tsam 2.3.1__tar.gz → 2.3.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (98) hide show
  1. tsam-2.3.3/.github/workflows/daily_tests.yml +43 -0
  2. tsam-2.3.3/.github/workflows/test_on_push_and_pull.yml +71 -0
  3. tsam-2.3.3/Makefile +27 -0
  4. {tsam-2.3.1 → tsam-2.3.3}/PKG-INFO +15 -12
  5. {tsam-2.3.1 → tsam-2.3.3}/README.md +12 -2
  6. {tsam-2.3.1 → tsam-2.3.3}/requirements.txt +2 -2
  7. {tsam-2.3.1 → tsam-2.3.3}/requirements.yml +1 -1
  8. {tsam-2.3.1 → tsam-2.3.3}/requirements_dev.txt +2 -1
  9. tsam-2.3.3/requirements_dev.yml +11 -0
  10. {tsam-2.3.1 → tsam-2.3.3}/setup.py +3 -6
  11. {tsam-2.3.1 → tsam-2.3.3}/test/test_assert_raises.py +1 -1
  12. {tsam-2.3.1 → tsam-2.3.3}/test/test_cluster_order.py +4 -4
  13. {tsam-2.3.1 → tsam-2.3.3}/test/test_hierarchical.py +2 -2
  14. {tsam-2.3.1 → tsam-2.3.3}/test/test_hypertuneAggregation.py +3 -2
  15. {tsam-2.3.1 → tsam-2.3.3}/test/test_k_medoids.py +2 -2
  16. {tsam-2.3.1 → tsam-2.3.3}/test/test_segmentation.py +2 -2
  17. {tsam-2.3.1 → tsam-2.3.3}/test/test_subhourlyResolution.py +1 -1
  18. {tsam-2.3.1 → tsam-2.3.3}/tsam/timeseriesaggregation.py +11 -9
  19. {tsam-2.3.1 → tsam-2.3.3}/tsam/utils/durationRepresentation.py +4 -4
  20. {tsam-2.3.1 → tsam-2.3.3}/tsam/utils/k_medoids_contiguity.py +7 -0
  21. {tsam-2.3.1 → tsam-2.3.3}/tsam/utils/k_medoids_exact.py +5 -0
  22. {tsam-2.3.1 → tsam-2.3.3}/tsam.egg-info/PKG-INFO +15 -12
  23. {tsam-2.3.1 → tsam-2.3.3}/tsam.egg-info/SOURCES.txt +3 -1
  24. {tsam-2.3.1 → tsam-2.3.3}/tsam.egg-info/requires.txt +2 -2
  25. tsam-2.3.1/.github/workflows/pytest.yml +0 -36
  26. tsam-2.3.1/requirements_dev.yml +0 -8
  27. {tsam-2.3.1 → tsam-2.3.3}/.gitignore +0 -0
  28. {tsam-2.3.1 → tsam-2.3.3}/.gitlab-ci.yml +0 -0
  29. {tsam-2.3.1 → tsam-2.3.3}/.readthedocs.yml +0 -0
  30. {tsam-2.3.1 → tsam-2.3.3}/LICENSE.txt +0 -0
  31. {tsam-2.3.1 → tsam-2.3.3}/MANIFEST.in +0 -0
  32. {tsam-2.3.1 → tsam-2.3.3}/docs/Makefile +0 -0
  33. {tsam-2.3.1 → tsam-2.3.3}/docs/make.bat +0 -0
  34. {tsam-2.3.1 → tsam-2.3.3}/docs/source/_static/logo.png +0 -0
  35. {tsam-2.3.1 → tsam-2.3.3}/docs/source/_static/tsam-logo.png +0 -0
  36. {tsam-2.3.1 → tsam-2.3.3}/docs/source/conf.py +0 -0
  37. {tsam-2.3.1 → tsam-2.3.3}/docs/source/durationRepresentationDoc.rst +0 -0
  38. {tsam-2.3.1 → tsam-2.3.3}/docs/source/exactKmedoidsDoc.rst +0 -0
  39. {tsam-2.3.1 → tsam-2.3.3}/docs/source/furtherReadingDoc.rst +0 -0
  40. {tsam-2.3.1 → tsam-2.3.3}/docs/source/gettingStartedDoc.rst +0 -0
  41. {tsam-2.3.1 → tsam-2.3.3}/docs/source/hypertunedaggregationDoc.rst +0 -0
  42. {tsam-2.3.1 → tsam-2.3.3}/docs/source/index.rst +0 -0
  43. {tsam-2.3.1 → tsam-2.3.3}/docs/source/installationDoc.rst +0 -0
  44. {tsam-2.3.1 → tsam-2.3.3}/docs/source/integratedSoftwareDoc.rst +0 -0
  45. {tsam-2.3.1 → tsam-2.3.3}/docs/source/kmaxoidsDoc.rst +0 -0
  46. {tsam-2.3.1 → tsam-2.3.3}/docs/source/legalNoticeDoc.rst +0 -0
  47. {tsam-2.3.1 → tsam-2.3.3}/docs/source/mathematicalBackgroundDoc.rst +0 -0
  48. {tsam-2.3.1 → tsam-2.3.3}/docs/source/newsDoc.rst +0 -0
  49. {tsam-2.3.1 → tsam-2.3.3}/docs/source/periodAggregationDoc.rst +0 -0
