ubc-solar-physics 1.1.0__cp39-cp39-macosx_11_0_arm64.whl → 1.7.3__cp39-cp39-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
physics/_version.py CHANGED
@@ -12,5 +12,5 @@ __version__: str
12
12
  __version_tuple__: VERSION_TUPLE
13
13
  version_tuple: VERSION_TUPLE
14
14
 
15
- __version__ = version = '1.1.0'
16
- __version_tuple__ = version_tuple = (1, 1, 0)
15
+ __version__ = version = '1.7.3'
16
+ __version_tuple__ = version_tuple = (1, 7, 3)
@@ -1,5 +1,6 @@
1
1
  from abc import ABC, abstractmethod
2
2
  import numpy as np
3
+ from numpy.typing import ArrayLike, NDArray
3
4
 
4
5
 
5
6
  class BaseGIS(ABC):
@@ -22,3 +23,16 @@ class BaseGIS(ABC):
22
23
  @abstractmethod
23
24
  def get_path(self) -> np.ndarray:
24
25
  raise NotImplementedError
26
+
27
+ @abstractmethod
28
+ def calculate_current_heading_array(self) -> np.ndarray:
29
+ raise NotImplementedError
30
+
31
+ def calculate_driving_speeds(
32
+ self,
33
+ average_lap_speeds: ArrayLike,
34
+ simulation_dt: int,
35
+ driving_allowed: ArrayLike,
36
+ idle_time: int
37
+ ) -> NDArray[float]:
38
+ raise NotImplementedError
@@ -1,9 +1,10 @@
1
1
  import logging
2
2
  import math
3
- import core
3
+ import physics_rs
4
4
  import numpy as np
5
5
  import sys
6
6
 
7
+ from numpy.typing import ArrayLike, NDArray
7
8
  from tqdm import tqdm
8
9
  from xml.dom import minidom
9
10
  from haversine import haversine, Unit
@@ -80,13 +81,46 @@ class GIS(BaseGIS):
80
81
  :rtype: np.ndarray
81
82
 
82
83
  """
83
- return core.closest_gis_indices_loop(distances, self.path_distances)
84
+ return physics_rs.closest_gis_indices_loop(distances, self.path_distances)
85
+
86
+ def calculate_driving_speeds(
87
+ self,
88
+ average_lap_speeds: ArrayLike,
89
+ simulation_dt: int,
90
+ driving_allowed: ArrayLike,
91
+ idle_time: int
92
+ ) -> NDArray[float]:
93
+ """
94
+ Generate valid driving speeds as a simulation-time array given a set of average speeds for each
95
+ simulated lap.
96
+ Driving speeds will only be non-zero when we are allowed to drive, and the speed
97
+ for every tick during a lap will be that lap's corresponding desired average speed for as long
98
+ as it takes to complete the lap.
99
+
100
+ :param average_lap_speeds: An array of average speeds in m/s, one for each simulated lap.
101
+ If there are more speeds given than laps available, the unused speeds will be silently ignored.
102
+ If there are too few, an error will be returned.
103
+ :param simulation_dt: The simulated tick length.
104
+ :param driving_allowed: A simulation-time boolean where the `True` elements are when we
105
+ are allowed to drive, and `False` is when we are not. Requires that (at least) the first element is
106
+ `False` due to the race beginning in the morning before we are allowed to drive.
107
+ :param idle_time: The length of time to pause driving upon processing a "0m/s" average speed.
108
+ :return: A simulation-time array of driving speeds in m/s, or an error if there weren't enough
109
+ laps provided to fill the entire simulation time.
110
+ """
111
+ return physics_rs.get_driving_speeds(
112
+ np.array(average_lap_speeds).astype(np.float64),
113
+ simulation_dt,
114
+ np.array(driving_allowed).astype(bool),
115
+ self.path_length,
116
+ idle_time
117
+ )
84
118
 
85
119
  @staticmethod
86
120
  def _python_calculate_closest_gis_indices(distances, path_distances):
87
121
  """
88
122
 
89
- Python implementation of rust core.closest_gis_indices_loop. See parent function for documentation details.
123
+ Python implementation of use_compiled core.closest_gis_indices_loop. See parent function for documentation details.
90
124
 
