ubc-solar-physics 0.1.11__cp311-cp311-macosx_13_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- core.cpython-311-darwin.so +0 -0
- physics/__init__.py +14 -0
- physics/environment/__init__.py +33 -0
- physics/environment/base_environment.py +62 -0
- physics/environment/environment.rs +3 -0
- physics/environment/gis/__init__.py +7 -0
- physics/environment/gis/base_gis.py +24 -0
- physics/environment/gis/gis.py +374 -0
- physics/environment/gis/gis.rs +25 -0
- physics/environment/gis.rs +1 -0
- physics/environment/openweather_environment.py +18 -0
- physics/environment/race.py +89 -0
- physics/environment/solar_calculations/OpenweatherSolarCalculations.py +529 -0
- physics/environment/solar_calculations/SolcastSolarCalculations.py +41 -0
- physics/environment/solar_calculations/__init__.py +9 -0
- physics/environment/solar_calculations/base_solar_calculations.py +9 -0
- physics/environment/solar_calculations/solar_calculations.rs +24 -0
- physics/environment/solar_calculations.rs +1 -0
- physics/environment/solcast_environment.py +18 -0
- physics/environment/weather_forecasts/OpenWeatherForecast.py +307 -0
- physics/environment/weather_forecasts/SolcastForecasts.py +235 -0
- physics/environment/weather_forecasts/__init__.py +9 -0
- physics/environment/weather_forecasts/base_weather_forecasts.py +56 -0
- physics/environment/weather_forecasts/weather_forecasts.rs +116 -0
- physics/environment/weather_forecasts.rs +1 -0
- physics/environment.rs +3 -0
- physics/lib.rs +76 -0
- physics/models/__init__.py +13 -0
- physics/models/arrays/__init__.py +7 -0
- physics/models/arrays/arrays.rs +0 -0
- physics/models/arrays/base_array.py +6 -0
- physics/models/arrays/basic_array.py +39 -0
- physics/models/arrays.rs +1 -0
- physics/models/battery/__init__.py +7 -0
- physics/models/battery/base_battery.py +29 -0
- physics/models/battery/basic_battery.py +141 -0
- physics/models/battery/battery.rs +0 -0
- physics/models/battery.rs +1 -0
- physics/models/constants.py +23 -0
- physics/models/lvs/__init__.py +7 -0
- physics/models/lvs/base_lvs.py +6 -0
- physics/models/lvs/basic_lvs.py +18 -0
- physics/models/lvs/lvs.rs +0 -0
- physics/models/lvs.rs +1 -0
- physics/models/motor/__init__.py +7 -0
- physics/models/motor/base_motor.py +6 -0
- physics/models/motor/basic_motor.py +179 -0
- physics/models/motor/motor.rs +0 -0
- physics/models/motor.rs +1 -0
- physics/models/regen/__init__.py +7 -0
- physics/models/regen/base_regen.py +6 -0
- physics/models/regen/basic_regen.py +39 -0
- physics/models/regen/regen.rs +0 -0
- physics/models/regen.rs +1 -0
- physics/models.rs +5 -0
- ubc_solar_physics-0.1.11.dist-info/LICENSE +21 -0
- ubc_solar_physics-0.1.11.dist-info/METADATA +75 -0