  50. {tsam-2.3.1 → tsam-2.3.3}/docs/source/representationsDoc.rst +0 -0
  51. {tsam-2.3.1 → tsam-2.3.3}/docs/source/segmentationDoc.rst +0 -0
  52. {tsam-2.3.1 → tsam-2.3.3}/docs/source/structureOfTsamDoc.rst +0 -0
  53. {tsam-2.3.1 → tsam-2.3.3}/docs/source/timeseriesaggregationDoc.rst +0 -0
  54. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_example.ipynb +0 -0
  55. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_method_showcase.ipynb +0 -0
  56. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_optiinput.ipynb +0 -0
  57. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_representation.ipynb +0 -0
  58. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_segment_period_animation.ipynb +0 -0
  59. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_segment_period_building_timeseries.ipynb +0 -0
  60. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_segment_period_opti.ipynb +0 -0
  61. {tsam-2.3.1 → tsam-2.3.3}/examples/aggregation_segmentation.ipynb +0 -0
  62. {tsam-2.3.1 → tsam-2.3.3}/examples/example_k_maxoids.ipynb +0 -0
  63. {tsam-2.3.1 → tsam-2.3.3}/examples/get_clustercenter_indices.py +0 -0
  64. {tsam-2.3.1 → tsam-2.3.3}/examples/predefined_sequence_example.ipynb +0 -0
  65. {tsam-2.3.1 → tsam-2.3.3}/examples/results/paretoOptimalAggregation.csv +0 -0
  66. {tsam-2.3.1 → tsam-2.3.3}/examples/results/preprocessed_wind.csv +0 -0
  67. {tsam-2.3.1 → tsam-2.3.3}/examples/results/testperiods_hierarchical.csv +0 -0
  68. {tsam-2.3.1 → tsam-2.3.3}/examples/results/testperiods_kmeans.csv +0 -0
  69. {tsam-2.3.1 → tsam-2.3.3}/examples/results/testperiods_kmedoids.csv +0 -0
  70. {tsam-2.3.1 → tsam-2.3.3}/examples/results/testperiods_predefClusterOrder.csv +0 -0
  71. {tsam-2.3.1 → tsam-2.3.3}/examples/results/testperiods_predefClusterOrderAndClusterCenters.csv +0 -0
  72. {tsam-2.3.1 → tsam-2.3.3}/examples/results/testperiods_segmentation.csv +0 -0
  73. {tsam-2.3.1 → tsam-2.3.3}/examples/testdata.csv +0 -0
  74. {tsam-2.3.1 → tsam-2.3.3}/setup.cfg +0 -0
  75. {tsam-2.3.1 → tsam-2.3.3}/test/test_accuracyIndicators.py +0 -0
  76. {tsam-2.3.1 → tsam-2.3.3}/test/test_adjacent_periods.py +0 -0
  77. {tsam-2.3.1 → tsam-2.3.3}/test/test_aggregate_hiearchical.py +0 -0
  78. {tsam-2.3.1 → tsam-2.3.3}/test/test_averaging.py +0 -0
  79. {tsam-2.3.1 → tsam-2.3.3}/test/test_durationCurve.py +0 -0
  80. {tsam-2.3.1 → tsam-2.3.3}/test/test_durationRepresentation.py +0 -0
  81. {tsam-2.3.1 → tsam-2.3.3}/test/test_extremePeriods.py +0 -0
  82. {tsam-2.3.1 → tsam-2.3.3}/test/test_k_maxoids.py +0 -0
  83. {tsam-2.3.1 → tsam-2.3.3}/test/test_k_medoids_contiguity.py +0 -0
  84. {tsam-2.3.1 → tsam-2.3.3}/test/test_minmaxRepresentation.py +0 -0
  85. {tsam-2.3.1 → tsam-2.3.3}/test/test_preprocess.py +0 -0
  86. {tsam-2.3.1 → tsam-2.3.3}/test/test_properties.py +0 -0
  87. {tsam-2.3.1 → tsam-2.3.3}/test/test_samemean.py +0 -0
  88. {tsam-2.3.1 → tsam-2.3.3}/test/test_subhourly_periods.py +0 -0
  89. {tsam-2.3.1 → tsam-2.3.3}/test/test_weightingFactors.py +0 -0
  90. {tsam-2.3.1 → tsam-2.3.3}/tsam/__init__.py +0 -0
