ubc-solar-physics 1.7.3__cp312-cp312-macosx_10_12_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. physics/__init__.py +14 -0
  2. physics/_version.py +16 -0
  3. physics/environment/__init__.py +15 -0
  4. physics/environment/environment.rs +2 -0
  5. physics/environment/gis/__init__.py +7 -0
  6. physics/environment/gis/base_gis.py +38 -0
  7. physics/environment/gis/gis.py +371 -0
  8. physics/environment/gis/gis.rs +113 -0
  9. physics/environment/gis.rs +1 -0
  10. physics/environment/meteorology/__init__.py +3 -0
  11. physics/environment/meteorology/base_meteorology.py +69 -0
  12. physics/environment/meteorology/clouded_meteorology.py +600 -0
  13. physics/environment/meteorology/irradiant_meteorology.py +107 -0
  14. physics/environment/meteorology/meteorology.rs +138 -0
  15. physics/environment/meteorology.rs +1 -0
  16. physics/environment.rs +2 -0
  17. physics/lib.rs +164 -0
  18. physics/models/__init__.py +13 -0
  19. physics/models/arrays/__init__.py +7 -0
  20. physics/models/arrays/arrays.rs +0 -0
  21. physics/models/arrays/base_array.py +6 -0
  22. physics/models/arrays/basic_array.py +39 -0
  23. physics/models/arrays.rs +1 -0
  24. physics/models/battery/__init__.py +18 -0
  25. physics/models/battery/base_battery.py +29 -0
  26. physics/models/battery/basic_battery.py +140 -0
  27. physics/models/battery/battery.rs +102 -0
  28. physics/models/battery/battery_config.py +107 -0
  29. physics/models/battery/battery_config.toml +6 -0
  30. physics/models/battery/battery_model.py +226 -0
  31. physics/models/battery/kalman_filter.py +223 -0
  32. physics/models/battery.rs +1 -0
  33. physics/models/constants.py +23 -0
  34. physics/models/lvs/__init__.py +7 -0
  35. physics/models/lvs/base_lvs.py +6 -0
  36. physics/models/lvs/basic_lvs.py +18 -0
  37. physics/models/lvs/lvs.rs +0 -0
  38. physics/models/lvs.rs +1 -0
  39. physics/models/motor/__init__.py +9 -0
  40. physics/models/motor/advanced_motor.py +196 -0
  41. physics/models/motor/base_motor.py +8 -0
  42. physics/models/motor/basic_motor.py +193 -0
  43. physics/models/motor/motor.rs +0 -0
  44. physics/models/motor.rs +1 -0
  45. physics/models/regen/__init__.py +7 -0
  46. physics/models/regen/base_regen.py +6 -0
  47. physics/models/regen/basic_regen.py +52 -0
  48. physics/models/regen/regen.rs +0 -0
  49. physics/models/regen.rs +1 -0
  50. physics/models.rs +5 -0
  51. physics_rs/__init__.pyi +111 -0
  52. physics_rs.cpython-312-darwin.so +0 -0
  53. ubc_solar_physics-1.7.3.dist-info/LICENSE +21 -0
  54. ubc_solar_physics-1.7.3.dist-info/METADATA +142 -0
  55. ubc_solar_physics-1.7.3.dist-info/RECORD +57 -0
  56. ubc_solar_physics-1.7.3.dist-info/WHEEL +5 -0
  57. ubc_solar_physics-1.7.3.dist-info/top_level.txt +2 -0
physics/__init__.py ADDED
@@ -0,0 +1,14 @@
1
+ from .environment import (
2
+ meteorology,
3
+ gis
4
+ )
5
+
6
+ from .models import (
7
+ arrays,
8
+ battery,
9
+ lvs,
10
+ motor,
11
+ regen
12
+ )
13
+
14
+ from ._version import __version__
physics/_version.py ADDED
@@ -0,0 +1,16 @@
1
+ # file generated by setuptools_scm
2
+ # don't change, don't track in version control
3
+ TYPE_CHECKING = False
4
+ if TYPE_CHECKING:
5
+ from typing import Tuple, Union
6
+ VERSION_TUPLE = Tuple[Union[int, str], ...]