- ubc_solar_physics-0.1.11.dist-info/RECORD +60 -0
- ubc_solar_physics-0.1.11.dist-info/WHEEL +5 -0
- ubc_solar_physics-0.1.11.dist-info/top_level.txt +1 -0
Binary file
|
physics/__init__.py
ADDED
@@ -0,0 +1,33 @@
|
|
1
|
+
from .base_environment import BaseEnvironment
|
2
|
+
from .openweather_environment import OpenweatherEnvironment
|
3
|
+
from .solcast_environment import SolcastEnvironment
|
4
|
+
from .race import (
|
5
|
+
Race,
|
6
|
+
compile_races
|
7
|
+
)
|
8
|
+
|
9
|
+
from .solar_calculations import (
|
10
|
+
OpenweatherSolarCalculations,
|
11
|
+
SolcastSolarCalculations
|
12
|
+
)
|
13
|
+
|
14
|
+
from .weather_forecasts import (
|
15
|
+
OpenWeatherForecast,
|
16
|
+
SolcastForecasts,
|
17
|
+
)
|
18
|
+
|
19
|
+
from .gis import (
|
20
|
+
GIS,
|
21
|
+
)
|
22
|
+
|
23
|
+
__all__ = [
|
24
|
+
"OpenweatherEnvironment",
|
25
|
+
"SolcastEnvironment",
|
26
|
+
"OpenWeatherForecast",
|
27
|
+
"SolcastForecasts",
|
28
|
+
"SolcastSolarCalculations",
|
29
|
+
"OpenweatherSolarCalculations",
|
30
|
+
"GIS",
|
31
|
+
"Race",
|
32
|
+
"compile_races"
|
33
|
+
]
|
@@ -0,0 +1,62 @@
|
|
1
|
+
class BaseEnvironment:
|
2
|
+
def __init__(self):
|
3
|
+
self._time_dt = None
|
4
|
+
self._latitude = None
|
5
|
+
self._longitude = None
|
6
|
+
self._wind_speed = None
|
7
|
+
self._wind_direction = None
|
8
|
+
|
9
|
+
@property
|
10
|
+
def time_dt(self):
|
11
|
+
if (value := self._time_dt) is not None:
|
12
|
+
return value
|
13
|
+
else:
|
14
|
+
raise ValueError("time_dt is None!")
|
15
|
+
|
16
|
+
@time_dt.setter
|
17
|
+
def time_dt(self, value):
|
18
|
+
self._time_dt = value
|
19
|
+
|
20
|
+
@property
|
21
|
+
def latitude(self):
|
22
|
+
if (value := self._latitude) is not None:
|
23
|
+
return value
|
24
|
+
else:
|
25
|
+
raise ValueError("latitude is None!")
|
26
|
+
|
27
|
+
@latitude.setter
|
28
|
+
def latitude(self, value):
|
29
|
+
self._latitude = value
|
30
|
+
|
31
|
+
@property
|
32
|
+
def longitude(self):
|
33
|
+
if (value := self._longitude) is not None:
|
34
|
+
return value
|
35
|
+
else:
|
36
|
+
raise ValueError("longitude is None!")
|
37
|
+
|
38
|
+
@longitude.setter
|
39
|
+
def longitude(self, value):
|
40
|
+
self._longitude = value
|
41
|
+
|
42
|
+
@property
|
43
|
+
def wind_speed(self):
|
44
|
+
if (value := self._wind_speed) is not None:
|
45
|
+
return value
|
46
|
+
else:
|
47
|
+
raise ValueError("wind_speed is None!")
|
48
|
+
|
49
|
+
@wind_speed.setter
|
50
|
+
def wind_speed(self, value):
|
51
|
+
self._wind_speed = value
|
52
|
+
|
53
|
+
@property
|
54
|
+
def wind_direction(self):
|
55
|
+
if (value := self._wind_direction) is not None:
|
56
|
+
return value
|
57
|
+
else:
|
58
|
+
raise ValueError("wind_direction is None!")