  91. {tsam-2.3.1 → tsam-2.3.3}/tsam/hyperparametertuning.py +0 -0
  92. {tsam-2.3.1 → tsam-2.3.3}/tsam/periodAggregation.py +0 -0
  93. {tsam-2.3.1 → tsam-2.3.3}/tsam/representations.py +0 -0
  94. {tsam-2.3.1 → tsam-2.3.3}/tsam/utils/__init__.py +0 -0
  95. {tsam-2.3.1 → tsam-2.3.3}/tsam/utils/k_maxoids.py +0 -0
  96. {tsam-2.3.1 → tsam-2.3.3}/tsam/utils/segmentation.py +0 -0
  97. {tsam-2.3.1 → tsam-2.3.3}/tsam.egg-info/dependency_links.txt +0 -0
  98. {tsam-2.3.1 → tsam-2.3.3}/tsam.egg-info/top_level.txt +0 -0
@@ -0,0 +1,43 @@
1
+ # This tests are run daily to check incompatibilties introduced by new versions of dependencies
2
+ name: Daily tsam tests
3
+ on:
4
+ schedule:
5
+ # * is a special character in YAML so you have to quote this string
6
+ # Some Examples for cron syntax https://crontab.guru/examples.html
7
+ # Schedules job at any point after 12 pm
8
+ - cron: '0 0 * * *'
9
+ # Weekly after sunday
10
+ # - cron: 0 0 * * 0
11
+
12
+ jobs:
13
+ PythonAndOsTest:
14
+ name: Test for Python ${{matrix.python-version}} on ${{matrix.os}}
15
+ runs-on: ${{matrix.os}}
16
+ strategy:
17
+ fail-fast: false
18
+ matrix:
19
+ os: ["ubuntu-latest","ubuntu-20.04", "macos-latest","macos-13","macos-12", "windows-latest","windows-2019"]
20
+ # os: ["ubuntu-latest"]
21
+ python-version: [ "3.9", "3.10", "3.11", "3.12"]
22
+
23
+ steps:
24
+ - uses: actions/checkout@v2
25
+ - name: Set up Python 3.10
26
+ uses: actions/setup-python@v2
27
+ with:
28
+ python-version: ${{matrix.python-version}}
29
+ - name: Install dependencies
30
+ run: |
31
+ python -m pip install --upgrade pip
32
+ pip install pytest
33
+ pip install pytest-cov
34
+ pip install codecov
35
+ pip install -r requirements.txt
36
+ pip install --no-cache-dir -e .
37
+
38
+ - name: Test with pytest
39
+ working-directory: ./test/
40
+ run: |
41
+ pytest
42
+ codecov
43
+
@@ -0,0 +1,71 @@
1
+ # This workflow will install Python dependencies and run tests and lint with a single version of Python
2
+ # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
3
+
4
+ # Based on David Neuroth pylpg
5
+
6
+ name: Test on Push and Pull
7
+
8
+ on:
9
+ push:
10
+ pull_request:
11
+ branches: [ master ]
12
+
13
+ jobs:
14
+ PythonAndOsTest:
15
+ name: Test for Python ${{matrix.python-version}} on ${{matrix.os}}
16
+ runs-on: ${{matrix.os}}
17
+ strategy:
18
+ fail-fast: false
19
+ matrix:
20
+ os: ["ubuntu-latest","ubuntu-20.04", "macos-latest","macos-13","macos-12", "windows-latest","windows-2019"]
21
+ python-version: [ "3.9", "3.10", "3.11", "3.12"]
22
+
23
+ steps:
24
+ - uses: actions/checkout@v2
25
+ - name: Set up Python 3.10
26
+ uses: actions/setup-python@v2
27
+ with:
28
+ python-version: ${{matrix.python-version}}
29
+ - name: Install dependencies
30
+ run: |
31
+ python -m pip install --upgrade pip
32
+ pip install pytest
33
+ pip install pytest-cov
34
+ pip install codecov
35
+ pip install -r requirements.txt
36
+ pip install --no-cache-dir -e .
37
+
38
+ - name: Test with pytest
39
+ working-directory: ./test/
40
+ run: |
41
+ pytest
42
+ codecov
43
+
44
+ NumpyTest:
45
+ name: Test for numpy ${{matrix.python-numpy-version.numpy}} and python ${{matrix.python-numpy-version.python}}
46
+ runs-on: ${{matrix.os}}
47
+ strategy:
48
+ fail-fast: false
49
+ matrix:
50
+ os: ["ubuntu-latest","ubuntu-20.04", "macos-latest","macos-13","macos-12", "windows-latest","windows-2019"]
51
+ python-numpy-version: [ {python : 3.9,numpy : 1.25}, {python : 3.9,numpy : 1.26},{python : 3.9,numpy : 2.0}]
52
+ steps:
53
+ - uses: actions/checkout@v2
54
+ - name: Set up Python 3.10
55
+ uses: actions/setup-python@v2
56
+ with:
57
+ python-version: ${{matrix.python-numpy-version.python}}
58
+ - name: Install dependencies
59
+ run: |
60
+ python -m pip install numpy==${{matrix.python-numpy-version.numpy}} --upgrade pip
61
+ pip install pytest
62
+ pip install pytest-cov
63
+ pip install codecov
64
+ pip install -r requirements.txt
65
+ pip install --no-cache-dir -e .
66
+
67
+ - name: Test with pytest
68
+ working-directory: ./test/
69
+ run: |
70
+ pytest
71
+ codecov
tsam-2.3.3/Makefile ADDED
@@ -0,0 +1,27 @@
1
+ #!make
2
+ LOCAL_VENVS_DIR=~/.virtualenvs
3
+ PROJECT_NAME=tsam
4
+ PYTHON=python3.11
5
+ LOCAL_VENV_DIR := ${LOCAL_VENVS_DIR}/${PROJECT_NAME}
6
+
7
+
8
+ test:
9
+ . ${LOCAL_VENV_DIR}/bin/activate; pytest
10
+
11
+ sdist:
12
+ . ${LOCAL_VENV_DIR}/bin/activate; ${PYTHON} setup.py sdist
13
+
14
+ upload:
15
+ twine upload dist/*
16
+
17
+ clean:
18
+ rm dist/*
19
+
20
+ dist: sdist upload clean
21
+
22
+
23
+
24
+ setup_venv:
25
+ mkdir -p ${LOCAL_VENVS_DIR}
26
+ ${PYTHON} -m venv ${LOCAL_VENV_DIR}
27
+ . ${LOCAL_VENV_DIR}/bin/activate; pip install -r requirements.txt; pip install -e .
@@ -1,13 +1,11 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tsam
3
- Version: 2.3.1
3
+ Version: 2.3.3
4
4
  Summary: Time series aggregation module (tsam) to create typical periods
5
5
  Home-page: https://github.com/FZJ-IEK3-VSA/tsam
6
6
  Author: Leander Kotzur, Maximilian Hoffmann
7
- Author-email: leander.kotzur@googlemail.com, max.hoffmann@fz-juelich.de
8
- License: UNKNOWN
7
+ Author-email: leander.kotzur@googlemail.com, maximilian.hoffmann@julumni.fz-juelich.de
9
8
  Keywords: clustering,optimization
10
- Platform: UNKNOWN
11
9
  Classifier: Development Status :: 4 - Beta
12
10
  Classifier: Intended Audience :: End Users/Desktop
13
11
  Classifier: Intended Audience :: Science/Research
@@ -16,17 +14,14 @@ Classifier: Natural Language :: English
16
14
  Classifier: Operating System :: OS Independent
17
15
  Classifier: Programming Language :: Python
18
16
  Classifier: Programming Language :: Python :: 2
19
- Classifier: Programming Language :: Python :: 2.7
20
17
  Classifier: Programming Language :: Python :: 3
21
- Classifier: Programming Language :: Python :: 3.4
22
- Classifier: Programming Language :: Python :: 3.5
23
- Classifier: Programming Language :: Python :: 3.6
24
18
  Classifier: Topic :: Scientific/Engineering :: Mathematics
25
19
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
20
+ Requires-Python: >=3.9
26
21
  Description-Content-Type: text/markdown
27
22
  License-File: LICENSE.txt
28
23
 