91
125
  """
92
126
 
@@ -1,5 +1,4 @@
1
- use chrono::{Datelike, NaiveDateTime, Timelike};
2
- use numpy::ndarray::{s, Array, Array2, ArrayViewD, ArrayViewMut2, ArrayViewMut3, Axis};
1
+ use numpy::ndarray::{ArrayViewD, ArrayView1};
3
2
 
4
3
  pub fn rust_closest_gis_indices_loop(
5
4
  distances: ArrayViewD<'_, f64>,
@@ -15,6 +14,9 @@ pub fn rust_closest_gis_indices_loop(
15
14
  while distance_travelled > path_distances[current_coord_index] {
16
15
  distance_travelled -= path_distances[current_coord_index];
17
16
  current_coord_index += 1;
17
+ if current_coord_index >= path_distances.len() {
18
+ current_coord_index = 0;
19
+ }
18
20
  }
19
21
 
20
22
  current_coord_index = std::cmp::min(current_coord_index, path_distances.len() - 1);
@@ -22,4 +24,90 @@ pub fn rust_closest_gis_indices_loop(
22
24
  }
23
25
 
24
26
  result
25
- }
27
+ }
28
+
29
+ ///
30
+ /// Generate valid driving speeds as a simulation-time array given a set of average speeds for each
31
+ /// simulated lap.
32
+ /// Driving speeds will only be non-zero when we are allowed to drive, and the speed
33
+ /// for every tick during a lap will be that lap's corresponding desired average speed for as long
34
+ /// as it takes to complete the lap.
35
+ /// An average speed of 0m/s for a lap will be interpreted as "sit and charge" for `idle_time`
36
+ /// ticks.
37
+ ///
38
+ /// # Arguments
39
+ ///
40
+ /// * `average_speeds`: An array of average speeds in m/s, one for each simulated lap. If there are more
41
+ /// speeds given than laps available, the unused speeds will be silently ignored. If there are too
42
+ /// few, an error will be returned.
43
+ /// * `simulation_dt`: The simulated tick length
44
+ /// * `driving_allowed_boolean`: A simulation-time boolean where the `True` elements are when we
45
+ /// are allowed to drive, and `False` is when we are not.
46
+ /// * `track_length`: The length of the track in meters.
47
+ /// * `idle_time`: The number of ticks to "sit and charge" when desired.
48
+ ///
49
+ /// Returns: A simulation-time array of driving speeds in m/s, or an error if there weren't enough
50
+ /// laps provided to fill the entire simulation time.
51
+ ///
52
+ pub fn get_driving_speeds(
53
+ average_speeds: ArrayView1<'_, f64>, // Average speeds in m/s
54
+ simulation_dt: i64, // Time step in seconds
55
+ driving_allowed_boolean: ArrayView1<'_, bool>, // Simulation-time boolean array
56
+ track_length: f64, // Track length in meters
57
+ idle_time: i64 // Time to idle in seconds
58
+ ) -> Result<Vec<f64>, &'static str> {
59
+ let ticks_to_complete_lap: Vec<i64> = average_speeds.iter().map(| &average_speed | {
60
+ if average_speed > 0.0 {
61
+ // The number of ticks is the number of seconds, divided by seconds per tick
62
+ (track_length / average_speed / simulation_dt as f64).ceil() as i64
63
+ } else {
64
+ (idle_time as f64 / simulation_dt as f64).ceil() as i64
65
+ }
66
+ }).collect();
67
+
68
+ let mut lap_index: usize = 0;
69
+ let mut lap_speed: f64 = average_speeds[lap_index];
70
+
71
+ let mut ticks_to_lap_completion: i64 = ticks_to_complete_lap[lap_index];
72
+
73
+ let mut driving_speeds: Vec<f64> = Vec::with_capacity(driving_allowed_boolean.len());
74
+ for driving_allowed in driving_allowed_boolean.iter() {
75
+ if !driving_allowed {
76
+ // If we aren't allowed to drive, speed should be zero. Also, we should mark that we are
77
+ // done our lap since it means we ended the day in the middle of the lap, and we will
78
+ // start the next day at the beginning of a new lap, not where we ended off.
79
+
80
+ // If it's the first lap, we don't want to skip because we are probably in the morning
81
+ // where we haven't begun driving yet.
82
+ if lap_index > 0 {
83
+ ticks_to_lap_completion = 0;
84
+ }
85
+
86
+ driving_speeds.push(0.0)
87
+ } else {
88
+ // If we are driving, we should decrement ticks to lap completion. If its already
89
+ // zero, that means that we are done the lap and should move onto the next lap.
90
+ if ticks_to_lap_completion > 0 {
91
+ ticks_to_lap_completion -= 1;
92
+
93
+ driving_speeds.push(lap_speed)
94
+ } else {
95
+ // To advance to the next lap, increment the index and evaluate new variables
96
+ lap_index += 1;
97
+ if lap_index >= average_speeds.len() {
98
+ return Err("Not enough average speeds!")
99
+ }
100
+
101
+ // We subtract 1 since this iteration counts for the next lap, not the one
102
+ // that we just finished
103
+ ticks_to_lap_completion = ticks_to_complete_lap[lap_index] - 1;
104
+ lap_speed = average_speeds[lap_index];
105
+
106
+ driving_speeds.push(lap_speed)
107
+ }
108
+ }
109
+
110
+ }
111
+
112
+ Ok(driving_speeds)
113
+ }
@@ -2,7 +2,7 @@ from physics.environment.meteorology.base_meteorology import BaseMeteorology
2
2
  from physics.environment.gis.gis import calculate_path_distances
3
3
  import numpy as np
4
4
  from numba import jit
5
- import core
5
+ import physics_rs
6
6
  from typing import Optional
7
7
  import datetime
8
8
 
