ultralytics-opencv-headless 8.3.245__tar.gz → 8.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (316) hide show
  1. {ultralytics_opencv_headless-8.3.245/ultralytics_opencv_headless.egg-info → ultralytics_opencv_headless-8.4.0}/PKG-INFO +32 -40
  2. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/README.md +30 -38
  3. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/pyproject.toml +1 -1
  4. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/__init__.py +2 -2
  5. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/conftest.py +1 -1
  6. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/test_cuda.py +8 -2
  7. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/test_engine.py +6 -6
  8. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/test_exports.py +12 -5
  9. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/test_integrations.py +9 -9
  10. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/test_python.py +14 -14
  11. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/test_solutions.py +3 -3
  12. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/__init__.py +1 -1
  13. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/__init__.py +12 -10
  14. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/datasets/TT100K.yaml +346 -0
  15. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/default.yaml +3 -1
  16. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
  17. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
  18. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
  19. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yolo26-p6.yaml +60 -0
  20. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
  21. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
  22. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yolo26.yaml +52 -0
  23. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
  24. ultralytics_opencv_headless-8.4.0/ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
  25. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/augment.py +7 -0
  26. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/converter.py +1 -1
  27. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/dataset.py +1 -1
  28. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/exporter.py +14 -3
  29. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/model.py +5 -4
  30. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/results.py +2 -2
  31. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/trainer.py +68 -40
  32. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/tuner.py +16 -7
  33. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/validator.py +4 -1
  34. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/fastsam/predict.py +1 -1
  35. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/utils.py +1 -1
  36. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/detect/train.py +3 -2
  37. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/detect/val.py +9 -3
  38. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/model.py +1 -1
  39. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/obb/predict.py +1 -1
  40. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/obb/train.py +1 -1
  41. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/pose/train.py +1 -1
  42. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/segment/predict.py +3 -3
  43. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/segment/train.py +1 -1
  44. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/segment/val.py +3 -1
  45. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/yoloe/train.py +6 -1
  46. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/yoloe/train_seg.py +6 -1
  47. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/autobackend.py +15 -5
  48. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/modules/__init__.py +8 -0
  49. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/modules/block.py +127 -8
  50. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/modules/head.py +818 -205
  51. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/modules/transformer.py +4 -4
  52. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/tasks.py +76 -31
  53. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/text_model.py +5 -2
  54. ultralytics_opencv_headless-8.4.0/ultralytics/optim/__init__.py +5 -0
  55. ultralytics_opencv_headless-8.4.0/ultralytics/optim/muon.py +338 -0
  56. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/object_counter.py +1 -1
  57. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/benchmarks.py +2 -1
  58. ultralytics_opencv_headless-8.4.0/ultralytics/utils/callbacks/platform.py +455 -0
  59. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/checks.py +35 -18
  60. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/downloads.py +3 -1
  61. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/export/engine.py +19 -10
  62. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/export/imx.py +35 -14
  63. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/export/tensorflow.py +1 -41
  64. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/logger.py +9 -3
  65. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/loss.py +584 -203
  66. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/metrics.py +8 -4
  67. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/ops.py +17 -8
  68. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/plotting.py +4 -2
  69. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/tal.py +100 -20
  70. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/torch_utils.py +1 -1
  71. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/tqdm.py +4 -1
  72. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/tuner.py +11 -3
  73. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0/ultralytics_opencv_headless.egg-info}/PKG-INFO +32 -40
  74. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics_opencv_headless.egg-info/SOURCES.txt +12 -0
  75. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics_opencv_headless.egg-info/requires.txt +1 -1
  76. ultralytics_opencv_headless-8.3.245/ultralytics/utils/callbacks/platform.py +0 -302
  77. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/LICENSE +0 -0
  78. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/setup.cfg +0 -0
  79. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/tests/test_cli.py +0 -0
  80. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/assets/bus.jpg +0 -0
  81. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/assets/zidane.jpg +0 -0
  82. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/Argoverse.yaml +0 -0
  83. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/DOTAv1.5.yaml +0 -0