7
+ else:
8
+ VERSION_TUPLE = object
9
+
10
+ version: str
11
+ __version__: str
12
+ __version_tuple__: VERSION_TUPLE
13
+ version_tuple: VERSION_TUPLE
14
+
15
+ __version__ = version = '1.7.3'
16
+ __version_tuple__ = version_tuple = (1, 7, 3)
@@ -0,0 +1,15 @@
1
+ from .gis import (
2
+ GIS,
3
+ )
4
+
5
+ from .meteorology import (
6
+ IrradiantMeteorology,
7
+ CloudedMeteorology,
8
+ BaseMeteorology
9
+ )
10
+
11
+ __all__ = [
12
+ "IrradiantMeteorology",
13
+ "CloudedMeteorology",
14
+ "GIS",
15
+ ]
@@ -0,0 +1,2 @@
1
+ pub mod gis;
2
+ pub mod meteorology;
@@ -0,0 +1,7 @@
1
+ from .base_gis import BaseGIS
2
+ from .gis import GIS
3
+
4
+ __all__ = [
5
+ "BaseGIS",
6
+ "GIS"
7
+ ]
@@ -0,0 +1,38 @@
1
+ from abc import ABC, abstractmethod
2
+ import numpy as np
3
+ from numpy.typing import ArrayLike, NDArray
4
+
5
+
6
+ class BaseGIS(ABC):
7
+ @abstractmethod
8
+ def calculate_closest_gis_indices(self, cumulative_distances) -> np.ndarray:
9
+ raise NotImplementedError
10
+
11
+ @abstractmethod
12
+ def get_path_elevations(self) -> np.ndarray:
13
+ raise NotImplementedError
14
+
15
+ @abstractmethod
16
+ def get_gradients(self, gis_indices) -> np.ndarray:
17
+ raise NotImplementedError
18
+
19
+ @abstractmethod
20
+ def get_time_zones(self, gis_indices) -> np.ndarray:
21
+ raise NotImplementedError
22
+
23
+ @abstractmethod
24
+ def get_path(self) -> np.ndarray:
25
+ raise NotImplementedError
26
+
27
+ @abstractmethod
28
+ def calculate_current_heading_array(self) -> np.ndarray:
29
+ raise NotImplementedError
30
+
31
+ def calculate_driving_speeds(
32
+ self,
33
+ average_lap_speeds: ArrayLike,
34
+ simulation_dt: int,
35
+ driving_allowed: ArrayLike,
36
+ idle_time: int
37
+ ) -> NDArray[float]:
38
+ raise NotImplementedError
@@ -0,0 +1,371 @@
1
+ import logging
2
+ import math
3
+ import physics_rs
4
+ import numpy as np
5
+ import sys
6
+
7
+ from numpy.typing import ArrayLike, NDArray
8
+ from tqdm import tqdm
9
+ from xml.dom import minidom
10
+ from haversine import haversine, Unit
11
+ from physics.environment.gis.base_gis import BaseGIS
12
+
13
+
14
+ class GIS(BaseGIS):
15
+ def __init__(self, route_data, origin_coord, current_coord=None):
16
+ """
17
+
18
+ Initialises a GIS (geographic location system) object. This object is responsible for getting the
19
+ simulation's planned route from the Google Maps API and performing operations on the received data.
20
+
21
+ Requires a map, ``route_data`` with certain keys.
22
+ 1. "path": an iterable of shape [N, 2] representing N coordinates in the form (latitude, longitude).
23
+ 2. "elevations": an iterable of shape [N] where each Nth element is the elevation, in meters, of the Nth path coordinate.
24
+ 3. "time_zones": an iterable of shape [N] where each Nth element is the UTC time zone offset of the Nth path coordinate.
25
+ 4. "num_unique_coords": the number of unique coordinates (that is, if the path is a single lap that has been tiled, how many path coordinates compose a single lap).
26
+
27
+ :param route_data: map of data containing "path", "elevations", "time_zones", and "num_unique_coords".