@@ -70,7 +70,7 @@ class CloudedMeteorology(BaseMeteorology):
70
70
  # contains the average distance between two consecutive elements in the cumulative_weather_path_distances array
71
71
  average_distances = np.abs(np.diff(cumulative_weather_path_distances) / 2)
72
72
 
73
- return core.closest_weather_indices_loop(cumulative_distances, average_distances)
73
+ return physics_rs.closest_weather_indices_loop(cumulative_distances, average_distances)
74
74
 
75
75
  def temporally_localize(self, unix_timestamps, start_time, tick) -> None:
76
76
  """
@@ -96,7 +96,7 @@ class CloudedMeteorology(BaseMeteorology):
96
96
  :rtype: np.ndarray
97
97
 
98
98
  """
99
- weather_data = core.weather_in_time(unix_timestamps.astype(np.int64), self._weather_indices.astype(np.int64), self._weather_forecast, 4)
99
+ weather_data = physics_rs.weather_in_time(unix_timestamps.astype(np.int64), self._weather_indices.astype(np.int64), self._weather_forecast, 4)
100
100
  # roll_by_tick = int(3600 / tick) * (24 + start_hour - hour_from_unix_timestamp(weather_data[0, 2]))
101
101
  # weather_data = np.roll(weather_data, -roll_by_tick, 0)
102
102
 
@@ -124,7 +124,7 @@ class CloudedMeteorology(BaseMeteorology):
124
124
  :rtype: np.ndarray
125
125
 
126
126
  """
127
- day_of_year, local_time = core.calculate_array_ghi_times(local_times)
127
+ day_of_year, local_time = physics_rs.calculate_array_ghi_times(local_times)
128
128
 
129
129
  ghi = self._calculate_GHI(coords[:, 0], coords[:, 1], time_zones,
130
130
  day_of_year, local_time, elevations, self._cloud_cover)
@@ -1,7 +1,7 @@
1
1
  from physics.environment.meteorology.base_meteorology import BaseMeteorology
2
2
  from physics.environment.gis.gis import calculate_path_distances
3
3
  import numpy as np
4
- import core
4
+ import physics_rs
5
5
  from typing import Optional
6
6
 
7
7
 
@@ -11,6 +11,7 @@ class IrradiantMeteorology(BaseMeteorology):
11
11
  solar irradiance data, but not cloud cover.
12
12
 
13
13
  """
14
+
14
15
  def __init__(self, race, weather_forecasts):
15
16
  self._race = race
16
17
  self._raw_weather_data = weather_forecasts
@@ -53,7 +54,7 @@ class IrradiantMeteorology(BaseMeteorology):
53
54
  # contains the average distance between two consecutive elements in the cumulative_weather_path_distances array
54
55
  average_distances = np.abs(np.diff(cumulative_weather_path_distances) / 2)
55
56
 
