tt-perf-report 1.1.5__tar.gz → 1.1.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tt-perf-report might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tt-perf-report
3
- Version: 1.1.5
3
+ Version: 1.1.6
4
4
  Summary: This tool analyzes performance traces from TT-Metal operations, providing insights into throughput, bottlenecks, and optimization opportunities.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "tt-perf-report"
7
- version = "1.1.5"
7
+ version = "1.1.6"
8
8
  description = "This tool analyzes performance traces from TT-Metal operations, providing insights into throughput, bottlenecks, and optimization opportunities."
9
9
  license = {file = "LICENSE"}
10
10
  readme = "README.md"
@@ -866,11 +866,14 @@ def generate_matmul_advice(op_data):
866
866
 
867
867
 
868
868
  def generate_stacked_report(rows, visible_headers, stack_by_input0_layout:bool = False):
869
+ # Ensure we filter out signpost rows before processing because they aren't useful in the stacked report
870
+ filtered_rows = [row for row in rows if row["OP TYPE"].raw_value != "signpost"]
871
+
869
872
  if stack_by_input0_layout:
870
873
  visible_headers.append("Input 0 Memory")
871
874
 
872
875
  # Create a pandas DataFrame from rows and headers
873
- data = {header: [row[header].raw_value for row in rows] for header in visible_headers}
876
+ data = {header: [row[header].raw_value for row in filtered_rows] for header in visible_headers}
874
877
  df = pd.DataFrame(data)
875
878
 
876
879
  if (stack_by_input0_layout):
@@ -882,7 +885,7 @@ def generate_stacked_report(rows, visible_headers, stack_by_input0_layout:bool =
882
885
  # Group by the joined OP Code and aggregate the data
883
886
  stacked_df = df.groupby("OP Code Joined").agg(
884
887
  Device_Time_Sum_us=("Device Time", "sum"),
885
- Ops_Count=("Device Time", "count"),
888
+ Ops_Count=("Device Time", "size"),
886
889
  Flops_min=("FLOPs %", "min"),
887
890
  Flops_max=("FLOPs %", "max"),
888
891
  Flops_mean=("FLOPs %", "mean"),
@@ -897,7 +900,6 @@ def generate_stacked_report(rows, visible_headers, stack_by_input0_layout:bool =
897
900
  else:
898
901
  stacked_df["%"] = 0
899
902
 
900
- stacked_df["%"] = (stacked_df["Device_Time_Sum_us"] / total_device_time) * 100
901
903
  # Reorder columns to move Device_Time_Percentage to be the 3rd column
902
904
  cols = stacked_df.columns.tolist()
903
905
  cols.insert(0, cols.pop(cols.index("%")))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tt-perf-report
3
- Version: 1.1.5
3
+ Version: 1.1.6
4
4
  Summary: This tool analyzes performance traces from TT-Metal operations, providing insights into throughput, bottlenecks, and optimization opportunities.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
File without changes
File without changes
File without changes