ultralytics-opencv-headless 8.4.0__tar.gz → 8.4.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/PKG-INFO +36 -36
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/README.md +35 -35
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_engine.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_exports.py +3 -3
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/__init__.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/__init__.py +19 -21
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-cls.yaml +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-obb.yaml +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-p2.yaml +11 -11
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-p6.yaml +8 -6
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-pose.yaml +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26-seg.yaml +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yolo26.yaml +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yoloe-26-seg.yaml +10 -10
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/26/yoloe-26.yaml +10 -10
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/annotator.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/converter.py +57 -38
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/exporter.py +25 -27
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/model.py +33 -33
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/predictor.py +17 -17
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/results.py +14 -12
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/trainer.py +27 -22
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/tuner.py +4 -4
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/validator.py +16 -16
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/predict.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/train.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/val.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/predict.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/train.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/val.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/model.py +7 -7
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/predict.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/train.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/val.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/predict.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/train.py +4 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/val.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/predict.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/train.py +3 -3
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/val.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/autobackend.py +2 -6
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/block.py +1 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/head.py +6 -34
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/tasks.py +14 -14
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/ai_gym.py +3 -3
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/config.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/heatmap.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/instance_segmentation.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/parking_management.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/solutions.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/track.py +1 -1
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/__init__.py +8 -8
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/benchmarks.py +23 -24
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/platform.py +11 -9
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/checks.py +6 -6
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/downloads.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/imx.py +3 -8
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/tensorflow.py +40 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/files.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/loss.py +10 -7
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/tuner.py +2 -2
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/PKG-INFO +36 -36
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/LICENSE +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/pyproject.toml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/setup.cfg +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/conftest.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_cli.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_cuda.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_integrations.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_python.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_solutions.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/assets/bus.jpg +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/assets/zidane.jpg +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/TT100K.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/VOC.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco128.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/coco8.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/dota8-multispectral.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/dota8.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/kitti.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/lvis.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/signature.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/datasets/xView.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/default.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/trackers/botsort.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/augment.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/base.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/build.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/dataset.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/loaders.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/download_weights.sh +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/get_coco.sh +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/get_coco128.sh +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/scripts/get_imagenet.sh +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/split.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/split_dota.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/data/utils.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/engine/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/auth.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/google/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/session.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/hub/utils.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/model.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/predict.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/utils.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/fastsam/val.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/model.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/predict.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/nas/val.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/model.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/predict.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/train.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/rtdetr/val.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/amg.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/build.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/build_sam3.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/model.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/blocks.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/decoders.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/encoders.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/memory_attention.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/sam.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/transformer.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/modules/utils.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/predict.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/decoder.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/encoder.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/geometry_encoders.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/maskformer_segmentation.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/model_misc.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/necks.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/sam3_image.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/text_encoder_ve.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/vitdet.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/sam/sam3/vl_combiner.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/utils/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/utils/loss.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/utils/ops.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/classify/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/detect/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/obb/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/pose/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/segment/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/world/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/world/train.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/world/train_world.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/predict.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/train.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/train_seg.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/models/yolo/yoloe/val.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/activation.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/conv.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/transformer.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/modules/utils.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/nn/text_model.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/optim/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/optim/muon.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/py.typed +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/analytics.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/distance_calculation.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/object_blurrer.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/object_counter.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/object_cropper.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/queue_management.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/region_counter.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/security_alarm.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/similarity_search.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/speed_estimation.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/streamlit_inference.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/templates/similarity-search.html +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/trackzone.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/solutions/vision_eye.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/basetrack.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/bot_sort.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/byte_tracker.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/gmc.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/kalman_filter.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/trackers/utils/matching.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/autobatch.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/autodevice.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/base.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/clearml.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/comet.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/dvc.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/hub.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/mlflow.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/neptune.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/raytune.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/tensorboard.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/callbacks/wb.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/cpu.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/dist.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/errors.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/events.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/__init__.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/export/engine.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/git.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/instance.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/logger.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/metrics.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/nms.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/ops.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/patches.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/plotting.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/tal.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/torch_utils.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/tqdm.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/utils/triton.py +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/SOURCES.txt +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/dependency_links.txt +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/entry_points.txt +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/requires.txt +0 -0
- {ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics_opencv_headless.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ultralytics-opencv-headless
|
|
3
|
-
Version: 8.4.