56
- self._weather_indices = core.closest_weather_indices_loop(cumulative_distances, average_distances)
57
+ self._weather_indices = physics_rs.closest_weather_indices_loop(cumulative_distances, average_distances)
57
58
 
58
59
  def temporally_localize(self, unix_timestamps, start_time, tick) -> None:
59
60
  """
@@ -76,8 +77,9 @@ class IrradiantMeteorology(BaseMeteorology):
76
77
  :returns: a SolcastEnvironment object with time_dt, latitude, longitude, wind_speed, wind_direction, and ghi.
77
78
  :rtype: SolcastEnvironment
78
79
  """
79
- forecasts_array = core.weather_in_time(unix_timestamps.astype(np.int64), self._weather_indices.astype(np.int64),
80
- self._raw_weather_data, 0)
80
+ forecasts_array = physics_rs.weather_in_time(unix_timestamps.astype(np.int64),
81
+ self._weather_indices.astype(np.int64),
82
+ self._raw_weather_data, 0)
81
83
 
82
84
  self._time_dt = forecasts_array[:, 0]
83
85
  self._latitude = forecasts_array[:, 1]
@@ -103,5 +105,3 @@ class IrradiantMeteorology(BaseMeteorology):
103
105
 
104
106
  """
105
107
  return self.solar_irradiance
106
-
107
-
physics/lib.rs CHANGED
@@ -1,13 +1,13 @@
1
- use chrono::{Datelike, NaiveDateTime, Timelike};
2
- use numpy::ndarray::{s, Array, Array2, ArrayViewD, ArrayViewMut2, ArrayViewMut3, Axis};
3
- use numpy::{PyArray, PyArrayDyn, PyReadwriteArrayDyn};
1
+ use numpy::ndarray::ArrayViewD;
2
+ use numpy::{PyArray, PyArrayDyn, PyReadwriteArrayDyn, PyReadwriteArray1, PyReadonlyArray1, PyArray1};
4
3
  use pyo3::prelude::*;
5
4
  use pyo3::types::PyModule;
6
5
 
7
6
  pub mod environment;
8
7
  pub mod models;
9
- use crate::environment::gis::gis::rust_closest_gis_indices_loop;
10
- use crate::environment::meteorology::meteorology::{rust_calculate_array_ghi_times, rust_closest_weather_indices_loop, rust_weather_in_time, rust_closest_timestamp_indices};
8
+ use crate::environment::gis::gis::{rust_closest_gis_indices_loop, get_driving_speeds};
9
+ use crate::environment::meteorology::meteorology::{rust_calculate_array_ghi_times, rust_closest_weather_indices_loop, rust_weather_in_time};
10
+ use crate::models::battery::battery::update_battery_state;
11
11
 
12
12
  fn constrain_speeds(speed_limits: ArrayViewD<f64>, speeds: ArrayViewD<f64>, tick: i32) -> Vec<f64> {
13
13
  let mut distance: f64 = 0.0;
@@ -25,7 +25,7 @@ fn constrain_speeds(speed_limits: ArrayViewD<f64>, speeds: ArrayViewD<f64>, tic
25
25
 
26
26
  /// A Python module implemented in Rust. The name of this function is the Rust module name!
27
27
  #[pymodule]
28
- #[pyo3(name = "core")]
28
+ #[pyo3(name = "physics_rs")]
29
29
  fn rust_simulation(_py: Python, m: &PyModule) -> PyResult<()> {
30
30
  #[pyfn(m)]
31
31
  #[pyo3(name = "constrain_speeds")]
@@ -94,5 +94,71 @@ fn rust_simulation(_py: Python, m: &PyModule) -> PyResult<()> {
94
94
  py_result
95
95
  }
96
96
 