  84. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/DOTAv1.yaml +0 -0
  85. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/GlobalWheat2020.yaml +0 -0
  86. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/HomeObjects-3K.yaml +0 -0
  87. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/ImageNet.yaml +0 -0
  88. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/Objects365.yaml +0 -0
  89. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/SKU-110K.yaml +0 -0
  90. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/VOC.yaml +0 -0
  91. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/VisDrone.yaml +0 -0
  92. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/african-wildlife.yaml +0 -0
  93. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/brain-tumor.yaml +0 -0
  94. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/carparts-seg.yaml +0 -0
  95. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco-pose.yaml +0 -0
  96. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco.yaml +0 -0
  97. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco128-seg.yaml +0 -0
  98. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco128.yaml +0 -0
  99. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco8-grayscale.yaml +0 -0
  100. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco8-multispectral.yaml +0 -0
  101. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco8-pose.yaml +0 -0
  102. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco8-seg.yaml +0 -0
  103. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/coco8.yaml +0 -0
  104. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/construction-ppe.yaml +0 -0
  105. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/crack-seg.yaml +0 -0
  106. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/dog-pose.yaml +0 -0
  107. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/dota8-multispectral.yaml +0 -0
  108. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/dota8.yaml +0 -0
  109. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/hand-keypoints.yaml +0 -0
  110. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/kitti.yaml +0 -0
  111. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/lvis.yaml +0 -0
  112. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/medical-pills.yaml +0 -0
  113. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/open-images-v7.yaml +0 -0
  114. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/package-seg.yaml +0 -0
  115. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/signature.yaml +0 -0
  116. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/tiger-pose.yaml +0 -0
  117. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/datasets/xView.yaml +0 -0
  118. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +0 -0
  119. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yolo11-cls.yaml +0 -0
  120. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yolo11-obb.yaml +0 -0
  121. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yolo11-pose.yaml +0 -0
  122. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yolo11-seg.yaml +0 -0
  123. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yolo11.yaml +0 -0
  124. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yoloe-11-seg.yaml +0 -0
  125. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/11/yoloe-11.yaml +0 -0
  126. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/12/yolo12-cls.yaml +0 -0
  127. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/12/yolo12-obb.yaml +0 -0
  128. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/12/yolo12-pose.yaml +0 -0
  129. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/12/yolo12-seg.yaml +0 -0
  130. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/12/yolo12.yaml +0 -0
  131. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +0 -0
  132. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +0 -0
  133. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +0 -0
  134. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +0 -0
  135. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v10/yolov10b.yaml +0 -0
  136. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v10/yolov10l.yaml +0 -0
  137. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v10/yolov10m.yaml +0 -0
  138. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v10/yolov10n.yaml +0 -0
  139. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v10/yolov10s.yaml +0 -0
  140. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v10/yolov10x.yaml +0 -0
  141. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v3/yolov3-spp.yaml +0 -0
  142. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v3/yolov3-tiny.yaml +0 -0
  143. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v3/yolov3.yaml +0 -0
  144. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v5/yolov5-p6.yaml +0 -0
  145. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v5/yolov5.yaml +0 -0
  146. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v6/yolov6.yaml +0 -0
  147. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +0 -0
  148. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yoloe-v8.yaml +0 -0
  149. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +0 -0
  150. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +0 -0
  151. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-cls.yaml +0 -0
  152. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +0 -0
  153. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +0 -0
  154. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-ghost.yaml +0 -0
  155. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-obb.yaml +0 -0
  156. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-p2.yaml +0 -0
  157. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-p6.yaml +0 -0
  158. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +0 -0
  159. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-pose.yaml +0 -0
  160. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +0 -0
  161. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +0 -0
  162. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-seg.yaml +0 -0
  163. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-world.yaml +0 -0
  164. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8-worldv2.yaml +0 -0
  165. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v8/yolov8.yaml +0 -0
  166. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v9/yolov9c-seg.yaml +0 -0
  167. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v9/yolov9c.yaml +0 -0
  168. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v9/yolov9e-seg.yaml +0 -0