|
59
|
+
|
60
|
+
@wind_direction.setter
|
61
|
+
def wind_direction(self, value):
|
62
|
+
self._wind_direction = value
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from abc import ABC, abstractmethod
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
|
5
|
+
class BaseGIS(ABC):
|
6
|
+
@abstractmethod
|
7
|
+
def calculate_closest_gis_indices(self, cumulative_distances) -> np.ndarray:
|
8
|
+
raise NotImplementedError
|
9
|
+
|
10
|
+
@abstractmethod
|
11
|
+
def get_path_elevations(self) -> np.ndarray:
|
12
|
+
raise NotImplementedError
|
13
|
+
|
14
|
+
@abstractmethod
|
15
|
+
def get_gradients(self, gis_indices) -> np.ndarray:
|
16
|
+
raise NotImplementedError
|
17
|
+
|
18
|
+
@abstractmethod
|
19
|
+
def get_time_zones(self, gis_indices) -> np.ndarray:
|
20
|
+
raise NotImplementedError
|
21
|
+
|
22
|
+
@abstractmethod
|
23
|
+
def get_path(self) -> np.ndarray:
|
24
|
+
raise NotImplementedError
|
@@ -0,0 +1,374 @@
|
|
1
|
+
import os
|
2
|
+
import logging
|
3
|
+
import math
|
4
|
+
import pathlib
|
5
|
+
|
6
|
+
import numpy as np
|
7
|
+
import sys
|
8
|
+
from tqdm import tqdm
|
9
|
+
from xml.dom import minidom
|
10
|
+
from typing import TypeAlias, Union
|
11
|
+
from haversine import haversine, Unit
|
12
|
+
|
13
|
+
from physics.environment.gis.base_gis import BaseGIS
|
14
|
+
from physics.environment.race import Race
|
15
|
+
|
16
|
+
import core
|
17
|
+
|
18
|
+
PathLike: TypeAlias = Union[pathlib.Path, str]
|
19
|
+
|
20
|
+
|
21
|
+
class GIS(BaseGIS):
|
22
|
+
def __init__(self, origin_coord, dest_coord, waypoints, race_type, route_directory: PathLike, current_coord=None, hash_key=None):
|
23
|
+
"""
|
24
|
+
|
25
|
+
Initialises a GIS (geographic location system) object. This object is responsible for getting the
|
26
|
+
simulation's planned route from the Google Maps API and performing operations on the received data.
|
27
|
+
|
28
|
+
:param origin_coord: NumPy array containing the start coordinate (lat, long) of the planned travel route
|
29
|
+
:param dest_coord: NumPy array containing the end coordinate (lat, long) of the planned travel route
|
30
|
+
:param waypoints: NumPy array containing the route waypoints to travel through during simulation
|
31
|
+
:param race_type: String ("FSGP" or "ASC") stating which race is being simulated
|
32
|
+
:param hash_key: key used to identify cached data as valid for a Simulation model
|
33
|
+
|
34
|
+
"""
|
35
|
+
self.current_index = 0
|
36
|
+
self.distance_remainder = 0
|
37
|
+
|
38
|
+
self.origin_coord = origin_coord
|
39
|
+
self.dest_coord = dest_coord
|
40
|
+
self.current_coord = current_coord
|
41
|
+
self.waypoints = waypoints
|
42
|
+
self.race_type = race_type
|
43
|
+
|
44
|
+
# path to file storing the route and elevation NumPy arrays
|
45
|
+
if self.race_type == Race.RaceType.FSGP:
|
46
|
+
route_file = route_directory / "route_data_FSGP.npz"
|
47
|
+
else:
|
48
|
+
route_file = route_directory / "route_data.npz"
|
49
|
+
|
50
|
+
# if the file exists, load path from file
|
51
|
+
if os.path.isfile(route_file):
|
52
|
+
with np.load(route_file) as route_data:
|
53
|
+
if route_data['hash'] == hash_key:
|
54
|
+
|
55
|
+
print("Previous route save file is being used...\n")
|
56
|
+
|
57
|
+
print("----- Route save file information -----")
|
58
|
+
for key in route_data:
|
59
|
+
print(f"> {key}: {route_data[key].shape}")
|
60
|
+
|
61
|
+
self.path = route_data['path']
|
62
|
+
self.launch_point = route_data['path'][0]
|
63
|
+
self.path_elevations = route_data['elevations']
|
64
|
+
self.path_time_zones = route_data['time_zones']
|
65
|
+
self.speed_limits = route_data['speed_limits']
|
66
|
+
self.num_unique_coords = route_data['num_unique_coords']
|
67
|
+
|
68
|
+
if current_coord is not None:
|
69
|
+
if not np.array_equal(current_coord, origin_coord):
|
70
|
+
logging.warning("Current position is not origin position. Modifying path data.\n")
|
71
|
+
|
72
|
+
# We need to find the closest coordinate along the path to the vehicle position
|
73
|
+
current_coord_index = GIS._find_closest_coordinate_index(current_coord, self.path)
|
74
|
+
|
75
|
+
# All coords before the current coordinate should be discarded
|
76
|
+
self.path = self.path[current_coord_index:]
|
77
|
+
self.path_elevations = self.path_elevations[current_coord_index:]
|
78
|
+
self.path_time_zones = self.path_time_zones[current_coord_index:]
|
79
|
+
else:
|
80
|
+
logging.warning("Route save file does not exist.\n")
|
81
|
+
logging.error("Update API cache by calling CacheAPI.py , Exiting simulation...\n")
|
82
|
+
|
83
|
+
exit()
|
84
|
+
|
85
|
+
self.path_distances = calculate_path_distances(self.path)
|
86
|
+
self.path_length = np.cumsum(calculate_path_distances(self.path[:self.num_unique_coords]))[-1]
|
87
|
+
self.path_gradients = calculate_path_gradients(self.path_elevations, self.path_distances)
|
88
|
+
|
89
|
+
@staticmethod
|
90
|
+
def process_KML_file(route_file):
|
91
|
+
"""
|
92
|
+
|
93
|
+
Load the FSGP Track from a KML file exported from a Google Earth project.