97
+ #[pyfn(m)]
98
+ #[pyo3(name = "update_battery_state")]
99
+ fn update_battery_state_py<'py>(
100
+ py: Python<'py>,
101
+ python_energy_or_current_array: PyReadwriteArray1<'py, f64>,
102
+ time_step: f64,
103
+ initial_state_of_charge: f64,
104
+ initial_polarization_potential: f64,
105
+ python_internal_resistance_lookup: PyReadwriteArray1<'py, f64>,
106
+ python_open_circuit_voltage_lookup: PyReadwriteArray1<'py, f64>,
107
+ python_polarization_resistance_lookup: PyReadwriteArray1<'py, f64>,
108
+ python_polarization_capacitance_lookup: PyReadwriteArray1<'py, f64>,
109
+ nominal_charge_capacity: f64,
110
+ is_power: bool,
111
+ quantization_step: f64,
112
+ min_soc: f64,
113
+ ) -> (&'py PyArray1<f64>, &'py PyArray1<f64>) {
114
+ let energy_or_current_array = python_energy_or_current_array.as_array();
115
+ let internal_resistance_lookup = python_internal_resistance_lookup.as_array();
116
+ let open_circuit_voltage_lookup = python_open_circuit_voltage_lookup.as_array();
117
+ let polarization_resistance_lookup = python_polarization_resistance_lookup.as_array();
118
+ let polarization_capacitance_lookup = python_polarization_capacitance_lookup.as_array();
119
+ let (soc_array, voltage_array): (Vec<f64>, Vec<f64>) = update_battery_state(
120
+ energy_or_current_array,
121
+ time_step,
122
+ initial_state_of_charge,
123
+ initial_polarization_potential,
124
+ internal_resistance_lookup,
125
+ open_circuit_voltage_lookup,
126
+ polarization_resistance_lookup,
127
+ polarization_capacitance_lookup,
128
+ nominal_charge_capacity,
129
+ is_power,
130
+ quantization_step,
131
+ min_soc
132
+ );
133
+ let py_soc_array = PyArray::from_vec(py, soc_array);
134
+ let py_voltage_array = PyArray::from_vec(py, voltage_array);
135
+ (py_soc_array, py_voltage_array)
136
+ }
137
+
138
+ #[pyfn(m)]
139
+ #[pyo3(name = "get_driving_speeds")]
140
+ fn py_get_driving_speeds<'py>(
141
+ py: Python<'py>,
142
+ py_average_speeds: PyReadonlyArray1<'py, f64>, // Average speeds in m/s
143
+ simulation_dt: i64, // Time step in seconds
144
+ py_driving_allowed_boolean: PyReadonlyArray1<'py, bool>, // Simulation-time boolean array
145
+ track_length: f64, // Track length in meters
146
+ idle_time: i64 // Time to idle in seconds
147
+ ) -> PyResult<&'py PyArray1<f64>> {
148
+ let average_speeds = py_average_speeds.as_array();
149
+ let driving_allowed_boolean = py_driving_allowed_boolean.as_array();
150
+
151
+ match get_driving_speeds(
152
+ average_speeds,
153
+ simulation_dt,
154
+ driving_allowed_boolean,
155
+ track_length,
156
+ idle_time
157
+ ) {
158
+ Ok(driving_speeds) => Ok(PyArray1::from_vec(py, driving_speeds)),
159
+ Err(error) => Err(pyo3::exceptions::PyValueError::new_err(error))
160
+ }
161
+ }
162
+
97
163
  Ok(())
98
164
  }
@@ -1,7 +1,18 @@
1
1
  from .base_battery import BaseBattery
2
2
  from .basic_battery import BasicBattery
3
+ from .battery_model import EquivalentCircuitBatteryModel, EquivalentCircuitModelConfig, SOCDependent
4
+ from .kalman_filter import FilteredBatteryModel, FilteredBatteryModelConfig
5
+ from .battery_config import BatteryModelConfig, load_battery_config, KalmanFilterConfig
3
6
 
4
7
  __all__ = [
5
8
  "BaseBattery",
6
- "BasicBattery"
9
+ "BasicBattery",
10
+ "EquivalentCircuitBatteryModel",
11
+ "FilteredBatteryModel",
12
+ "BatteryModelConfig",
13
+ "load_battery_config",
14
+ "EquivalentCircuitModelConfig",
15
+ "FilteredBatteryModelConfig",
16
+ "KalmanFilterConfig",
17
+ "SOCDependent"
7
18
  ]
@@ -1,6 +1,5 @@
1
1
  import numpy as np
2
2
  from numpy.polynomial import Polynomial
3
-
4
3
  from physics.models.battery.base_battery import BaseBattery
5
4
 