28
+ :param origin_coord: NumPy array containing the start coordinate (lat, long) of the planned travel route
29
+
30
+ """
31
+ self.path = route_data['path']
32
+ self.launch_point = route_data['path'][0]
33
+ self.path_elevations = route_data['elevations']
34
+ self.path_time_zones = route_data['time_zones']
35
+ self.num_unique_coords = route_data['num_unique_coords']
36
+
37
+ if current_coord is not None:
38
+ if not np.array_equal(current_coord, origin_coord):
39
+ logging.warning("Current position is not origin position. Modifying path data.\n")
40
+
41
+ # We need to find the closest coordinate along the path to the vehicle position
42
+ current_coord_index = GIS._find_closest_coordinate_index(current_coord, self.path)
43
+
44
+ # All coords before the current coordinate should be discarded
45
+ self.path = self.path[current_coord_index:]
46
+ self.path_elevations = self.path_elevations[current_coord_index:]
47
+ self.path_time_zones = self.path_time_zones[current_coord_index:]
48
+
49
+ self.path_distances = calculate_path_distances(self.path)
50
+ self.path_length = np.cumsum(calculate_path_distances(self.path[:self.num_unique_coords]))[-1]
51
+ self.path_gradients = calculate_path_gradients(self.path_elevations, self.path_distances)
52
+
53
+ @staticmethod
54
+ def process_KML_file(route_file):
55
+ """
56
+
57
+ Load the FSGP Track from a KML file exported from a Google Earth project.
58
+
59
+ Ensure to follow guidelines enumerated in this directory's `README.md` when creating and
60
+ loading new route files.
61
+
62
+ :return: Array of N coordinates (latitude, longitude) in the shape [N][2].
63
+ """
64
+ with open(route_file) as f:
65
+ data = minidom.parse(f)
66
+ kml_coordinates = data.getElementsByTagName("coordinates")[0].childNodes[0].data
67
+ coordinates: np.ndarray = np.array(parse_coordinates_from_kml(kml_coordinates))
68
+
69
+ # Google Earth exports coordinates in order longitude, latitude, when we want the opposite
70
+ return np.roll(coordinates, 1, axis=1)
71
+
72
+ def calculate_closest_gis_indices(self, distances):
73
+ """
74
+
75
+ Takes in an array of point distances from starting point, returns a list of
76
+ ``self.path`` indices of coordinates which have a distance from the starting point
77
+ closest to the point distances.
78
+
79
+ :param np.ndarray distances: (float[N]) array of distances, where cumulative_distances[x] > cumulative_distances[x-1]
80
+ :returns: (float[N]) array of indices of path
81
+ :rtype: np.ndarray
82
+
83
+ """
84
+ return physics_rs.closest_gis_indices_loop(distances, self.path_distances)
85
+
86
+ def calculate_driving_speeds(
87
+ self,
88
+ average_lap_speeds: ArrayLike,
89
+ simulation_dt: int,
90
+ driving_allowed: ArrayLike,
91
+ idle_time: int
92
+ ) -> NDArray[float]:
93
+ """
94
+ Generate valid driving speeds as a simulation-time array given a set of average speeds for each
95
+ simulated lap.
96
+ Driving speeds will only be non-zero when we are allowed to drive, and the speed
97
+ for every tick during a lap will be that lap's corresponding desired average speed for as long
98
+ as it takes to complete the lap.
99
+
100
+ :param average_lap_speeds: An array of average speeds in m/s, one for each simulated lap.
101
+ If there are more speeds given than laps available, the unused speeds will be silently ignored.
102
+ If there are too few, an error will be returned.
103
+ :param simulation_dt: The simulated tick length.
104
+ :param driving_allowed: A simulation-time boolean where the `True` elements are when we
105
+ are allowed to drive, and `False` is when we are not. Requires that (at least) the first element is
106
+ `False` due to the race beginning in the morning before we are allowed to drive.
107
+ :param idle_time: The length of time to pause driving upon processing a "0m/s" average speed.
108
+ :return: A simulation-time array of driving speeds in m/s, or an error if there weren't enough
109
+ laps provided to fill the entire simulation time.
110
+ """
111
+ return physics_rs.get_driving_speeds(
112
+ np.array(average_lap_speeds).astype(np.float64),
113
+ simulation_dt,
114
+ np.array(driving_allowed).astype(bool),
115
+ self.path_length,
116
+ idle_time
117
+ )
118
+
119
+ @staticmethod
120
+ def _python_calculate_closest_gis_indices(distances, path_distances):
121
+ """
122
+
123
+ Python implementation of use_compiled core.closest_gis_indices_loop. See parent function for documentation details.
