tsdf 0.6.0__tar.gz → 0.6.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tsdf-0.6.0 → tsdf-0.6.2}/PKG-INFO +16 -10
- {tsdf-0.6.0 → tsdf-0.6.2}/README.md +7 -2
- {tsdf-0.6.0 → tsdf-0.6.2}/pyproject.toml +11 -7
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/tsdfmetadata.py +10 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/LICENSE +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/__init__.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/constants.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/file_utils.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/legacy_tsdf_utils.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/numpy_utils.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/parse_metadata.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/read_binary.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/read_tsdf.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/validator.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/write_binary.py +0 -0
- {tsdf-0.6.0 → tsdf-0.6.2}/src/tsdf/write_tsdf.py +0 -0
|
@@ -1,20 +1,21 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: tsdf
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.2
|
|
4
4
|
Summary: A Python library that provides methods for encoding and decoding TSDF (Time Series Data Format) data, which allows you to easily create, manipulate and serialize TSDF files in your Python code.
|
|
5
|
-
Home-page: https://github.com/biomarkersParkinson/tsdf
|
|
6
5
|
License: Apache-2.0
|
|
6
|
+
License-File: LICENSE
|
|
7
7
|
Keywords: Time Series Data Format (TSDF),binary data,digital sensors
|
|
8
|
-
Author:
|
|
9
|
-
Author-email:
|
|
10
|
-
Requires-Python: >=3.
|
|
8
|
+
Author: Vedran Kasalica
|
|
9
|
+
Author-email: v.kaslica@esciencecenter.nl
|
|
10
|
+
Requires-Python: >=3.11,<4.0
|
|
11
11
|
Classifier: License :: OSI Approved :: Apache Software License
|
|
12
12
|
Classifier: Programming Language :: Python
|
|
13
13
|
Classifier: Programming Language :: Python :: 3
|
|
14
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
15
14
|
Classifier: Programming Language :: Python :: 3.11
|
|
16
15
|
Classifier: Programming Language :: Python :: 3.12
|
|
17
|
-
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
18
|
+
Requires-Dist: numpy (>=1.24.1,<3.0)
|
|
18
19
|
Requires-Dist: pandas (>=2.1.3,<3.0.0)
|
|
19
20
|
Project-URL: Repository, https://github.com/biomarkersParkinson/tsdf
|
|
20
21
|
Description-Content-Type: text/markdown
|
|
@@ -25,7 +26,7 @@ Description-Content-Type: text/markdown
|
|
|
25
26
|
| Badges | |
|
|
26
27
|
|:----:|----|
|
|
27
28
|
| **Packages and Releases** | [](https://github.com/biomarkersparkinson/tsdf/releases/latest) [](https://pypi.python.org/pypi/tsdf/) [](https://research-software-directory.org/software/tsdf) |
|
|
28
|
-
| **Build Status** | [](https://www.python.org/downloads/)  |
|
|
29
30
|
| **DOI** | [](https://doi.org/10.5281/zenodo.7867899) |
|
|
30
31
|
| **License** | [](https://github.com/biomarkersparkinson/tsdf/blob/main/LICENSE) |
|
|
31
32
|
| **Fairness** | [](https://fair-software.eu) [](https://www.bestpractices.dev/projects/8083) |
|
|
@@ -34,11 +35,16 @@ Description-Content-Type: text/markdown
|
|
|
34
35
|
|
|
35
36
|
A package ([documentation](https://biomarkersparkinson.github.io/tsdf/)) to load TSDF data ([specification](https://arxiv.org/abs/2211.11294)) into Python.
|
|
36
37
|
|
|
38
|
+
## Overview
|
|
39
|
+
The [tsdf package](10.5281/zenodo.7867899) is a comprehensively documented reference implementation of the Time Series Data Format (TSDF) standard [[1]](https://arxiv.org/abs/2211.11294). TSDF simplifies data storage and exchange of multi-channel digital sensor data, thereby promoting interpretability and reproducibility of scientific results. Sensor measurements and timestamps are stored as raw tabular binary array files. To ensure unambiguous reconstruction, binary array files are accompanied by human-readable JavaScript Object Notation (JSON) metadata files, which contain a set of mandatory fields limited to essential sensor measurement information.
|
|
40
|
+
|
|
41
|
+
The tsdf Python package implements functions for reading and writing TSDF files. It guarantees formatting and metadata consistency. It enforces usage of the essential metadata such as study identification, time frame, data channel descriptions and data attributes corresponding to the binary data.
|
|
42
|
+
|
|
37
43
|
## Installation
|
|
38
44
|
|
|
39
45
|
### Using `pip`
|
|
40
46
|
|
|
41
|
-
The package is available in PyPi and requires [Python 3.