6
5
 
@@ -0,0 +1,102 @@
1
+ use std::f64;
2
+ use numpy::ndarray::{ArrayView1};
3
+
4
+ fn get_lookup_index(soc: f64, quantization_step: f64, num_indices: usize, min_soc: f64) -> usize {
5
+ // Apply the same formula as in Python
6
+ let index = ((soc - min_soc) / quantization_step).floor() as usize;
7
+
8
+ // Clamp the index to be between 0 and num_indices - 1
9
+ index.min(num_indices - 1) // equivalent to max(0, min(num_indices - 1, index))
10
+ }
11
+
12
+ /// Evaluate a polynomial given coefficients and an input value (x)
13
+ fn evaluate_lookup(lookup: &[f64], quantization_step: f64, value: f64, min_soc: f64) -> f64 {
14
+ let index = get_lookup_index(value, quantization_step, lookup.len(), min_soc);
15
+ lookup[index]
16
+ }
17
+
18
+ /// Evolve the battery state for a single step
19
+ fn battery_evolve(
20
+ current: f64, // Amperes
21
+ tick: f64, // Seconds
22
+ state_of_charge: f64, // Dimensionless, 0 < SOC < 1
23
+ polarization_potential: f64, // Volts
24
+ polarization_resistance: f64, // Ohms
25
+ internal_resistance: f64, // Ohms
26
+ open_circuit_voltage: f64, // Volts
27
+ time_constant: f64, // Seconds
28
+ nominal_charge_capacity: f64, // Nominal charge capacity (Coulombs)
29
+ ) -> (f64, f64, f64) {
30
+ // Update state of charge and polarization potential
31
+ let new_state_of_charge: f64 = state_of_charge + (current * tick / nominal_charge_capacity);
32
+ let new_polarization_potential: f64 = f64::exp(-tick / time_constant) * polarization_potential
33
+ + current * polarization_resistance * (1.0 - f64::exp(-tick / time_constant));
34
+ let terminal_voltage: f64 = open_circuit_voltage + new_polarization_potential
35
+ + (current * internal_resistance); // Terminal voltage
36
+
37
+ (new_state_of_charge, new_polarization_potential, terminal_voltage)
38
+ }
39
+
40
+ // Update battery state, using either energy or current draw
41
+ pub fn update_battery_state(
42
+ energy_or_current_array: ArrayView1<'_, f64>, // Power (W*s) or current (Amperes)
43
+ tick: f64, // Seconds
44
+ initial_state_of_charge: f64, // dimensionless, 0 < SOC < 1
45
+ initial_polarization_potential: f64, // Volts
46
+ internal_resistance_lookup: ArrayView1<'_, f64>,// Coefficients for internal resistance
47
+ open_circuit_voltage_lookup: ArrayView1<'_, f64>, // Coefficients for open-circuit voltage
48
+ polarization_resistance_lookup: ArrayView1<'_, f64>, // Coefficients for polarization resistance
49
+ capacitance_lookup: ArrayView1<'_, f64>, // Coefficients for polarization capacitance
50
+ nominal_charge_capacity: f64, // Coulombs
51
+ is_energy_input: bool, // Whether the input is power or current,
52
+ quantization_step: f64, // The quantization step size of SOC for lookup tables
53
+ min_soc: f64,
54
+
55
+ ) -> (Vec<f64>, Vec<f64>) {
56
+ let mut state_of_charge: f64 = initial_state_of_charge;
57
+ let mut polarization_potential: f64 = initial_polarization_potential;
58
+ let mut soc_array: Vec<f64> = Vec::with_capacity(energy_or_current_array.len());
59
+ let mut voltage_array: Vec<f64> = Vec::with_capacity(energy_or_current_array.len());
60
+
61
+ for &input in energy_or_current_array.iter() {
62
+ // Interpolate values from coefficient
63
+ let open_circuit_voltage = evaluate_lookup(open_circuit_voltage_lookup.as_slice().unwrap(), quantization_step, state_of_charge, min_soc);
64
+ let internal_resistance = evaluate_lookup(internal_resistance_lookup.as_slice().unwrap(), quantization_step, state_of_charge, min_soc);