|
|
3
|
+
Version: 8.4.3
|
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
|
@@ -218,13 +218,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
|
|
|
218
218
|
|
|
219
219
|
Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
|
|
220
220
|
|
|
221
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
222
|
-
| ------------------------------------------------------------------------------------ |
|
|
223
|
-
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640
|
|
224
|
-
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640
|
|
225
|
-
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640
|
|
226
|
-
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640
|
|
227
|
-
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640
|
|
221
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
222
|
+
| ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
223
|
+
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
|
|
224
|
+
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
|
|
225
|
+
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
|
|
226
|
+
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
|
|
227
|
+
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
|
|
228
228
|
|
|
229
229
|
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
|
230
230
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -235,13 +235,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
|
|
|
235
235
|
|
|
236
236
|
Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
|
|
237
237
|
|
|
238
|
-
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
239
|
-
| -------------------------------------------------------------------------------------------- |
|
|
240
|
-
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640
|
|
241
|
-
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640
|
|
242
|
-
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640
|
|
243
|
-
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640
|
|
244
|
-
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640
|
|
238
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
239
|
+
| -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
240
|
+
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
|
|
241
|
+
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
|
|
242
|
+
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
|
|
243
|
+
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
|
|
244
|
+
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
|
|
245
245
|
|
|
246
246
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
|
247
247
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -252,13 +252,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
|
|
|
252
252
|
|
|
253
253
|
Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
|
|
254
254
|
|
|
255
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
|
256
|
-
| -------------------------------------------------------------------------------------------- |
|
|
257
|
-
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224
|
|
258
|
-
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224
|
|
259
|
-
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224
|
|
260
|
-
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224
|
|
261
|
-
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224
|
|
255
|
+
| Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
|
|
256
|
+
| -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
|
|
257
|
+
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
|
|
258
|
+
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
|
|
259
|
+
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
|
|
260
|
+
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
|
|
261
|
+
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
|
|
262
262
|
|
|
263
263
|
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
|
264
264
|
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -269,13 +269,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
|
|
|
269
269
|
|
|
270
270
|
See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
|
|
271
271
|
|
|
272
|
-
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
273
|
-
| ---------------------------------------------------------------------------------------------- |
|
|
274
|
-
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640
|
|
275
|
-
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640
|
|
276
|
-
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640
|
|
277
|
-
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640
|
|
278
|
-
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640
|
|
272
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
273
|
+
| ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
274
|
+
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
|
|
275
|
+
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
|
|
276
|
+
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
|
|
277
|
+
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
|
|
278
|
+
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
|
|
279
279
|
|
|
280
280
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
|
281
281
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -286,13 +286,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
|
|
|
286
286
|
|
|
287
287
|
Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
|
|
288
288
|
|
|
289
|
-
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
290
|
-
| -------------------------------------------------------------------------------------------- |
|
|
291
|
-
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024
|
|
292
|
-
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024
|
|
293
|
-
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024
|
|
294
|
-
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024
|
|
295
|
-
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024
|
|
289
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
290
|
+
| -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
291
|
+
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
|
|
292
|
+
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
|
|
293
|
+
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
|
|
294
|
+
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
|
|
295
|
+
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
|
|
296
296
|
|
|
297
297
|
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
298
298
|
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -129,13 +129,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
|
|
|
129
129
|
|
|
130
130
|
Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
|
|
131
131
|
|
|
132
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
133
|
-
| ------------------------------------------------------------------------------------ |
|
|
134
|
-
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640
|
|
135
|
-
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640
|
|
136
|
-
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640
|
|
137
|
-
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640
|
|
138
|
-
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640
|
|
132
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
133
|
+
| ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
134
|
+
| [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
|
|
135
|
+