|
|
47
|
+
The package is available in PyPi and requires [Python 3.11](https://www.python.org/downloads/) or higher. It can be installed using:
|
|
42
48
|
|
|
43
49
|
```bash
|
|
44
50
|
$ pip install tsdf
|
|
@@ -4,7 +4,7 @@
|
|
|
4
4
|
| Badges | |
|
|
5
5
|
|:----:|----|
|
|
6
6
|
| **Packages and Releases** | [](https://github.com/biomarkersparkinson/tsdf/releases/latest) [](https://pypi.python.org/pypi/tsdf/) [](https://research-software-directory.org/software/tsdf) |
|
|
7
|
-
| **Build Status** | [](https://www.python.org/downloads/)  |
|
|
8
8
|
| **DOI** | [](https://doi.org/10.5281/zenodo.7867899) |
|
|
9
9
|
| **License** | [](https://github.com/biomarkersparkinson/tsdf/blob/main/LICENSE) |
|
|
10
10
|
| **Fairness** | [](https://fair-software.eu) [](https://www.bestpractices.dev/projects/8083) |
|
|
@@ -13,11 +13,16 @@
|
|
|
13
13
|
|
|
14
14
|
A package ([documentation](https://biomarkersparkinson.github.io/tsdf/)) to load TSDF data ([specification](https://arxiv.org/abs/2211.11294)) into Python.
|
|
15
15
|
|
|
16
|
+
## Overview
|
|
17
|
+
The [tsdf package](10.5281/zenodo.7867899) is a comprehensively documented reference implementation of the Time Series Data Format (TSDF) standard [[1]](https://arxiv.org/abs/2211.11294). TSDF simplifies data storage and exchange of multi-channel digital sensor data, thereby promoting interpretability and reproducibility of scientific results. Sensor measurements and timestamps are stored as raw tabular binary array files. To ensure unambiguous reconstruction, binary array files are accompanied by human-readable JavaScript Object Notation (JSON) metadata files, which contain a set of mandatory fields limited to essential sensor measurement information.
|
|
18
|
+
|
|
19
|
+
The tsdf Python package implements functions for reading and writing TSDF files. It guarantees formatting and metadata consistency. It enforces usage of the essential metadata such as study identification, time frame, data channel descriptions and data attributes corresponding to the binary data.
|
|
20
|
+
|
|
16
21
|
## Installation
|
|
17
22
|
|
|
18
23
|
### Using `pip`
|
|
19
24
|
|
|
20
|
-
The package is available in PyPi and requires [Python 3.
|
|
25
|
+
The package is available in PyPi and requires [Python 3.11](https://www.python.org/downloads/) or higher. It can be installed using:
|
|
21
26
|
|
|
22
27
|
```bash
|
|
23
28
|
$ pip install tsdf
|
|
@@ -1,10 +1,15 @@
|
|
|
1
1
|
[tool.poetry]
|
|
2
2
|
name = "tsdf"
|
|
3
|
-
version = "0.6.
|
|
3
|
+
version = "0.6.2"
|
|
4
4
|
description = "A Python library that provides methods for encoding and decoding TSDF (Time Series Data Format) data, which allows you to easily create, manipulate and serialize TSDF files in your Python code."
|
|
5
|
-
authors = ["
|
|
6
|
-
|
|
7
|
-
|
|
5
|
+
authors = ["Vedran Kasalica <v.kaslica@esciencecenter.nl>",
|
|
6
|
+
"Pablo Rodríguez <p.rodriguez-sanchez@esciencecenter.nl>",
|
|
7
|
+
"Luc Evers <luc.evers@radboudumc.nl>",
|
|
8
|
+
"Erik Post <erik.post@radboudumc.nl>",
|
|
9
|
+
"Yordan Raykov <yordan.raykov@nottingham.ac.uk>",
|
|
10
|
+
"Max Little <maxl@mit.edu>",
|
|
11
|
+
"Peter Kok <p.kok@esciencecenter.nl>",
|
|
12
|
+
]
|
|
8
13
|
license = "Apache-2.0"
|
|
9
14
|
classifiers = [
|
|
10
15
|
"License :: OSI Approved :: Apache Software License",
|
|
@@ -16,14 +21,13 @@ keywords = ["Time Series Data Format (TSDF)", "binary data", "digital sensors"]
|
|
|
16
21
|
repository = "https://github.com/biomarkersParkinson/tsdf"
|
|
17
22
|
|
|
18
23
|
[tool.poetry.dependencies]
|
|
19
|
-
python = "^3.
|
|
20
|
-
numpy = "
|
|
24
|
+
python = "^3.11"
|
|
25
|
+
numpy = ">=1.24.1,<3.0"
|
|
21
26
|
pandas = "^2.1.3"
|
|
22
27
|
|
|
23
28
|
[tool.poetry.group.dev.dependencies]
|
|
24
29
|
coverage = "^7.0.0"
|
|
25
30
|
matplotlib = "^3.6.3"
|
|
26
|
-
pytype = "^2024.4.11"
|
|
27
31
|
myst-parser = "^3.0.1"
|
|
28
32
|
|
|
29
33
|
[tool.poetry.group.testing.dependencies]
|
|
@@ -131,3 +131,13 @@ class TSDFMetadata:
|
|
|
131
131
|
:return: datetime object containing the end date.
|
|
132
132
|
"""
|
|
133
133
|
return parser.parse(self.end_iso8601)
|
|
134
|
+
|
|
135
|
+
start = property(get_start_datetime, set_start_datetime, doc=
|
|
136
|
+
"""
|
|
137
|
+
Start time of the recording.
|
|
138
|
+
""")
|
|
139
|
+
|
|
140
|
+
end = property(get_end_datetime, set_end_datetime, doc=
|
|
141
|
+
"""
|
|
142
|
+
End time of the recording.
|
|
143
|
+
""")
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|