29
- [![pytest master status](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/pytest.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
24
+ [![daily pytest](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/daily_tests.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/tsam.svg)](https://anaconda.org/conda-forge/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
30
25
  [![badge](https://img.shields.io/badge/launch-binder-579aca.svg?logo=)](https://mybinder.org/v2/gh/FZJ-IEK3-VSA/voila-tsam/HEAD?urlpath=voila/render/Time-Series-Aggregation-Module.ipynb)
31
26
 
32
27
  <a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
@@ -47,10 +42,14 @@ The documentation of the tsam code can be found [**here**](https://tsam.readthed
47
42
 
48
43
 
49
44
  ## Installation
50
- Directly install via pip as follows:
45
+ Directly install via pip from pypi as follows:
51
46
 
52
47
  pip install tsam
53
48
 
49
+ of install from conda forge with the following command:
50
+
51
+ conda install tsam -c conda-forge
52
+
54
53
  Alternatively, clone a local copy of the repository to your computer
55
54
 
56
55
  git clone https://github.com/FZJ-IEK3-VSA/tsam.git
@@ -65,6 +64,12 @@ Or install directly via python as
65
64
  python setup.py install
66
65
 
67
66
  In order to use the k-medoids clustering, make sure that you have installed a MILP solver. As default [HiGHS](https://github.com/ERGO-Code/HiGHS) is used. Nevertheless, in case you have access to a license we recommend commercial solvers (e.g. Gurobi or CPLEX) since they have a better performance.
67
+
68
+ ### Developer installation
69
+
70
+ In order to setup a virtual environment in Linux, correct the python name in the Makefile and call
71
+
72
+ make setup_venv
68
73
 