124
+
125
+ """
126
+
127
+ current_coordinate_index = 0
128
+ result = []
129
+
130
+ with tqdm(total=len(distances), file=sys.stdout, desc="Calculating closest GIS indices") as pbar:
131
+ distance_travelled = 0
132
+ for distance in np.nditer(distances):
133
+ distance_travelled += distance
134
+
135
+ while distance_travelled > path_distances[current_coordinate_index]:
136
+ distance_travelled -= path_distances[current_coordinate_index]
137
+ current_coordinate_index += 1
138
+
139
+ if current_coordinate_index >= len(path_distances) - 1:
140
+ current_coordinate_index = len(path_distances) - 1
141
+
142
+ result.append(current_coordinate_index)
143
+ pbar.update(1)
144
+
145
+ return np.array(result)
146
+
147
+ # ----- Getters -----
148
+ def get_time_zones(self, gis_indices):
149
+ """
150
+
151
+ Takes in an array of path indices, returns the time zone at each index
152
+
153
+ :param np.ndarray gis_indices: (float[N]) array of path indices
154
+ :returns: (float[N]) array of time zones in seconds
155
+ :rtype: np.ndarray
156
+
157
+ """
158
+
159
+ return self.path_time_zones[gis_indices]
160
+
161
+ def get_gradients(self, gis_indices):
162
+ """
163
+
164
+ Takes in an array of path indices, returns the road gradient at each index
165
+
166
+ :param np.ndarray gis_indices: (float[N]) array of path indices
167
+ :returns: (float[N]) array of road gradients
168
+ :rtype np.ndarray:
169
+
170
+ """
171
+
172
+ return self.path_gradients[gis_indices]
173
+
174
+ def get_path(self):
175
+ """
176
+ Returns all N coordinates of the path in a NumPy array
177
+ [N][latitude, longitude]
178
+
179
+ :rtype: np.ndarray
180
+
181
+ """
182
+
183
+ return self.path
184
+
185
+ def get_path_elevations(self):
186
+ """
187
+
188
+ Returns all N elevations of the path in a NumPy array
189
+ [N][elevation]
190
+
191
+ :rtype: np.ndarray
192
+
193
+ """
194
+
195
+ return self.path_elevations
196
+
197
+ def get_path_distances(self):
198
+ """
199
+
200
+ Returns all N-1 distances of the path in a NumPy array
201
+ [N-1][elevation]
202
+
203
+ :rtype: np.ndarray
204
+
205
+ """
206
+
207
+ return self.path_distances
208
+
209
+ def get_path_gradients(self):
210
+ """
211
+
212
+ Returns all N-1 gradients of a path in a NumPy array
213
+ [N-1][gradient]
214
+
215
+ :rtype: np.ndarray
216
+
217
+ """
218
+
219
+ return self.path_gradients
220
+
221
+ # ----- Path calculation functions -----
222
+ def calculate_path_min_max(self):
223
+ logging.warning(f"Using deprecated function 'calculate_path_min_max()'!")
224
+ min_lat, min_long = self.path.min(axis=0)
225
+ max_lat, max_long = self.path.max(axis=0)
226
+ return [min_long, min_lat, max_long, max_lat]
227
+
228
+ def calculate_current_heading_array(self):
229
+ """
230
+
231
+ Calculates the bearing of the vehicle between consecutive points
232
+ https://www.movable-type.co.uk/scripts/latlong.html
233
+
234
+ :returns: array of bearings
235
+ :rtype: np.ndarray
236
+
237
+ """
238
+ bearing_array = np.zeros(len(self.path))
239
+
240
+ for index in range(0, len(self.path) - 1):
241
+ coord_1 = np.radians(self.path[index])
242
+ coord_2 = np.radians(self.path[index + 1])
243
+
244
+ y = math.sin(coord_2[1] - coord_1[1]) \
245
+ * math.cos(coord_2[0])
246
+
247
+ x = math.cos(coord_1[0]) \
248
+ * math.sin(coord_2[0]) \
249
+ - math.sin(coord_1[0]) \
250
+ * math.cos(coord_2[0]) \
251
+ * math.cos(coord_2[1] - coord_1[1])
252
+
253
+ theta = math.atan2(y, x)
254
+
255
+ bearing_array[index] = ((theta * 180) / math.pi + 360) % 360
256
+
257
+ bearing_array[-1] = bearing_array[-2]
258
+
259
+ return bearing_array
260
+
261
+ @staticmethod
262
+ def _calculate_vector_square_magnitude(vector):
263
+ """
264
+
265
+ Calculate the square magnitude of an input vector. Must be one-dimensional.
