle | `paddle` | yolo26n_paddle_model/
19
+ MNN | `mnn` | yolo26n.mnn
20
+ NCNN | `ncnn` | yolo26n_ncnn_model/
21
+ IMX | `imx` | yolo26n_imx_model/
22
+ RKNN | `rknn` | yolo26n_rknn_model/
23
+ ExecuTorch | `executorch` | yolo26n_executorch_model/
24
+ Axelera | `axelera` | yolo26n_axelera_model/
25
25
 
26
26
  Requirements:
27
27
  $ pip install "ultralytics[export]"
28
28
 
29
29
  Python:
30
30
  from ultralytics import YOLO
31
- model = YOLO('yolo11n.pt')
31
+ model = YOLO('yolo26n.pt')
32
32
  results = model.export(format='onnx')
33
33
 
34
34
  CLI:
35
- $ yolo mode=export model=yolo11n.pt format=onnx
35
+ $ yolo mode=export model=yolo26n.pt format=onnx
36
36
 
37
37
  Inference:
38
- $ yolo predict model=yolo11n.pt # PyTorch
38
+ $ yolo predict model=yolo26n.pt # PyTorch
39
39
  yolo11n.torchscript # TorchScript
40
40
  yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
41
41
  yolo11n_openvino_model # OpenVINO
@@ -930,7 +930,7 @@ class Exporter:
930
930
  model = IOSDetectModel(self.model, self.im, mlprogram=not mlmodel) if self.args.nms else self.model
931
931
  else:
932
932
  if self.args.nms:
933
- LOGGER.warning(f"{prefix} 'nms=True' is only available for Detect models like 'yolo11n.pt'.")
933
+ LOGGER.warning(f"{prefix} 'nms=True' is only available for Detect models like 'yolo26n.pt'.")
934
934
  # TODO CoreML Segment and Pose model pipelining
935
935
  model = self.model
936
936
  ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model