69
74
 
70
75
  ## Examples
@@ -161,5 +166,3 @@ This work is supported by the Helmholtz Association under the Joint Initiative [
161
166
  <a href="https://www.helmholtz.de/en/"><img src="https://www.helmholtz.de/fileadmin/user_upload/05_aktuelles/Marke_Design/logos/HG_LOGO_S_ENG_RGB.jpg" alt="Helmholtz Logo" width="200px" style="float:right"></a>
162
167
 
163
168
 
164
-
165
-
@@ -1,4 +1,4 @@
1
- [![pytest master status](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/pytest.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
1
+ [![daily pytest](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/daily_tests.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/tsam.svg)](https://anaconda.org/conda-forge/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
2
2
  [![badge](https://img.shields.io/badge/launch-binder-579aca.svg?logo=)](https://mybinder.org/v2/gh/FZJ-IEK3-VSA/voila-tsam/HEAD?urlpath=voila/render/Time-Series-Aggregation-Module.ipynb)
3
3
 
4
4
  <a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
@@ -19,10 +19,14 @@ The documentation of the tsam code can be found [**here**](https://tsam.readthed
19
19
 
20
20
 
21
21
  ## Installation
22
- Directly install via pip as follows:
22
+ Directly install via pip from pypi as follows:
23
23
 
24
24
  pip install tsam
25
25
 
26
+ of install from conda forge with the following command:
27
+
28
+ conda install tsam -c conda-forge
29
+
26
30
  Alternatively, clone a local copy of the repository to your computer
27
31
 
28
32
  git clone https://github.com/FZJ-IEK3-VSA/tsam.git
@@ -37,6 +41,12 @@ Or install directly via python as
37
41
  python setup.py install
38
42
 
39
43
  In order to use the k-medoids clustering, make sure that you have installed a MILP solver. As default [HiGHS](https://github.com/ERGO-Code/HiGHS) is used. Nevertheless, in case you have access to a license we recommend commercial solvers (e.g. Gurobi or CPLEX) since they have a better performance.
44
+
45
+ ### Developer installation
46
+
47
+ In order to setup a virtual environment in Linux, correct the python name in the Makefile and call
48
+
49
+ make setup_venv
40
50
 
41
51
 
42
52
  ## Examples
@@ -1,6 +1,6 @@
1
1
  scikit-learn>=0.0
2
- pandas>=0.18.1
3
- numpy>=1.11.0
2
+ pandas>=2.0.3
3
+ numpy>=1.20.0
4
4
  pyomo>=6.4.3
5
5
  networkx
6
6
  tqdm
@@ -2,7 +2,7 @@ name: tsam
2
2
  channels:
3
3
  - conda-forge
4
4
  dependencies:
5
- - python
5
+ - python>=3.9,<3.13
6
6
  - pip
7
7
  - pip:
8
8
  - -r requirements.txt
@@ -2,9 +2,10 @@
2
2
 
3
3
  # Testing
4
4
  pytest
5
- sphinx
5
+ pytest-cov
6
6
 
7
7
  # Documentation
8
+ sphinx
8
9
  sphinx-autobuild
9
10
  sphinx_book_theme
10
11
 
@@ -0,0 +1,11 @@
1
+ name: tsam
2
+
3
+ channels:
4
+ - conda-forge
5
+
6
+ dependencies:
7
+ - python>=3.9,<3.13
8
+ - pip
9
+ - pip:
10
+ - -r requirements_dev.txt
11
+
@@ -8,14 +8,15 @@ with open(os.path.join(dir_path, "README.md"), "r") as fh:
8
8
 