|
94
|
+
|
95
|
+
Ensure to follow guidelines enumerated in this directory's `README.md` when creating and
|
96
|
+
loading new route files.
|
97
|
+
|
98
|
+
:return: Array of N coordinates (latitude, longitude) in the shape [N][2].
|
99
|
+
"""
|
100
|
+
with open(route_file) as f:
|
101
|
+
data = minidom.parse(f)
|
102
|
+
kml_coordinates = data.getElementsByTagName("coordinates")[0].childNodes[0].data
|
103
|
+
coordinates: np.ndarray = np.array(parse_coordinates_from_kml(kml_coordinates))
|
104
|
+
|
105
|
+
# Google Earth exports coordinates in order longitude, latitude, when we want the opposite
|
106
|
+
return np.roll(coordinates, 1, axis=1)
|
107
|
+
|
108
|
+
def calculate_closest_gis_indices(self, distances):
|
109
|
+
"""
|
110
|
+
|
111
|
+
Takes in an array of point distances from starting point, returns a list of
|
112
|
+
self.path indices of coordinates which have a distance from the starting point
|
113
|
+
closest to the point distances.
|
114
|
+
|
115
|
+
:param np.ndarray cumulative_distances: (float[N]) array of distances, where cumulative_distances[x] > cumulative_distances[x-1]
|
116
|
+
:returns: (float[N]) array of indices of path
|
117
|
+
:rtype: np.ndarray
|
118
|
+
|
119
|
+
"""
|
120
|
+
return core.closest_gis_indices_loop(distances, self.path_distances)
|
121
|
+
|
122
|
+
@staticmethod
|
123
|
+
def _python_calculate_closest_gis_indices(distances, path_distances):
|
124
|
+
"""
|
125
|
+
|
126
|
+
Python implementation of rust core.closest_gis_indices_loop. See parent function for documentation details.
|
127
|
+
|
128
|
+
"""
|
129
|
+
|
130
|
+
current_coordinate_index = 0
|
131
|
+
result = []
|
132
|
+
|
133
|
+
with tqdm(total=len(distances), file=sys.stdout, desc="Calculating closest GIS indices") as pbar:
|
134
|
+
distance_travelled = 0
|
135
|
+
for distance in np.nditer(distances):
|
136
|
+
distance_travelled += distance
|
137
|
+
|
138
|
+
while distance_travelled > path_distances[current_coordinate_index]:
|
139
|
+
distance_travelled -= path_distances[current_coordinate_index]
|
140
|
+
current_coordinate_index += 1
|
141
|
+
|
142
|
+
if current_coordinate_index >= len(path_distances) - 1:
|
143
|
+
current_coordinate_index = len(path_distances) - 1
|
144
|
+
|
145
|
+
result.append(current_coordinate_index)
|
146
|
+
pbar.update(1)
|
147
|
+
|
148
|
+
return np.array(result)
|
149
|
+
|
150
|
+
# ----- Getters -----
|
151
|
+
def get_time_zones(self, gis_indices):
|
152
|
+
"""
|
153
|
+
|
154
|
+
Takes in an array of path indices, returns the time zone at each index
|
155
|
+
|
156
|
+
:param np.ndarray gis_indices: (float[N]) array of path indices
|
157
|
+
:returns: (float[N]) array of time zones in seconds
|
158
|
+
:rtype: np.ndarray
|
159
|
+
|
160
|
+
"""
|
161
|
+
|
162
|
+
return self.path_time_zones[gis_indices]
|
163
|
+
|
164
|
+
def get_gradients(self, gis_indices):
|
165
|
+
"""
|
166
|
+
|
167
|
+
Takes in an array of path indices, returns the road gradient at each index