| [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
|
|
136
|
+
| [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
|
|
137
|
+
| [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
|
|
138
|
+
| [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
|
|
139
139
|
|
|
140
140
|
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
|
141
141
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -146,13 +146,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
|
|
|
146
146
|
|
|
147
147
|
Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
|
|
148
148
|
|
|
149
|
-
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
150
|
-
| -------------------------------------------------------------------------------------------- |
|
|
151
|
-
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640
|
|
152
|
-
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640
|
|
153
|
-
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640
|
|
154
|
-
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640
|
|
155
|
-
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640
|
|
149
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
150
|
+
| -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
151
|
+
| [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
|
|
152
|
+
| [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
|
|
153
|
+
| [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
|
|
154
|
+
| [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
|
|
155
|
+
| [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
|
|
156
156
|
|
|
157
157
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
|
158
158
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -163,13 +163,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
|
|
|
163
163
|
|
|
164
164
|
Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
|
|
165
165
|
|
|
166
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
|
167
|
-
| -------------------------------------------------------------------------------------------- |
|
|
168
|
-
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224
|
|
169
|
-
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224
|
|
170
|
-
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224
|
|
171
|
-
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224
|
|
172
|
-
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224
|
|
166
|
+
| Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
|
|
167
|
+
| -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
|
|
168
|
+
| [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
|
|
169
|
+
| [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
|
|
170
|
+
| [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
|
|
171
|
+
| [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
|
|
172
|
+
| [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
|
|
173
173
|
|
|
174
174
|
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
|
175
175
|
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -180,13 +180,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
|
|
|
180
180
|
|
|
181
181
|
See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
|
|
182
182
|
|
|
183
|
-
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
184
|
-
| ---------------------------------------------------------------------------------------------- |
|
|
185
|
-
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640
|
|
186
|
-
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640
|
|
187
|
-
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640
|
|
188
|
-
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640
|
|
189
|
-
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640
|
|
183
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
184
|
+
| ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
185
|
+
| [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
|
|
186
|
+
| [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
|
|
187
|
+
| [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
|
|
188
|
+
| [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
|
|
189
|
+
| [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
|
|
190
190
|
|
|
191
191
|
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
|
192
192
|
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -197,13 +197,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
|
|
|
197
197
|
|
|
198
198
|
Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
|
|
199
199
|
|
|
200
|
-
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
201
|
-
| -------------------------------------------------------------------------------------------- |
|
|
202
|
-
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024
|
|
203
|
-
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024
|
|
204
|
-
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024
|
|
205
|
-
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024
|
|
206
|
-
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024
|
|
200
|
+
| Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
|
|
201
|
+
| -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
|
|
202
|
+
| [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
|
|
203
|
+
| [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
|
|
204
|
+
| [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
|
|
205
|
+
| [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
|
|
206
|
+
| [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
|
|
207
207
|
|
|
208
208
|
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
209
209
|
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
{ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_engine.py
RENAMED
|
@@ -5,7 +5,7 @@ from unittest import mock
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from tests import MODEL
|
|
8
|
+
from tests import MODEL, SOURCE
|
|
9
9
|
from ultralytics import YOLO
|
|
10
10
|
from ultralytics.cfg import get_cfg
|
|
11
11
|
from ultralytics.engine.exporter import Exporter
|
|
@@ -24,7 +24,7 @@ def test_export():
|
|
|
24
24
|
exporter.add_callback("on_export_start", test_func)
|
|
25
25
|
assert test_func in exporter.callbacks["on_export_start"], "callback test failed"
|
|
26
26
|
f = exporter(model=YOLO("yolo26n.yaml").model)
|
|
27
|
-
YOLO(f)(
|
|
27
|
+
YOLO(f)(SOURCE) # exported model inference
|
|
28
28
|
|
|
29
29
|
|
|
30
30
|
def test_detect():
|
{ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/tests/test_exports.py
RENAMED
|
@@ -144,7 +144,9 @@ def test_export_coreml_matrix(task, dynamic, int8, half, nms, batch):
|
|
|
144
144
|
|
|
145
145
|
|
|
146
146
|
@pytest.mark.slow
|
|
147
|
-
@pytest.mark.skipif(
|
|
147
|
+
@pytest.mark.skipif(
|
|
148
|
+
not checks.IS_PYTHON_MINIMUM_3_10 or not TORCH_1_13, reason="TFLite export requires Python>=3.10 and torch>=1.13"
|
|
149
|
+
)
|
|
148
150
|
@pytest.mark.skipif(
|
|
149
151
|
not LINUX or IS_RASPBERRYPI,
|
|
150
152
|
reason="Test disabled as TF suffers from install conflicts on Windows, macOS and Raspberry Pi",
|
|
@@ -238,7 +240,6 @@ def test_export_mnn_matrix(task, int8, half, batch):
|
|
|
238
240
|
|
|
239
241
|
|
|
240
242
|
@pytest.mark.slow
|
|
241
|
-
@pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
|
|
242
243
|
@pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
|
|
243
244
|
def test_export_ncnn():
|
|
244
245
|
"""Test YOLO export to NCNN format."""