  169. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v9/yolov9e.yaml +0 -0
  170. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v9/yolov9m.yaml +0 -0
  171. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v9/yolov9s.yaml +0 -0
  172. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/models/v9/yolov9t.yaml +0 -0
  173. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/trackers/botsort.yaml +0 -0
  174. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/cfg/trackers/bytetrack.yaml +0 -0
  175. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/__init__.py +0 -0
  176. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/annotator.py +0 -0
  177. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/base.py +0 -0
  178. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/build.py +0 -0
  179. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/loaders.py +0 -0
  180. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/scripts/download_weights.sh +0 -0
  181. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/scripts/get_coco.sh +0 -0
  182. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/scripts/get_coco128.sh +0 -0
  183. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/scripts/get_imagenet.sh +0 -0
  184. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/split.py +0 -0
  185. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/split_dota.py +0 -0
  186. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/data/utils.py +0 -0
  187. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/__init__.py +0 -0
  188. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/engine/predictor.py +0 -0
  189. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/hub/__init__.py +0 -0
  190. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/hub/auth.py +0 -0
  191. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/hub/google/__init__.py +0 -0
  192. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/hub/session.py +0 -0
  193. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/hub/utils.py +0 -0
  194. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/__init__.py +0 -0
  195. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/fastsam/__init__.py +0 -0
  196. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/fastsam/model.py +0 -0
  197. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/fastsam/utils.py +0 -0
  198. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/fastsam/val.py +0 -0
  199. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/nas/__init__.py +0 -0
  200. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/nas/model.py +0 -0
  201. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/nas/predict.py +0 -0
  202. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/nas/val.py +0 -0
  203. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/rtdetr/__init__.py +0 -0
  204. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/rtdetr/model.py +0 -0
  205. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/rtdetr/predict.py +0 -0
  206. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/rtdetr/train.py +0 -0
  207. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/rtdetr/val.py +0 -0
  208. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/__init__.py +0 -0
  209. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/amg.py +0 -0
  210. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/build.py +0 -0
  211. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/build_sam3.py +0 -0
  212. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/model.py +0 -0
  213. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/__init__.py +0 -0
  214. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/blocks.py +0 -0
  215. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/decoders.py +0 -0
  216. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/encoders.py +0 -0
  217. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/memory_attention.py +0 -0
  218. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/sam.py +0 -0
  219. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/tiny_encoder.py +0 -0
  220. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/modules/transformer.py +0 -0
  221. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/predict.py +0 -0
  222. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/__init__.py +0 -0
  223. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/decoder.py +0 -0
  224. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/encoder.py +0 -0
  225. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/geometry_encoders.py +0 -0
  226. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/maskformer_segmentation.py +0 -0
  227. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/model_misc.py +0 -0
  228. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/necks.py +0 -0
  229. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/sam3_image.py +0 -0
  230. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/text_encoder_ve.py +0 -0
  231. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/vitdet.py +0 -0
  232. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/sam/sam3/vl_combiner.py +0 -0
  233. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/utils/__init__.py +0 -0
  234. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/utils/loss.py +0 -0
  235. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/utils/ops.py +0 -0
  236. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/__init__.py +0 -0
  237. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/classify/__init__.py +0 -0
  238. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/classify/predict.py +0 -0
  239. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/classify/train.py +0 -0
  240. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/classify/val.py +0 -0
  241. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/detect/__init__.py +0 -0
  242. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/detect/predict.py +0 -0
  243. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/obb/__init__.py +0 -0
  244. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/obb/val.py +0 -0
  245. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/pose/__init__.py +0 -0
  246. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/pose/predict.py +0 -0
  247. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/pose/val.py +0 -0
  248. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/segment/__init__.py +0 -0
  249. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/world/__init__.py +0 -0
  250. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/world/train.py +0 -0