|
168
|
+
|
169
|
+
:param np.ndarray gis_indices: (float[N]) array of path indices
|
170
|
+
:returns: (float[N]) array of road gradients
|
171
|
+
:rtype np.ndarray:
|
172
|
+
|
173
|
+
"""
|
174
|
+
|
175
|
+
return self.path_gradients[gis_indices]
|
176
|
+
|
177
|
+
def get_path(self):
|
178
|
+
"""
|
179
|
+
Returns all N coordinates of the path in a NumPy array
|
180
|
+
[N][latitude, longitude]
|
181
|
+
|
182
|
+
:rtype: np.ndarray
|
183
|
+
|
184
|
+
"""
|
185
|
+
|
186
|
+
return self.path
|
187
|
+
|
188
|
+
def get_path_elevations(self):
|
189
|
+
"""
|
190
|
+
|
191
|
+
Returns all N elevations of the path in a NumPy array
|
192
|
+
[N][elevation]
|
193
|
+
|
194
|
+
:rtype: np.ndarray
|
195
|
+
|
196
|
+
"""
|
197
|
+
|
198
|
+
return self.path_elevations
|
199
|
+
|
200
|
+
def get_path_distances(self):
|
201
|
+
"""
|
202
|
+
|
203
|
+
Returns all N-1 distances of the path in a NumPy array
|
204
|
+
[N-1][elevation]
|
205
|
+
|
206
|
+
:rtype: np.ndarray
|
207
|
+
|
208
|
+
"""
|
209
|
+
|
210
|
+
return self.path_distances
|
211
|
+
|
212
|
+
def get_path_gradients(self):
|
213
|
+
"""
|
214
|
+
|
215
|
+
Returns all N-1 gradients of a path in a NumPy array
|
216
|
+
[N-1][gradient]
|
217
|
+
|
218
|
+
:rtype: np.ndarray
|
219
|
+
|
220
|
+
"""
|
221
|
+
|
222
|
+
return self.path_gradients
|
223
|
+
|
224
|
+
# ----- Path calculation functions -----
|
225
|
+
def calculate_path_min_max(self):
|
226
|
+
logging.warning(f"Using deprecated function 'calculate_path_min_max()'!")
|
227
|
+
min_lat, min_long = self.path.min(axis=0)
|
228
|
+
max_lat, max_long = self.path.max(axis=0)
|
229
|
+
return [min_long, min_lat, max_long, max_lat]
|
230
|
+
|
231
|
+
def calculate_current_heading_array(self):
|
232
|
+
"""
|
233
|
+
|
234
|
+
Calculates the bearing of the vehicle between consecutive points
|
235
|
+
https://www.movable-type.co.uk/scripts/latlong.html
|
236
|
+
|
237
|
+
:returns: array of bearings
|
238
|
+
:rtype: np.ndarray
|
239
|
+
|
240
|
+
"""
|
241
|
+
bearing_array = np.zeros(len(self.path))
|
242
|
+
|
243
|
+
for index in range(0, len(self.path) - 1):
|
244
|
+
coord_1 = np.radians(self.path[index])
|
245
|
+
coord_2 = np.radians(self.path[index + 1])
|
246
|
+
|
247
|
+
y = math.sin(coord_2[1] - coord_1[1]) \
|
248
|
+
* math.cos(coord_2[0])
|
249
|
+
|
250
|
+
x = math.cos(coord_1[0]) \
|
251
|
+
* math.sin(coord_2[0]) \
|
252
|
+
- math.sin(coord_1[0]) \
|
253
|
+
* math.cos(coord_2[0]) \
|
254
|
+
* math.cos(coord_2[1] - coord_1[1])
|
255
|
+
|
256
|
+
theta = math.atan2(y, x)
|
257
|
+
|
258
|
+
bearing_array[index] = ((theta * 180) / math.pi + 360) % 360
|
259
|
+
|
260
|
+
bearing_array[-1] = bearing_array[-2]
|
261
|
+
|
262
|
+
return bearing_array
|
263
|
+
|
264
|
+
@staticmethod
|
265
|
+
def _calculate_vector_square_magnitude(vector):
|
266
|
+
"""
|
267
|
+
|
268
|
+
Calculate the square magnitude of an input vector. Must be one-dimensional.