266
+
267
+ :param np.ndarray vector: NumPy array[N] representing a vector[N]
268
+ :return: square magnitude of the input vector
269
+ :rtype: float
270
+
271
+ """
272
+
273
+ return sum(i ** 2 for i in vector)
274
+
275
+ @staticmethod
276
+ def _find_closest_coordinate_index(current_coord, path):
277
+ """
278
+
279
+ Returns the closest coordinate to current_coord in path
280
+
281
+ :param np.ndarray current_coord: A NumPy array[N] representing a N-dimensional vector
282
+ :param np.ndarray path: A NumPy array[M][N] of M coordinates which should be N-dimensional vectors
283
+ :returns: index of the closest coordinate.
284
+ :rtype: int
285
+
286
+ """
287
+
288
+ to_current_coord_from_path = np.abs(path - current_coord)
289
+ distances_from_current_coord = np.zeros(len(to_current_coord_from_path))
290
+ for i in range(len(to_current_coord_from_path)):
291
+ # As we just need the minimum, using square magnitude will save performance
292
+ distances_from_current_coord[i] = GIS._calculate_vector_square_magnitude(to_current_coord_from_path[i])
293
+
294
+ return distances_from_current_coord.argmin()
295
+
296
+
297
+ def calculate_path_distances(coords):
298
+ """
299
+
300
+ Obtain the distance between each coordinate by approximating the spline between them
301
+ as a straight line, and use the Haversine formula (https://en.wikipedia.org/wiki/Haversine_formula)
302
+ to calculate distance between coordinates on a sphere.
303
+
304
+ :param np.ndarray coords: A NumPy array [n][latitude, longitude]
305
+ :returns path_distances: a NumPy array [n-1][distances],
306
+ :rtype: np.ndarray
307
+
308
+ """
309
+
310
+ coords_offset = np.roll(coords, (1, 1))
311
+ path_distances = []
312
+ for u, v in zip(coords, coords_offset):
313
+ path_distances.append(haversine(u, v, unit=Unit.METERS))
314
+
315
+ return np.array(path_distances)
316
+
317
+
318
+ def parse_coordinates_from_kml(coords_str: str) -> np.ndarray:
319
+ """
320
+
321
+ Parse a coordinates string from a XML (KML) file into a list of coordinates (2D vectors).
322
+ Requires coordinates in the format "39.,41.,0 39.,40.,0" which will return [ [39., 41.], [39., 40.] ].
323
+
324
+ :param coords_str: coordinates string from a XML (KML) file
325
+ :return: list of 2D vectors representing coordinates
326
+ :rtype: np.ndarray
327
+
328
+ """
329
+
330
+ def parse_coord(pair):
331
+ coord = pair.split(',')
332
+ coord.pop()
333
+ coord = [float(value) for value in coord]
334
+ return coord
335
+
336
+ return list(map(parse_coord, coords_str.split()))
337
+
338
+
339
+ def calculate_path_gradients(elevations, distances):
340
+ """
341
+
342
+ Get the approximate gradients of every point on the path.
343
+
344
+ Note:
345
+ - gradient > 0 corresponds to uphill
346
+ - gradient < 0 corresponds to downhill
347
+
348
+ :param np.ndarray elevations: [N][elevations]
349
+ :param np.ndarray distances: [N-1][distances]
350
+ :returns gradients: [N-1][gradients]
351
+ :rtype: np.ndarray
352
+
353
+ """
354
+
355
+ # subtract every next elevation with the previous elevation to
356
+ # get the difference in elevation
357
+ # [1 2 3 4 5]
358
+ # [5 1 2 3 4] -
359
+ # -------------
360
+ # [1 1 1 1]
361
+
362
+ offset = np.roll(elevations, 1)
363
+ delta_elevations = elevations - offset
364
+
365
+ # Divide the difference in elevation to get the gradient
366
+ # gradient > 0: uphill
367
+ # gradient < 0: downhill
368
+ with np.errstate(invalid='ignore'):
369
+ gradients = delta_elevations / distances
370
+
371
+ return np.nan_to_num(gradients, nan=0.)