  251. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/world/train_world.py +0 -0
  252. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/yoloe/__init__.py +0 -0
  253. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/yoloe/predict.py +0 -0
  254. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/models/yolo/yoloe/val.py +0 -0
  255. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/__init__.py +0 -0
  256. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/modules/activation.py +0 -0
  257. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/modules/conv.py +0 -0
  258. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/nn/modules/utils.py +0 -0
  259. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/py.typed +0 -0
  260. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/__init__.py +0 -0
  261. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/ai_gym.py +0 -0
  262. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/analytics.py +0 -0
  263. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/config.py +0 -0
  264. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/distance_calculation.py +0 -0
  265. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/heatmap.py +0 -0
  266. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/instance_segmentation.py +0 -0
  267. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/object_blurrer.py +0 -0
  268. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/object_cropper.py +0 -0
  269. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/parking_management.py +0 -0
  270. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/queue_management.py +0 -0
  271. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/region_counter.py +0 -0
  272. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/security_alarm.py +0 -0
  273. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/similarity_search.py +0 -0
  274. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/solutions.py +0 -0
  275. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/speed_estimation.py +0 -0
  276. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/streamlit_inference.py +0 -0
  277. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/templates/similarity-search.html +0 -0
  278. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/trackzone.py +0 -0
  279. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/solutions/vision_eye.py +0 -0
  280. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/__init__.py +0 -0
  281. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/basetrack.py +0 -0
  282. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/bot_sort.py +0 -0
  283. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/byte_tracker.py +0 -0
  284. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/track.py +0 -0
  285. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/utils/__init__.py +0 -0
  286. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/utils/gmc.py +0 -0
  287. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/utils/kalman_filter.py +0 -0
  288. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/trackers/utils/matching.py +0 -0
  289. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/__init__.py +0 -0
  290. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/autobatch.py +0 -0
  291. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/autodevice.py +0 -0
  292. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/__init__.py +0 -0
  293. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/base.py +0 -0
  294. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/clearml.py +0 -0
  295. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/comet.py +0 -0
  296. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/dvc.py +0 -0
  297. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/hub.py +0 -0
  298. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/mlflow.py +0 -0
  299. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/neptune.py +0 -0
  300. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/raytune.py +0 -0
  301. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/tensorboard.py +0 -0
  302. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/callbacks/wb.py +0 -0
  303. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/cpu.py +0 -0
  304. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/dist.py +0 -0
  305. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/errors.py +0 -0
  306. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/events.py +0 -0
  307. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/export/__init__.py +0 -0
  308. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/files.py +0 -0
  309. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/git.py +0 -0
  310. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/instance.py +0 -0
  311. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/nms.py +0 -0
  312. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/patches.py +0 -0
  313. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics/utils/triton.py +0 -0
  314. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics_opencv_headless.egg-info/dependency_links.txt +0 -0
  315. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics_opencv_headless.egg-info/entry_points.txt +0 -0
  316. {ultralytics_opencv_headless-8.3.245 → ultralytics_opencv_headless-8.4.0}/ultralytics_opencv_headless.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics-opencv-headless
3
- Version: 8.3.245
3
+ Version: 8.4.0
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -57,7 +57,7 @@ Provides-Extra: export
57
57
  Requires-Dist: numpy<2.0.0; extra == "export"
58
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
59
59
  Requires-Dist: onnx<1.18.0,>=1.12.0; platform_system == "Darwin" and extra == "export"
60
- Requires-Dist: onnxslim>=0.1.80; extra == "export"
60
+ Requires-Dist: onnxslim>=0.1.82; extra == "export"
61
61
  Requires-Dist: coremltools>=9.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
62
62
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
63
63
  Requires-Dist: openvino>=2024.0.0; extra == "export"
@@ -98,7 +98,6 @@ Dynamic: license-file
98
98
  <div>
99
99
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
100
100
  <a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
101
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
102
101
  <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
103
102
  <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
104
103
  <a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
@@ -166,8 +165,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
166
165
  You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
167
166
 