|
269
|
+
|
270
|
+
:param np.ndarray vector: NumPy array[N] representing a vector[N]
|
271
|
+
:return: square magnitude of the input vector
|
272
|
+
:rtype: float
|
273
|
+
|
274
|
+
"""
|
275
|
+
|
276
|
+
return sum(i ** 2 for i in vector)
|
277
|
+
|
278
|
+
@staticmethod
|
279
|
+
def _find_closest_coordinate_index(current_coord, path):
|
280
|
+
"""
|
281
|
+
|
282
|
+
Returns the closest coordinate to current_coord in path
|
283
|
+
|
284
|
+
:param np.ndarray current_coord: A NumPy array[N] representing a N-dimensional vector
|
285
|
+
:param np.ndarray path: A NumPy array[M][N] of M coordinates which should be N-dimensional vectors
|
286
|
+
:returns: index of the closest coordinate.
|
287
|
+
:rtype: int
|
288
|
+
|
289
|
+
"""
|
290
|
+
|
291
|
+
to_current_coord_from_path = np.abs(path - current_coord)
|
292
|
+
distances_from_current_coord = np.zeros(len(to_current_coord_from_path))
|
293
|
+
for i in range(len(to_current_coord_from_path)):
|
294
|
+
# As we just need the minimum, using square magnitude will save performance
|
295
|
+
distances_from_current_coord[i] = GIS._calculate_vector_square_magnitude(to_current_coord_from_path[i])
|
296
|
+
|
297
|
+
return distances_from_current_coord.argmin()
|
298
|
+
|
299
|
+
|
300
|
+
def calculate_path_distances(coords):
|
301
|
+
"""
|
302
|
+
|
303
|
+
Obtain the distance between each coordinate by approximating the spline between them
|
304
|
+
as a straight line, and use the Haversine formula (https://en.wikipedia.org/wiki/Haversine_formula)
|
305
|
+
to calculate distance between coordinates on a sphere.
|
306
|
+
|
307
|
+
:param np.ndarray coords: A NumPy array [n][latitude, longitude]
|
308
|
+
:returns path_distances: a NumPy array [n-1][distances],
|
309
|
+
:rtype: np.ndarray
|
310
|
+
|
311
|
+
"""
|
312
|
+
|
313
|
+
coords_offset = np.roll(coords, (1, 1))
|
314
|
+
path_distances = []
|
315
|
+
for u, v in zip(coords, coords_offset):
|
316
|
+
path_distances.append(haversine(u, v, unit=Unit.METERS))
|
317
|
+
|
318
|
+
return np.array(path_distances)
|
319
|
+
|
320
|
+
|
321
|
+
def parse_coordinates_from_kml(coords_str: str) -> np.ndarray:
|
322
|
+
"""
|
323
|
+
|
324
|
+
Parse a coordinates string from a XML (KML) file into a list of coordinates (2D vectors).
|
325
|
+
Requires coordinates in the format "39.,41.,0 39.,40.,0" which will return [ [39., 41.], [39., 40.] ].
|
326
|
+
|
327
|
+
:param coords_str: coordinates string from a XML (KML) file
|
328
|
+
:return: list of 2D vectors representing coordinates
|
329
|
+
:rtype: np.ndarray
|
330
|
+
|
331
|
+
"""
|
332
|
+
|
333
|
+
def parse_coord(pair):
|
334
|
+
coord = pair.split(',')
|
335
|
+
coord.pop()
|
336
|
+
coord = [float(value) for value in coord]
|
337
|
+
return coord
|
338
|
+
|
339
|
+
return list(map(parse_coord, coords_str.split()))
|
340
|
+
|
341
|
+
|
342
|
+
def calculate_path_gradients(elevations, distances):
|
343
|
+
"""
|
344
|
+
|
345
|
+
Get the approximate gradients of every point on the path.