@@ -0,0 +1,113 @@
1
+ use numpy::ndarray::{ArrayViewD, ArrayView1};
2
+
3
+ pub fn rust_closest_gis_indices_loop(
4
+ distances: ArrayViewD<'_, f64>,
5
+ path_distances: ArrayViewD<'_, f64>,
6
+ ) -> Vec<i64> {
7
+ let mut current_coord_index: usize = 0;
8
+ let mut distance_travelled: f64 = 0.0;
9
+ let mut result: Vec<i64> = Vec::with_capacity(distances.len());
10
+
11
+ for &distance in distances {
12
+ distance_travelled += distance;
13
+
14
+ while distance_travelled > path_distances[current_coord_index] {
15
+ distance_travelled -= path_distances[current_coord_index];
16
+ current_coord_index += 1;
17
+ if current_coord_index >= path_distances.len() {
18
+ current_coord_index = 0;
19
+ }
20
+ }
21
+
22
+ current_coord_index = std::cmp::min(current_coord_index, path_distances.len() - 1);
23
+ result.push(current_coord_index as i64);
24
+ }
25
+
26
+ result
27
+ }
28
+
29
+ ///
30
+ /// Generate valid driving speeds as a simulation-time array given a set of average speeds for each
31
+ /// simulated lap.
32
+ /// Driving speeds will only be non-zero when we are allowed to drive, and the speed
33
+ /// for every tick during a lap will be that lap's corresponding desired average speed for as long
34
+ /// as it takes to complete the lap.
35
+ /// An average speed of 0m/s for a lap will be interpreted as "sit and charge" for `idle_time`
36
+ /// ticks.
37
+ ///
38
+ /// # Arguments
39
+ ///
40
+ /// * `average_speeds`: An array of average speeds in m/s, one for each simulated lap. If there are more
41
+ /// speeds given than laps available, the unused speeds will be silently ignored. If there are too
42
+ /// few, an error will be returned.
43
+ /// * `simulation_dt`: The simulated tick length
44
+ /// * `driving_allowed_boolean`: A simulation-time boolean where the `True` elements are when we
45
+ /// are allowed to drive, and `False` is when we are not.
46
+ /// * `track_length`: The length of the track in meters.
47
+ /// * `idle_time`: The number of ticks to "sit and charge" when desired.
48
+ ///
49
+ /// Returns: A simulation-time array of driving speeds in m/s, or an error if there weren't enough
50
+ /// laps provided to fill the entire simulation time.
51
+ ///
52
+ pub fn get_driving_speeds(
53
+ average_speeds: ArrayView1<'_, f64>, // Average speeds in m/s
54
+ simulation_dt: i64, // Time step in seconds
55
+ driving_allowed_boolean: ArrayView1<'_, bool>, // Simulation-time boolean array
56
+ track_length: f64, // Track length in meters
57
+ idle_time: i64 // Time to idle in seconds
58
+ ) -> Result<Vec<f64>, &'static str> {
59
+ let ticks_to_complete_lap: Vec<i64> = average_speeds.iter().map(| &average_speed | {
60
+ if average_speed > 0.0 {
61
+ // The number of ticks is the number of seconds, divided by seconds per tick
62
+ (track_length / average_speed / simulation_dt as f64).ceil() as i64
63
+ } else {
64
+ (idle_time as f64 / simulation_dt as f64).ceil() as i64
65
+ }
66
+ }).collect();
67
+
68
+ let mut lap_index: usize = 0;
69
+ let mut lap_speed: f64 = average_speeds[lap_index];
70
+
71
+ let mut ticks_to_lap_completion: i64 = ticks_to_complete_lap[lap_index];
72
+
73
+ let mut driving_speeds: Vec<f64> = Vec::with_capacity(driving_allowed_boolean.len());
74
+ for driving_allowed in driving_allowed_boolean.iter() {
75
+ if !driving_allowed {
76
+ // If we aren't allowed to drive, speed should be zero. Also, we should mark that we are
77
+ // done our lap since it means we ended the day in the middle of the lap, and we will
78
+ // start the next day at the beginning of a new lap, not where we ended off.
79
+
80
+ // If it's the first lap, we don't want to skip because we are probably in the morning
81
+ // where we haven't begun driving yet.