|
|
@@ -247,7 +248,6 @@ def test_export_ncnn():
|
|
|
247
248
|
|
|
248
249
|
|
|
249
250
|
@pytest.mark.slow
|
|
250
|
-
@pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
|
|
251
251
|
@pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
|
|
252
252
|
@pytest.mark.parametrize("task, half, batch", list(product(TASKS, [True, False], [1])))
|
|
253
253
|
def test_export_ncnn_matrix(task, half, batch):
|
{ultralytics_opencv_headless-8.4.0 → ultralytics_opencv_headless-8.4.3}/ultralytics/cfg/__init__.py
RENAMED
|
@@ -90,13 +90,13 @@ SOLUTIONS_HELP_MSG = f"""
|
|
|
90
90
|
yolo solutions count source="path/to/video.mp4" region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]"
|
|
91
91
|
|
|
92
92
|
2. Call heatmap solution
|
|
93
|
-
yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=
|
|
93
|
+
yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo26n.pt
|
|
94
94
|
|
|
95
95
|
3. Call queue management solution
|
|
96
|
-
yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=
|
|
96
|
+
yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo26n.pt
|
|
97
97
|
|
|
98
98
|
4. Call workout monitoring solution for push-ups
|
|
99
|
-
yolo solutions workout model=
|
|
99
|
+
yolo solutions workout model=yolo26n-pose.pt kpts=[6, 8, 10]
|
|
100
100
|
|
|
101
101
|
5. Generate analytical graphs
|
|
102
102
|
yolo solutions analytics analytics_type="pie"
|
|
@@ -118,16 +118,16 @@ CLI_HELP_MSG = f"""
|
|
|
118
118
|
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
|
|
119
119
|
|
|
120
120
|
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
|
121
|
-
yolo train data=coco8.yaml model=
|
|
121
|
+
yolo train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01
|
|
122
122
|
|
|
123
123
|
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
124
|
-
yolo predict model=
|
|
124
|
+
yolo predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
|
125
125
|
|
|
126
126
|
3. Validate a pretrained detection model at batch-size 1 and image size 640:
|
|
127
|
-
yolo val model=
|
|
127
|
+
yolo val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640
|
|
128
128
|
|
|
129
|
-
4. Export a
|
|
130
|
-
yolo export model=
|
|
129
|
+
4. Export a YOLO26n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
|
130
|
+
yolo export model=yolo26n-cls.pt format=onnx imgsz=224,128
|
|
131
131
|
|
|
132
132
|
5. Ultralytics solutions usage
|
|
133
133
|
yolo solutions count or any of {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
|
|
@@ -305,8 +305,6 @@ def get_cfg(
|
|
|
305
305
|
# Merge overrides
|
|
306
306
|
if overrides:
|
|
307
307
|
overrides = cfg2dict(overrides)
|
|
308
|
-
if "save_dir" not in cfg:
|
|
309
|
-
overrides.pop("save_dir", None) # special override keys to ignore
|
|
310
308
|
check_dict_alignment(cfg, overrides)
|
|
311
309
|
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
|
|
312
310
|
|
|
@@ -494,7 +492,7 @@ def check_dict_alignment(
|
|
|
494
492
|
base_keys, custom_keys = (frozenset(x.keys()) for x in (base, custom))
|
|
495
493
|
# Allow 'augmentations' as a valid custom parameter for custom Albumentations transforms
|
|
496
494
|
if allowed_custom_keys is None:
|
|
497
|
-
allowed_custom_keys = {"augmentations"}
|
|
495
|
+
allowed_custom_keys = {"augmentations", "save_dir"}
|
|
498
496
|
if mismatched := [k for k in custom_keys if k not in base_keys and k not in allowed_custom_keys]:
|
|
499
497
|
from difflib import get_close_matches
|
|
500
498
|
|
|
@@ -606,7 +604,7 @@ def handle_yolo_settings(args: list[str]) -> None:
|
|
|
606
604
|
|
|
607
605
|
Examples:
|
|
608
606
|
>>> handle_yolo_settings(["reset"]) # Reset YOLO settings
|
|
609
|
-
>>> handle_yolo_settings(["default_cfg_path=
|
|
607
|
+
>>> handle_yolo_settings(["default_cfg_path=yolo26n.yaml"]) # Update a specific setting
|
|
610
608
|
|
|
611
609
|
Notes:
|
|
612
610
|
- If no arguments are provided, the function will display the current settings.
|
|
@@ -651,7 +649,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
|
|
|
651
649
|
>>> handle_yolo_solutions(["analytics", "conf=0.25", "source=path/to/video.mp4"])
|
|
652
650
|
|
|
653
651
|
Run inference with custom configuration, requires Streamlit version 1.29.0 or higher.