168
167
  ```bash
169
- # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image
170
- yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
168
+ # Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
169
+ yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
171
170
  ```
172
171
 
173
172
  The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
@@ -179,8 +178,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
179
178
  ```python
180
179
  from ultralytics import YOLO
181
180
 
182
- # Load a pretrained YOLO11n model
183
- model = YOLO("yolo11n.pt")
181
+ # Load a pretrained YOLO26n model
182
+ model = YOLO("yolo26n.pt")
184
183
 
185
184
  # Train the model on the COCO8 dataset for 100 epochs
186
185
  train_results = model.train(
@@ -207,7 +206,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
207
206
 
208
207
  ## ✨ Models
209
208
 
210
- Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO11](https://docs.ultralytics.com/models/yolo11/). The tables below showcase YOLO11 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
209
+ Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
211
210
 
212
211
  <a href="https://docs.ultralytics.com/tasks/" target="_blank">
213
212
  <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
@@ -221,11 +220,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
221
220
 
222
221
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
223
222
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
224
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
225
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
226
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
227
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
228
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
223
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
224
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
225
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
226
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
227
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
229
228
 
230
229
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
231
230
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -238,11 +237,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
238
237
 
239
238
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
240
239
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
241
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 9.7 |
242
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 33.0 |
243
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 113.2 |
244
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 132.2 |
245
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 296.4 |
240
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.8 | 9.1 |
241
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.7 | 34.2 |
242
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 24.8 | 121.5 |
243
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 29.2 | 139.8 |
244
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 65.5 | 313.5 |
246
245
 
247
246
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
248
247
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -255,11 +254,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
255
254
 
256
255
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
257
256
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
258
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
259
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
260
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
261
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
262
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
257
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
258
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
259
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
260
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
261
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
263
262
 
264
263
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
265
264
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -272,11 +271,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
272
271
 
273
272
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
274
273
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
275
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.4 |
276
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.1 |
277
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.4 |
278
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.1 | 90.3 |
279
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 202.8 |
274
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 56.9 | 83.0 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
275
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.1 | 86.8 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
276
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.9 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
277
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.8 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
278
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.7 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
280
279
 
281
280
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
282
281
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -289,11 +288,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
289
288
 
290
289
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
291
290
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
292
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 16.8 |
293
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.1 |
294
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 182.8 |
295
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.1 | 231.2 |
296
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 519.1 |
291
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
292
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 79.8 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
293
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
294
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.4 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
295
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 82.1 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
297
296
 
298
297
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
299
298
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -328,13 +327,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
328
327
  | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
329
328
  | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
330
329
 
331
- ## 🌟 Ultralytics HUB
332
-
333
- Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
334
-
335
- <a href="https://www.ultralytics.com/hub" target="_blank">
336
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
337
-
338
330
  ## 🤝 Contribute
339
331
 
340
332
  We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
@@ -9,7 +9,6 @@
9
9
  <div>
10
10
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
11
11
  <a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
12
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
13
12
  <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
14
13
  <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
15
14
  <a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
@@ -77,8 +76,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
77
76
  You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
78
77
 
79
78
  ```bash
80
- # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image
81
- yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
79
+ # Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
80
+ yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
82
81
  ```
83
82
 
84
83
  The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
@@ -90,8 +89,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
90
89
  ```python
91
90
  from ultralytics import YOLO
92
91
 