9
9
  setuptools.setup(
10
10
  name="tsam",
11
- version="2.3.1",
11
+ version="2.3.3",
12
12
  author="Leander Kotzur, Maximilian Hoffmann",
13
- author_email="leander.kotzur@googlemail.com, max.hoffmann@fz-juelich.de",
13
+ author_email="leander.kotzur@googlemail.com, maximilian.hoffmann@julumni.fz-juelich.de",
14
14
  description="Time series aggregation module (tsam) to create typical periods",
15
15
  long_description=long_description,
16
16
  long_description_content_type="text/markdown",
17
17
  url="https://github.com/FZJ-IEK3-VSA/tsam",
18
18
  include_package_data=True,
19
+ python_requires='>=3.9',
19
20
  packages=setuptools.find_packages(),
20
21
  install_requires=required_packages,
21
22
  setup_requires=["setuptools-git"],
@@ -28,11 +29,7 @@ setuptools.setup(
28
29
  "Operating System :: OS Independent",
29
30
  "Programming Language :: Python",
30
31
  "Programming Language :: Python :: 2",
31
- "Programming Language :: Python :: 2.7",
32
32
  "Programming Language :: Python :: 3",
33
- "Programming Language :: Python :: 3.4",
34
- "Programming Language :: Python :: 3.5",
35
- "Programming Language :: Python :: 3.6",
36
33
  "Topic :: Scientific/Engineering :: Mathematics",
37
34
  "Topic :: Software Development :: Libraries :: Python Modules",
38
35
  ],
@@ -221,7 +221,7 @@ def test_assert_raises():
221
221
 
222
222
  # check erroneous dataframe containing NaN values
223
223
  rawNan = copy.deepcopy((raw))
224
- rawNan.iloc[10, :] = np.NaN
224
+ rawNan.iloc[10, :] = np.nan
225
225
  aggregation = tsam.TimeSeriesAggregation(timeSeries=rawNan)
226
226
  np.testing.assert_raises_regex(
227
227
  ValueError,
@@ -103,21 +103,21 @@ def test_cluster_order():
103
103
  orig_raw_predefClusterOrder[typPeriods_predefClusterOrder.columns]
104
104
  .unstack()
105
105
  .loc[sortedDaysOrig1, :]
106
- .stack()
106
+ .stack(future_stack=True,)
107
107
  )
108
- test1 = typPeriods_predefClusterOrder.unstack().loc[sortedDaysTest1, :].stack()
108
+ test1 = typPeriods_predefClusterOrder.unstack().loc[sortedDaysTest1, :].stack(future_stack=True,)
109
109
  orig2 = (
110
110
  orig_raw_predefClusterOrderAndClusterCenters[
111
111
  typPeriods_predefClusterOrderAndClusterCenters.columns
112
112
  ]
113
113
  .unstack()
114
114
  .loc[sortedDaysOrig2, :]
115
- .stack()
115
+ .stack(future_stack=True,)
116
116
  )
117
117
  test2 = (
118
118
  typPeriods_predefClusterOrderAndClusterCenters.unstack()
119
119
  .loc[sortedDaysTest2, :]
120
- .stack()
120
+ .stack(future_stack=True,)
121
121
  )
122
122
 
123
123
  np.testing.assert_array_almost_equal(
@@ -46,8 +46,8 @@ def test_hierarchical():
46
46
  sortedDaysTest = typPeriods.groupby(level=0).sum().sort_values("GHI").index
47
47
 
48
48
  # rearange their order
49
- orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig, :].stack()
50
- test = typPeriods.unstack().loc[sortedDaysTest, :].stack()
49
+ orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig, :].stack(future_stack=True,)
50
+ test = typPeriods.unstack().loc[sortedDaysTest, :].stack(future_stack=True,)
51
51
 
52
52
  np.testing.assert_array_almost_equal(orig.values, test.values, decimal=4)
53
53
 
@@ -1,5 +1,6 @@
1
1
  import os
2
2
  import time
3
+ import pytest
3
4
 
4
5
  import pandas as pd
5
6
  import numpy as np
@@ -74,7 +75,7 @@ def test_optimalPair():
74
75
  assert windPeriods * windSegments <= len(raw["Wind"])*datareduction
75
76
  assert windPeriods * windSegments >= len(raw["Wind"])*datareduction * 0.8
76
77
 