|
|
654
|
-
>>> handle_yolo_solutions(["inference", "model=
|
|
652
|
+
>>> handle_yolo_solutions(["inference", "model=yolo26n.pt"])
|
|
655
653
|
|
|
656
654
|
Notes:
|
|
657
655
|
- Arguments can be provided in the format 'key=value' or as boolean flags
|
|
@@ -709,7 +707,7 @@ def handle_yolo_solutions(args: list[str]) -> None:
|
|
|
709
707
|
str(ROOT / "solutions/streamlit_inference.py"),
|
|
710
708
|
"--server.headless",
|
|
711
709
|
"true",
|
|
712
|
-
overrides.pop("model", "
|
|
710
|
+
overrides.pop("model", "yolo26n.pt"),
|
|
713
711
|
]
|
|
714
712
|
)
|
|
715
713
|
else:
|
|
@@ -760,9 +758,9 @@ def parse_key_value_pair(pair: str = "key=value") -> tuple:
|
|
|
760
758
|
AssertionError: If the value is missing or empty.
|
|
761
759
|
|
|
762
760
|
Examples:
|
|
763
|
-
>>> key, value = parse_key_value_pair("model=
|
|
761
|
+
>>> key, value = parse_key_value_pair("model=yolo26n.pt")
|
|
764
762
|
>>> print(f"Key: {key}, Value: {value}")
|
|
765
|
-
Key: model, Value:
|
|
763
|
+
Key: model, Value: yolo26n.pt
|
|
766
764
|
|
|
767
765
|
>>> key, value = parse_key_value_pair("epochs=100")
|
|
768
766
|
>>> print(f"Key: {key}, Value: {value}")
|
|
@@ -834,13 +832,13 @@ def entrypoint(debug: str = "") -> None:
|
|
|
834
832
|
|
|
835
833
|
Examples:
|
|
836
834
|
Train a detection model for 10 epochs with an initial learning_rate of 0.01:
|
|
837
|
-
>>> entrypoint("train data=coco8.yaml model=
|
|
835
|
+
>>> entrypoint("train data=coco8.yaml model=yolo26n.pt epochs=10 lr0=0.01")
|
|
838
836
|
|
|
839
837
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
840
|
-
>>> entrypoint("predict model=
|
|
838
|
+
>>> entrypoint("predict model=yolo26n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
|
|
841
839
|
|
|
842
840
|
Validate a pretrained detection model at batch-size 1 and image size 640:
|
|
843
|
-
>>> entrypoint("val model=
|
|
841
|
+
>>> entrypoint("val model=yolo26n.pt data=coco8.yaml batch=1 imgsz=640")
|
|
844
842
|
|
|
845
843
|
Notes:
|
|
846
844
|
- If no arguments are passed, the function will display the usage help message.
|
|
@@ -935,7 +933,7 @@ def entrypoint(debug: str = "") -> None:
|
|
|
935
933
|
# Model
|
|
936
934
|
model = overrides.pop("model", DEFAULT_CFG.model)
|
|
937
935
|
if model is None:
|
|
938
|
-
model = "
|
|
936
|
+
model = "yolo26n.pt"
|
|
939
937
|
LOGGER.warning(f"'model' argument is missing. Using default 'model={model}'.")
|
|
940
938
|
overrides["model"] = model
|
|
941
939
|
stem = Path(model).stem.lower()
|
|
@@ -1024,5 +1022,5 @@ def copy_default_cfg() -> None:
|
|
|
1024
1022
|
|
|
1025
1023
|
|
|
1026
1024
|
if __name__ == "__main__":
|
|
1027
|
-
# Example: entrypoint(debug='yolo predict model=
|
|
1025
|
+
# Example: entrypoint(debug='yolo predict model=yolo26n.pt')
|
|
1028
1026
|
entrypoint(debug="")
|
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# Ultralytics YOLO26
|
|
3
|
+
# Ultralytics YOLO26-cls image classification model
|
|
4
4
|
# Model docs: https://docs.ultralytics.com/models/yolo26
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/classify
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 1000 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolo26n-cls.yaml' will call yolo26-cls.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.50, 0.25, 1024] # summary: 86 layers, 2,812,104 parameters, 2,812,104 gradients, 0.5 GFLOPs
|
|
12
12
|
s: [0.50, 0.50, 1024] # summary: 86 layers, 6,724,008 parameters, 6,724,008 gradients, 1.6 GFLOPs