93
- # Load a pretrained YOLO11n model
94
- model = YOLO("yolo11n.pt")
92
+ # Load a pretrained YOLO26n model
93
+ model = YOLO("yolo26n.pt")
95
94
 
96
95
  # Train the model on the COCO8 dataset for 100 epochs
97
96
  train_results = model.train(
@@ -118,7 +117,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
118
117
 
119
118
  ## ✨ Models
120
119
 
121
- Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO11](https://docs.ultralytics.com/models/yolo11/). The tables below showcase YOLO11 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
120
+ Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
122
121
 
123
122
  <a href="https://docs.ultralytics.com/tasks/" target="_blank">
124
123
  <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
@@ -132,11 +131,11 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
132
131
 
133
132
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
134
133
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
135
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
136
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
137
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
138
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
139
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
134
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
135
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
136
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
137
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
138
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
140
139
 
141
140
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
142
141
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -149,11 +148,11 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
149
148
 
150
149
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
151
150
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
152
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 9.7 |
153
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 33.0 |
154
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 113.2 |
155
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 132.2 |
156
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 296.4 |
151
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.8 | 9.1 |
152
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.7 | 34.2 |
153
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 24.8 | 121.5 |
154
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 29.2 | 139.8 |
155
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 65.5 | 313.5 |
157
156
 
158
157
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
159
158
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -166,11 +165,11 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
166
165
 
167
166
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
168
167
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
169
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
170
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
171
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
172
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
173
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
168
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
169
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
170
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
171
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
172
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
174
173
 
175
174
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
176
175
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -183,11 +182,11 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
183
182
 
184
183
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
185
184
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
186
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.4 |
187
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.1 |
188
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.4 |
189
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.1 | 90.3 |
190
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 202.8 |
185
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 56.9 | 83.0 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
186
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.1 | 86.8 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
187
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.9 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
188
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.8 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
189
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.7 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
191
190
 
192
191
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
193
192
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -200,11 +199,11 @@ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples
200
199
 
201
200
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
202
201
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
203
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 16.8 |
204
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.1 |
205
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 182.8 |
206
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.1 | 231.2 |
207
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 519.1 |
202
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
203
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 79.8 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
204
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
205
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 81.4 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
206
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 82.1 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
208
207
 
209
208
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
210
209
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -239,13 +238,6 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
239
238
  | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
240
239
  | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
241
240
 
242
- ## 🌟 Ultralytics HUB
243
-
244
- Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
245
-
246
- <a href="https://www.ultralytics.com/hub" target="_blank">
247
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
248
-
249
241
  ## 🤝 Contribute
250
242
 
251
243
  We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
@@ -91,7 +91,7 @@ export = [
91
91
  "numpy<2.0.0", # TF 2.20 compatibility
92
92
  "onnx>=1.12.0; platform_system != 'Darwin'", # ONNX export
93
93
  "onnx>=1.12.0,<1.18.0; platform_system == 'Darwin'", # TF inference hanging on MacOS (tested up to onnx==1.20.0)
94
- "onnxslim>=0.1.80",
94
+ "onnxslim>=0.1.82",
95
95
  "coremltools>=9.0; platform_system != 'Windows' and python_version <= '3.13'", # CoreML supported on macOS and Linux
96
96
  "scikit-learn>=1.3.2; platform_system != 'Windows' and python_version <= '3.13'", # CoreML k-means quantization
97
97
  "openvino>=2024.0.0", # OpenVINO export
@@ -4,8 +4,8 @@ from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
4
4
  from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks
5
5
 
6
6
  # Constants used in tests
7
- MODEL = WEIGHTS_DIR / "path with spaces" / "yolo11n.pt" # test spaces in path
8
- CFG = "yolo11n.yaml"
7
+ MODEL = WEIGHTS_DIR / "path with spaces" / "yolo26n.pt" # test spaces in path
8
+ CFG = "yolo26n.yaml"
9
9
  SOURCE = ASSETS / "bus.jpg"
10
10
  SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
11
11
  CUDA_IS_AVAILABLE = checks.cuda_is_available()
@@ -50,7 +50,7 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
50
50
 
51
51
  # Remove files
52
52
  models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
53
- for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript", *models]:
53
+ for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo26n.onnx", "yolo26n.torchscript", *models]:
54
54
  Path(file).unlink(missing_ok=True)
55
55
 