82
+ if lap_index > 0 {
83
+ ticks_to_lap_completion = 0;
84
+ }
85
+
86
+ driving_speeds.push(0.0)
87
+ } else {
88
+ // If we are driving, we should decrement ticks to lap completion. If its already
89
+ // zero, that means that we are done the lap and should move onto the next lap.
90
+ if ticks_to_lap_completion > 0 {
91
+ ticks_to_lap_completion -= 1;
92
+
93
+ driving_speeds.push(lap_speed)
94
+ } else {
95
+ // To advance to the next lap, increment the index and evaluate new variables
96
+ lap_index += 1;
97
+ if lap_index >= average_speeds.len() {
98
+ return Err("Not enough average speeds!")
99
+ }
100
+
101
+ // We subtract 1 since this iteration counts for the next lap, not the one
102
+ // that we just finished
103
+ ticks_to_lap_completion = ticks_to_complete_lap[lap_index] - 1;
104
+ lap_speed = average_speeds[lap_index];
105
+
106
+ driving_speeds.push(lap_speed)
107
+ }
108
+ }
109
+
110
+ }
111
+
112
+ Ok(driving_speeds)
113
+ }
@@ -0,0 +1 @@
1
+ pub mod gis;
@@ -0,0 +1,3 @@
1
+ from .base_meteorology import BaseMeteorology
2
+ from .irradiant_meteorology import IrradiantMeteorology
3
+ from .clouded_meteorology import CloudedMeteorology
@@ -0,0 +1,69 @@
1
+ from typing import Optional
2
+ import numpy as np
3
+ from abc import ABC, abstractmethod
4
+
5
+
6
+ class BaseMeteorology(ABC):
7
+ def __init__(self):
8
+ self._wind_speed: Optional[np.ndarray] = None
9
+ self._wind_direction: Optional[np.ndarray] = None
10
+ self._solar_irradiance: Optional[np.ndarray] = None
11
+ self._weather_indices: Optional[np.ndarray] = None
12
+
13
+ def _return_if_available(self, attr):
14
+ if (value := getattr(self, attr)) is not None:
15
+ return value
16
+ else:
17
+ raise UnboundLocalError(f"{attr} is not available!")
18
+
19
+ @property
20
+ def wind_speed(self) -> np.ndarray:
21
+ """
22
+ Return the wind speeds in m/s at every tick, if available.
23
+
24
+ :return: ``ndarray`` of wind speeds in m/s at every tick
25
+ :raises UnboundLocalError: if wind speeds are not available.
26
+ """
27
+ return self._return_if_available("_wind_speed")
28
+
29
+ @property
30
+ def wind_direction(self) -> np.ndarray:
31
+ """
32
+ Return the wind direction in degrees, following the meteorological convention, if available.
33
+
34
+ :return: ``ndarray`` of wind directions in degrees at every tick.
35
+ :raises UnboundLocalError: if wind directions are not available.
36
+ """
37
+ return self._return_if_available("_wind_direction")
38
+
39
+ @property
40
+ def solar_irradiance(self) -> np.ndarray:
41
+ """
42
+ Return the solar irradiance in W/m^2 every tick, if available.
43
+
44
+ :return: ``ndarray`` of solar irradiances in W/m^2 at every tick
45
+ :raises UnboundLocalError: if solar irradiances are not available.
46
+ """
47
+ return self._return_if_available("_solar_irradiance")
48
+
49
+ @property
50
+ def weather_indices(self) -> np.ndarray:
51
+ """
52
+ Return the weather indices at every tick, if available.
53
+
54
+ :return: ``ndarray`` of weather indices at every tick
55
+ :raises UnboundLocalError: if weather indices are not available.
56
+ """
57
+ return self._return_if_available("_weather_indices")
58
+
59
+ @abstractmethod
60
+ def spatially_localize(self, cumulative_distances: np.ndarray) -> None:
61
+ raise NotImplementedError
62
+
63
+ @abstractmethod
64
+ def temporally_localize(self, unix_timestamps, start_time, tick) -> None:
65
+ raise NotImplementedError
66
+
67
+ @abstractmethod
68
+ def calculate_solar_irradiances(self, coords, time_zones, local_times, elevations):
69
+ raise NotImplementedError