65
+ let polarization_resistance = evaluate_lookup(polarization_resistance_lookup.as_slice().unwrap(), quantization_step, state_of_charge, min_soc);
66
+ let capacitance = evaluate_lookup(capacitance_lookup.as_slice().unwrap(), quantization_step, state_of_charge, min_soc);
67
+ let time_constant = polarization_resistance * capacitance;
68
+
69
+ // Calculate current from power or use the current directly
70
+ let current: f64 = if is_energy_input {
71
+ // Use the last voltage to calculate current, or an absurdly large number if it is the
72
+ // first, because we don't know voltage yet, so we will have a very small initial
73
+ // current, no matter what. We shouldn't be starting to simulate when the battery is
74
+ // in an active state anyway, so this should be an alright compromise.
75
+ input / (tick * voltage_array.last().unwrap_or(&10000.0)) // I = (E / dt) / V
76
+ } else {
77
+ input // Current is directly given in the current input array
78
+ };
79
+
80
+ let (new_state_of_charge, new_polarization_potential, terminal_voltage) = battery_evolve(
81
+ current,
82
+ tick,
83
+ state_of_charge,
84
+ polarization_potential,
85
+ polarization_resistance,
86
+ internal_resistance,
87
+ open_circuit_voltage,
88
+ time_constant,
89
+ nominal_charge_capacity,
90
+ );
91
+
92
+ // Update state for the next iteration
93
+ state_of_charge = new_state_of_charge;
94
+ polarization_potential = new_polarization_potential;
95
+
96
+ // Store results
97
+ soc_array.push(new_state_of_charge);
98
+ voltage_array.push(terminal_voltage);
99
+ }
100
+
101
+ (soc_array, voltage_array)
102
+ }
@@ -0,0 +1,107 @@
1
+ import tomli as tomllib
2
+ import pathlib
3
+ from scipy import optimize
4
+ import numpy as np
5
+ from physics.models.battery import SOCDependent
6
+ from typing import cast
7
+ from numpy.typing import NDArray
8
+
9
+
10
+ class BatteryModelConfig:
11
+ """
12
+ A concrete implementation of the `EquivalentCircuitModelConfig` protocol.
13
+
14
+ This implementation fits values of U_oc, R_0, R_P, and C_P at various state-of-charge (SOC) values
15
+ to a seventh degree polynomial to generate a smooth function mapping SOC to each battery parameter.
16
+
17
+ For example, R_0 = R_0_data[i] when Soc = Soc_data[i].
18
+ """
19
+ def __init__(self, R_0_data, Soc_data, R_P_data, C_P_data, Uoc_data, Q_total):
20
+ # ----- Initialize Parameters -----
21
+ def quintic_polynomial(x, x0, x1, x2, x3, x4, x5, x6, x7):
22
+ return np.polyval(np.array([x0, x1, x2, x3, x4, x5, x6, x7]), x)
23
+
24
+ self._U_oc_coefficients, _ = optimize.curve_fit(quintic_polynomial, Soc_data, Uoc_data)
25
+ self._R_0_coefficients, _ = optimize.curve_fit(quintic_polynomial, Soc_data, R_0_data)
26
+ self._C_P_coefficients, _ = optimize.curve_fit(quintic_polynomial, Soc_data, C_P_data)
27
+ self._R_P_coefficients, _ = optimize.curve_fit(quintic_polynomial, Soc_data, R_P_data)
28
+
29
+ # Casts are just for the type-checker to know that np.polyval will work as SOCDependent
30
+ self._U_oc: SOCDependent = cast(SOCDependent, lambda soc: np.polyval(self._U_oc_coefficients, soc)) # V
31
+ self._R_0: SOCDependent = cast(SOCDependent, lambda soc: np.polyval(self._R_0_coefficients, soc)) # Ohms
32
+ self._R_P: SOCDependent = cast(SOCDependent, lambda soc: np.polyval(self._R_P_coefficients, soc)) # Ohms
33