56
56
  # Remove directories
@@ -41,7 +41,7 @@ def test_checks():
41
41
  @pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
42
42
  def test_amp():
43
43
  """Test AMP training checks."""
44
- model = YOLO("yolo11n.pt").model.to(f"cuda:{DEVICES[0]}")
44
+ model = YOLO("yolo26n.pt").model.to(f"cuda:{DEVICES[0]}")
45
45
  assert check_amp(model)
46
46
 
47
47
 
@@ -91,6 +91,12 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
91
91
  )
92
92
  def test_export_engine_matrix(task, dynamic, int8, half, batch):
93
93
  """Test YOLO model export to TensorRT format for various configurations and run inference."""
94
+ import tensorrt as trt
95
+
96
+ is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10
97
+ if is_trt10 and int8 and dynamic:
98
+ pytest.skip("YOLO26 INT8+dynamic export requires explicit quantization on TensorRT 10+")
99
+
94
100
  file = YOLO(TASK2MODEL[task]).export(
95
101
  format="engine",
96
102
  imgsz=32,
@@ -126,7 +132,7 @@ def test_train():
126
132
  @pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
127
133
  def test_predict_multiple_devices():
128
134
  """Validate model prediction consistency across CPU and CUDA devices."""
129
- model = YOLO("yolo11n.pt")
135
+ model = YOLO("yolo26n.pt")
130
136
 
131
137
  # Test CPU
132
138
  model = model.cpu()
@@ -23,13 +23,13 @@ def test_export():
23
23
  exporter = Exporter()
24
24
  exporter.add_callback("on_export_start", test_func)
25
25
  assert test_func in exporter.callbacks["on_export_start"], "callback test failed"
26
- f = exporter(model=YOLO("yolo11n.yaml").model)
26
+ f = exporter(model=YOLO("yolo26n.yaml").model)
27
27
  YOLO(f)(ASSETS) # exported model inference
28
28
 
29
29
 
30
30
  def test_detect():
31
31
  """Test YOLO object detection training, validation, and prediction functionality."""
32
- overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 1, "save": False}
32
+ overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 1, "save": False}
33
33
  cfg = get_cfg(DEFAULT_CFG)
34
34
  cfg.data = "coco8.yaml"
35
35
  cfg.imgsz = 32
@@ -71,7 +71,7 @@ def test_segment():
71
71
  """Test image segmentation training, validation, and prediction pipelines using YOLO models."""
72
72
  overrides = {
73
73
  "data": "coco8-seg.yaml",
74
- "model": "yolo11n-seg.yaml",
74
+ "model": "yolo26n-seg.yaml",
75
75
  "imgsz": 32,
76
76
  "epochs": 1,
77
77
  "save": False,
@@ -98,7 +98,7 @@ def test_segment():
98
98
  pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
99
99
  pred.add_callback("on_predict_start", test_func)
100
100
  assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
101
- result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo11n-seg.pt")
101
+ result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo26n-seg.pt")
102
102
  assert len(result), "predictor test failed"
103
103
 
104
104
  # Test resume functionality
@@ -115,7 +115,7 @@ def test_segment():
115
115
 
116
116
  def test_classify():
117
117
  """Test image classification including training, validation, and prediction phases."""
118
- overrides = {"data": "imagenet10", "model": "yolo11n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
118
+ overrides = {"data": "imagenet10", "model": "yolo26n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
119
119
  cfg = get_cfg(DEFAULT_CFG)
120
120
  cfg.data = "imagenet10"
121
121
  cfg.imgsz = 32
@@ -150,7 +150,7 @@ def test_nan_recovery():
150
150
  trainer.tloss *= torch.tensor(float("nan"))
151
151
  nan_injected[0] = True
152
152
 
153
- overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 3}
153
+ overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 3}
154
154
  trainer = detect.DetectionTrainer(overrides=overrides)
155
155
  trainer.add_callback("on_train_batch_end", inject_nan)
156
156
  trainer.train()
@@ -12,8 +12,8 @@ import pytest
12
12
  from tests import MODEL, SOURCE
13
13
  from ultralytics import YOLO
14
14
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
15
- from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, WINDOWS, checks
16
- from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_1, TORCH_2_8, TORCH_2_9
15
+ from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, MACOS_VERSION, WINDOWS, checks
16
+ from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_0, TORCH_2_1, TORCH_2_8, TORCH_2_9
17
17
 