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# Ultralytics YOLO26
|
|
3
|
+
# Ultralytics YOLO26-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
|
|
4
4
|
# Model docs: https://docs.ultralytics.com/models/yolo26
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/obb
|
|
6
6
|
|
|
@@ -8,7 +8,7 @@
|
|
|
8
8
|
nc: 80 # number of classes
|
|
9
9
|
end2end: True # whether to use end-to-end mode
|
|
10
10
|
reg_max: 1 # DFL bins
|
|
11
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
11
|
+
scales: # model compound scaling constants, i.e. 'model=yolo26n-obb.yaml' will call yolo26-obb.yaml with scale 'n'
|
|
12
12
|
# [depth, width, max_channels]
|
|
13
13
|
n: [0.50, 0.25, 1024] # summary: 291 layers, 2,715,614 parameters, 2,715,614 gradients, 16.9 GFLOPs
|
|
14
14
|
s: [0.50, 0.50, 1024] # summary: 291 layers, 10,582,142 parameters, 10,582,142 gradients, 63.5 GFLOPs
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# Ultralytics YOLO26 object detection model with
|
|
3
|
+
# Ultralytics YOLO26 object detection model with P2/4 - P5/32 outputs
|
|
4
4
|
# Model docs: https://docs.ultralytics.com/models/yolo26
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
6
|
|
|
@@ -8,13 +8,13 @@
|
|
|
8
8
|
nc: 80 # number of classes
|
|
9
9
|
end2end: True # whether to use end-to-end mode
|
|
10
10
|
reg_max: 1 # DFL bins
|
|
11
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
11
|
+
scales: # model compound scaling constants, i.e. 'model=yolo26n-p2.yaml' will call yolo26-p2.yaml with scale 'n'
|
|
12
12
|
# [depth, width, max_channels]
|
|
13
|
-
n: [0.50, 0.25, 1024] # summary:
|
|
14
|
-
s: [0.50, 0.50, 1024] # summary:
|
|
15
|
-
m: [0.50, 1.00, 512] # summary:
|
|
16
|
-
l: [1.00, 1.00, 512] # summary:
|
|
17
|
-
x: [1.00, 1.50, 512] # summary:
|
|
13
|
+
n: [0.50, 0.25, 1024] # summary: 329 layers, 2,662,400 parameters, 2,662,400 gradients, 9.5 GFLOPs
|
|
14
|
+
s: [0.50, 0.50, 1024] # summary: 329 layers, 9,765,856 parameters, 9,765,856 gradients, 27.8 GFLOPs
|
|
15
|
+
m: [0.50, 1.00, 512] # summary: 349 layers, 21,144,288 parameters, 21,144,288 gradients, 91.4 GFLOPs
|
|
16
|
+
l: [1.00, 1.00, 512] # summary: 489 layers, 25,815,520 parameters, 25,815,520 gradients, 115.3 GFLOPs
|
|
17
|
+
x: [1.00, 1.50, 512] # summary: 489 layers, 57,935,232 parameters, 57,935,232 gradients, 256.9 GFLOPs
|
|
18
18
|
|
|
19
19
|
# YOLO26n backbone
|
|
20
20
|
backbone:
|
|
@@ -42,12 +42,12 @@ head:
|
|
|
42
42
|
- [-1, 2, C3k2, [256, True]] # 16 (P3/8-small)
|
|
43
43
|
|
|
44
44
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
45
|
-
- [[-1, 2], 1, Concat, [1]] # cat backbone
|
|
46
|
-
- [-1, 2, C3k2, [128, True]] # 19 (
|
|
45
|
+
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
|
|
46
|
+
- [-1, 2, C3k2, [128, True]] # 19 (P2/4-xsmall)
|
|
47
47
|
|
|
48
48
|
- [-1, 1, Conv, [128, 3, 2]]
|
|
49
49
|
- [[-1, 16], 1, Concat, [1]] # cat head P3
|
|
50
|
-
- [-1, 2, C3k2, [256, True]] # 22 (
|
|
50
|
+
- [-1, 2, C3k2, [256, True]] # 22 (P3/8-small)
|
|
51
51
|
|
|
52
52
|
- [-1, 1, Conv, [256, 3, 2]]
|
|
53
53
|
- [[-1, 13], 1, Concat, [1]] # cat head P4
|
|
@@ -57,4 +57,4 @@ head:
|
|
|
57
57
|
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
58
58
|
- [-1, 1, C3k2, [1024, True, 0.5, True]] # 28 (P5/32-large)
|
|
59
59
|
|
|
60
|
-
- [[19, 22, 25, 28], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
|
60
|
+
- [[19, 22, 25, 28], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
|