+ self._C_P: SOCDependent = cast(SOCDependent, lambda soc: np.polyval(self._C_P_coefficients, soc)) # Farads
34
+
35
+ self._Q_total = Q_total
36
+
37
+ @property
38
+ def get_Uoc(self) -> SOCDependent:
39
+ return self._U_oc
40
+
41
+ @property
42
+ def get_R_0(self) -> SOCDependent:
43
+ return self._R_0
44
+
45
+ @property
46
+ def get_R_P(self) -> SOCDependent:
47
+ return self._R_P
48
+
49
+ @property
50
+ def get_C_P(self) -> SOCDependent:
51
+ return self._C_P
52
+
53
+ @property
54
+ def Q_total(self) -> float:
55
+ return self._Q_total
56
+
57
+
58
+ class KalmanFilterConfig:
59
+ def __init__(
60
+ self,
61
+ battery_model_config: BatteryModelConfig,
62
+ process_noise_matrix: NDArray,
63
+ state_covariance_matrix: NDArray,
64
+ measurement_noise_vector: NDArray
65
+ ):
66
+ self._battery_model_config = battery_model_config
67
+ self._process_noise_matrix = process_noise_matrix
68
+ self._state_covariance_matrix = state_covariance_matrix
69
+ self._measurement_noise_vector = measurement_noise_vector
70
+
71
+ @property
72
+ def battery_model_config(self) -> BatteryModelConfig:
73
+ """
74
+ Configuration of the underlying `EquivalentCircuitModel`.
75
+ """
76
+ return self._battery_model_config
77
+
78
+ @property
79
+ def process_noise_matrix(self) -> NDArray[float]:
80
+ """
81
+ A 2x2 matrix containing the process noise covariance matrix where [0, 0] is the SOC evolution
82
+ noise and [1, 1] is the polarization potential evolution noise.
83
+ """
84
+ return self._process_noise_matrix
85
+
86
+ @property
87
+ def state_covariance_matrix(self) -> NDArray[float]:
88
+ """
89
+ A 2x2 matrix containing the state covariance matrix where [0, 0] is the SOC covariance
90
+ noise and [1, 1] is the polarization potential covariance.
91
+ """
92
+ return self._state_covariance_matrix
93
+
94
+ @property
95
+ def measurement_noise_vector(self) -> NDArray[float]:
96
+ """
97
+ A 1x1 vector containing the noise expected in the terminal voltage measurement.
98
+ """
99
+ return self._measurement_noise_vector
100
+
101
+
102
+ def load_battery_config(absolute_path: str | pathlib.Path) -> BatteryModelConfig:
103
+ # Build the full path to the config file
104
+ full_path = pathlib.Path(absolute_path)
105
+ with open(full_path, 'rb') as f:
106
+ data = tomllib.load(f)
107
+ return BatteryModelConfig(**data)
@@ -0,0 +1,6 @@
1
+ R_0_data = [0.17953765302439662, 0.15580951404728172, 0.14176929930784543, 0.11043950958574644, 0.13930042505446938, 0.1552885289394773, 0.044070982259896085, 0.2208806896239539, 0.15116267852908616, 0.6553961767519164]
2
+ R_P_data = [0.04153180244191346, 0.10674683402208612, 0.061085424180509884, 0.0781407642082238, 0.05537901113775878, 0.09732054673529467, 0.07662520885708152, 0.09799857401036915, 0.42622740149661487, 0.2718418915736874]
3
+ C_P_data = [14824.398495212006, 1587.5971318119796, 341.1064063616048, 1243.182413110655, 619.5791066439332, 2252.7885790042164, 954.5884882581622, 515.7219779825028, 431.10892633451135, 195.14394897766627]
4
+ Uoc_data = [131.88002282453857, 129.4574321366064, 125.5750277614186, 121.99586066440303, 118.69893412178982, 115.71854177322408, 111.99025635444923, 108.29354777060836, 98.23397960300946, 95.24125831782388]
5
+ Q_total = 151000.0
6
+ Soc_data = [1.0000113624123392, 0.8815263722745977, 0.7671918526292492, 0.6206071038045673, 0.4911613638651783, 0.3606311083423134, 0.23687514228021178, 0.12073345089992571, 0.01456057818183809, 0.0070648691224265425]