18
18
 
19
19
  def test_export_torchscript():
@@ -112,6 +112,9 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
112
112
  @pytest.mark.skipif(not MACOS, reason="CoreML inference only supported on macOS")
113
113
  @pytest.mark.skipif(not TORCH_1_11, reason="CoreML export requires torch>=1.11")
114
114
  @pytest.mark.skipif(checks.IS_PYTHON_3_13, reason="CoreML not supported in Python 3.13")
115
+ @pytest.mark.skipif(
116
+ MACOS and MACOS_VERSION and MACOS_VERSION >= "15", reason="CoreML YOLO26 matrix test crashes on macOS 15+"
117
+ )
115
118
  @pytest.mark.parametrize(
116
119
  "task, dynamic, int8, half, nms, batch",
117
120
  [ # generate all combinations except for exclusion cases
@@ -235,6 +238,8 @@ def test_export_mnn_matrix(task, int8, half, batch):
235
238
 
236
239
 
237
240
  @pytest.mark.slow
241
+ @pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
242
+ @pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
238
243
  def test_export_ncnn():
239
244
  """Test YOLO export to NCNN format."""
240
245
  file = YOLO(MODEL).export(format="ncnn", imgsz=32)
@@ -242,6 +247,8 @@ def test_export_ncnn():
242
247
 
243
248
 
244
249
  @pytest.mark.slow
250
+ @pytest.mark.skipif(ARM64, reason="NCNN not supported on ARM64") # https://github.com/Tencent/ncnn/issues/6509
251
+ @pytest.mark.skipif(not TORCH_2_0, reason="NCNN inference causes segfault on PyTorch<2.0")
245
252
  @pytest.mark.parametrize("task, half, batch", list(product(TASKS, [True, False], [1])))
246
253
  def test_export_ncnn_matrix(task, half, batch):
247
254
  """Test YOLO export to NCNN format considering various export configurations."""
@@ -256,7 +263,7 @@ def test_export_ncnn_matrix(task, half, batch):
256
263
  @pytest.mark.skipif(ARM64, reason="IMX export is not supported on ARM64 architectures.")
257
264
  def test_export_imx():
258
265
  """Test YOLO export to IMX format."""
259
- model = YOLO(MODEL)
266
+ model = YOLO("yolo11n.pt") # IMX export only supports YOLO11
260
267
  file = model.export(format="imx", imgsz=32)
261
268
  YOLO(file)(SOURCE, imgsz=32)
262
269
 
@@ -267,13 +274,13 @@ def test_export_imx():
267
274
  @pytest.mark.skipif(not checks.IS_PYTHON_3_10, reason="Axelera export requires Python 3.10")
268
275
  def test_export_axelera():
269
276
  """Test YOLO export to Axelera format."""
270
- # For faster testing, use a smaller calibration dataset
271
- # 32 image size crashes axelera export, so use 64
277
+ # For faster testing, use a smaller calibration dataset (32 image size crashes axelera export, so 64 is used)
272
278
  file = YOLO(MODEL).export(format="axelera", imgsz=64, data="coco8.yaml")
273
279
  assert Path(file).exists(), f"Axelera export failed, directory not found: {file}"
274
280
  shutil.rmtree(file, ignore_errors=True) # cleanup
275
281
 
276
282
 
283
+ # @pytest.mark.skipif(True, reason="Disabled for debugging ruamel.yaml installation required by executorch")
277
284
  @pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10 or not TORCH_2_9, reason="Requires Python>=3.10 and Torch>=2.9.0")
278
285
  @pytest.mark.skipif(WINDOWS, reason="Skipping test on Windows")
279
286
  def test_export_executorch():