|
346
|
+
|
347
|
+
Note:
|
348
|
+
- gradient > 0 corresponds to uphill
|
349
|
+
- gradient < 0 corresponds to downhill
|
350
|
+
|
351
|
+
:param np.ndarray elevations: [N][elevations]
|
352
|
+
:param np.ndarray distances: [N-1][distances]
|
353
|
+
:returns gradients: [N-1][gradients]
|
354
|
+
:rtype: np.ndarray
|
355
|
+
|
356
|
+
"""
|
357
|
+
|
358
|
+
# subtract every next elevation with the previous elevation to
|
359
|
+
# get the difference in elevation
|
360
|
+
# [1 2 3 4 5]
|
361
|
+
# [5 1 2 3 4] -
|
362
|
+
# -------------
|
363
|
+
# [1 1 1 1]
|
364
|
+
|
365
|
+
offset = np.roll(elevations, 1)
|
366
|
+
delta_elevations = elevations - offset
|
367
|
+
|
368
|
+
# Divide the difference in elevation to get the gradient
|
369
|
+
# gradient > 0: uphill
|
370
|
+
# gradient < 0: downhill
|
371
|
+
with np.errstate(invalid='ignore'):
|
372
|
+
gradients = delta_elevations / distances
|
373
|
+
|
374
|
+
return np.nan_to_num(gradients, nan=0.)
|
@@ -0,0 +1,25 @@
|
|
1
|
+
use chrono::{Datelike, NaiveDateTime, Timelike};
|
2
|
+
use numpy::ndarray::{s, Array, Array2, ArrayViewD, ArrayViewMut2, ArrayViewMut3, Axis};
|
3
|
+
|
4
|
+
pub fn rust_closest_gis_indices_loop(
|
5
|
+
distances: ArrayViewD<'_, f64>,
|
6
|
+
path_distances: ArrayViewD<'_, f64>,
|
7
|
+
) -> Vec<i64> {
|
8
|
+
let mut current_coord_index: usize = 0;
|
9
|
+
let mut distance_travelled: f64 = 0.0;
|
10
|
+
let mut result: Vec<i64> = Vec::with_capacity(distances.len());
|
11
|
+
|
12
|
+
for &distance in distances {
|
13
|
+
distance_travelled += distance;
|
14
|
+
|
15
|
+
while distance_travelled > path_distances[current_coord_index] {
|
16
|
+
distance_travelled -= path_distances[current_coord_index];
|
17
|
+
current_coord_index += 1;
|
18
|
+
}
|
19
|
+
|
20
|
+
current_coord_index = std::cmp::min(current_coord_index, path_distances.len() - 1);
|
21
|
+
result.push(current_coord_index as i64);
|
22
|
+
}
|
23
|
+
|
24
|
+
result
|
25
|
+
}
|
@@ -0,0 +1 @@
|
|
1
|
+
pub mod gis;
|
@@ -0,0 +1,18 @@
|
|
1
|
+
from physics.environment.base_environment import BaseEnvironment
|
2
|
+
|
3
|
+
|
4
|
+
class OpenweatherEnvironment(BaseEnvironment):
|
5
|
+
def __init__(self):
|
6
|
+
super().__init__()
|
7
|
+
self._cloud_cover = None
|
8
|
+
|
9
|
+
@property
|
10
|
+
def cloud_cover(self):
|
11
|
+
if (value := self._cloud_cover) is not None:
|
12
|
+
return value
|
13
|
+
else:
|
14
|
+
raise ValueError("cloud cover is None!")
|
15
|
+
|
16
|
+
@cloud_cover.setter
|
17
|
+
def cloud_cover(self, value):
|
18
|
+
self._cloud_cover = value
|
@@ -0,0 +1,89 @@
|
|
1
|
+
"""
|
2
|
+
This class collects the constants that are related to a specific competition.
|
3
|
+
"""
|
4
|
+
import pathlib
|
5
|
+
|
6
|
+
import numpy as np
|
7
|
+
import pickle
|
8
|
+
import enum
|
9
|
+
import json
|
10
|
+
import os
|
11
|
+
|
12
|
+
|
13
|
+
class Race:
|
14
|
+
class RaceType(enum.Enum):
|
15
|
+
ASC = "ASC"
|
16
|
+
FSGP = "FSGP"
|
17
|
+
|
18
|
+
def __str__(self):
|
19
|
+
match self.value:
|
20
|
+
case "ASC":
|
21
|
+
return "ASC"
|
22
|
+
case "FSGP":
|
23
|
+
return "FSGP"
|
24
|
+
|
25
|
+
def __reduce__(self):
|
26
|
+
return self.__class__, (self.name,)
|
27
|
+
|
28
|
+
def __contains__(self, item):
|
29
|
+
return item == "ASC" or item == "FSGP"
|
30
|
+
|
31
|
+
def __repr__(self):
|
32
|
+
return str(self)
|
33
|
+
|
34
|
+
ASC = RaceType.ASC
|
35
|
+
FSGP = RaceType.FSGP
|
36
|
+
|
37
|
+
def __init__(self, race_type: RaceType, race_constants: dict):
|
38
|
+
self.race_type = race_type
|
39
|
+
|
40
|
+
self.days = race_constants["days"]
|
41
|
+
self.tiling = race_constants["tiling"]
|
42
|
+
self.date = (race_constants["start_year"], race_constants["start_month"], race_constants["start_day"])
|
43
|
+
|
44
|
+
self.race_duration = len(self.days) * 24 * 60 * 60 # Duration (s)
|
45
|
+
self.driving_boolean = self.make_time_boolean("driving")
|
46
|
+
self.charging_boolean = self.make_time_boolean("charging")
|
47
|
+
|
48
|
+
def __str__(self):
|
49
|
+
return str(self.race_type)
|
50
|
+
|
51
|
+
def write(self, race_directory: pathlib.Path):
|
52
|
+
with open(race_directory / f"{str(self.race_type)}.pkl", 'wb') as outfile:
|
53
|
+
pickle.dump(self, outfile, protocol=pickle.HIGHEST_PROTOCOL)
|
54
|
+
|
55
|
+
def make_time_boolean(self, boolean_type: str):
|
56
|
+
boolean: np.ndarray = np.empty(self.race_duration, dtype=np.int8)
|
57
|
+
DAY_LENGTH: int = 24 * 60 * 60 # Length of a day in seconds
|
58
|
+
|
59
|
+
for tick in range(len(boolean)):
|
60
|
+
day: int = tick // DAY_LENGTH # Integer division to determine how many days have passed
|
61
|
+
time_of_day = tick % DAY_LENGTH # Time of day in seconds where 0 is midnight and 43200 is noon
|
62
|
+
begin, end = self.days[str(day)][boolean_type]
|
63
|
+
|
64
|
+
# If the time of day is between the beginning and end, then the boolean is True, else False
|
65
|
+
boolean[tick] = begin <= time_of_day < end
|
66
|
+
|
67
|
+
return boolean
|
68
|
+
|
69
|
+
|
70
|
+
def load_race(race_type: Race.RaceType, race_directory: pathlib.Path) -> Race:
|
71
|
+
with open(race_directory / f"{str(race_type)}.pkl", 'rb') as infile:
|
72
|
+
return pickle.load(infile)
|
73
|
+
|
74
|
+
|
75
|
+
def compile_races(config_directory: pathlib.Path, race_directory: pathlib.Path):
|
76
|
+
fsgp_config_path = os.path.join(config_directory, f"settings_FSGP.json")
|
77
|
+
asc_config_path = os.path.join(config_directory, f"settings_ASC.json")
|
78
|
+
|
79
|
+
with open(fsgp_config_path) as f:
|
80
|
+
fsgp_race_constants = json.load(f)
|
81
|
+
|
82
|
+
with open(asc_config_path) as f:
|
83
|
+
asc_race_constants = json.load(f)
|
84
|
+
|
85
|
+
fsgp = Race(Race.FSGP, fsgp_race_constants)
|
86
|
+
fsgp.write(race_directory)
|
87
|
+
|
88
|
+
asc = Race(Race.ASC, asc_race_constants)
|
89
|
+
asc.write(race_directory)
|