77
-
78
+ @pytest.mark.skip(reason="This test is too slow")
78
79
  def test_steepest_gradient_leads_to_optima():
79
80
  """
80
81
  Based on the hint of Eva Simarik, check if the RMSE is for the optimized combination
@@ -147,7 +148,7 @@ def test_paretoOptimalAggregation():
147
148
  raw,
148
149
  hoursPerPeriod=12,
149
150
  clusterMethod="hierarchical",
150
- representationMethod="durationRepresentation",
151
+ representationMethod="meanRepresentation",
151
152
  distributionPeriodWise=False,
152
153
  rescaleClusterPeriods=False,
153
154
  segmentation=True,
@@ -43,8 +43,8 @@ def test_k_medoids():
43
43
  sortedDaysTest = typPeriods.groupby(level=0).sum().sort_values("GHI").index
44
44
 
45
45
  # rearange their order
46
- orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig, :].stack()
47
- test = typPeriods.unstack().loc[sortedDaysTest, :].stack()
46
+ orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig, :].stack(future_stack=True,)
47
+ test = typPeriods.unstack().loc[sortedDaysTest, :].stack(future_stack=True,)
48
48
 
49
49
  np.testing.assert_array_almost_equal(orig.values, test.values, decimal=4)
50
50
 
@@ -46,8 +46,8 @@ def test_segmentation():
46
46
  sortedDaysTest = typPeriods.groupby(level=0).sum().sort_values("GHI").index
47
47
 
48
48
  # rearange their order
49
- orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig, :].stack()
50
- test = typPeriods.unstack().loc[sortedDaysTest, :].stack()
49
+ orig = orig_raw[typPeriods.columns].unstack().loc[sortedDaysOrig, :].stack(future_stack=True,)
50
+ test = typPeriods.unstack().loc[sortedDaysTest, :].stack(future_stack=True,)
51
51
 
52
52
  np.testing.assert_array_almost_equal(orig.values, test.values, decimal=4)
53
53
 
@@ -51,4 +51,4 @@ def test_subhourlyResolution():
51
51
 
52
52
 
53
53
  if __name__ == "__main__":
54
- test_hierarchical()
54
+ test_subhourlyResolution()
@@ -8,7 +8,6 @@ import pandas as pd
8
8
  import numpy as np
9
9
 
10
10
  from sklearn.metrics import mean_squared_error, mean_absolute_error
11
- from sklearn.metrics.pairwise import euclidean_distances
12
11
  from sklearn import preprocessing
13
12
 
14
13
  from tsam.periodAggregation import aggregatePeriods
@@ -27,6 +26,9 @@ TOLERANCE = 1e-6
27
26
  MIN_WEIGHT = 1e-6
28
27
 
29
28
 
29
+
30
+
31
+
30
32
  def unstackToPeriods(timeSeries, timeStepsPerPeriod):
31
33
  """
32
34
  Extend the timeseries to an integer multiple of the period length and
@@ -388,21 +390,21 @@ class TimeSeriesAggregation(object):
388
390
  try:
389
391
  timedelta = self.timeSeries.index[1] - self.timeSeries.index[0]
390
392
  self.resolution = float(timedelta.total_seconds()) / 3600
391
- except AttributeError:
393
+ except AttributeError as exc:
392
394
  raise ValueError(
393
395
  "'resolution' argument has to be nonnegative float or int"
394
396
  + " or the given timeseries needs a datetime index"
395
- )
397
+ ) from exc
396
398
  except TypeError:
397
399
  try:
398
400
  self.timeSeries.index = pd.to_datetime(self.timeSeries.index)
399
401
  timedelta = self.timeSeries.index[1] - self.timeSeries.index[0]
400
402
  self.resolution = float(timedelta.total_seconds()) / 3600
401
- except:
403
+ except Exception as exc:
402
404
  raise ValueError(
403
405
  "'resolution' argument has to be nonnegative float or int"
404
406
  + " or the given timeseries needs a datetime index"
405
- )
407
+ ) from exc
406
408
 
407
409
  if not (isinstance(self.resolution, int) or isinstance(self.resolution, float)):
408
410
  raise ValueError("resolution has to be nonnegative float or int")
@@ -870,9 +872,9 @@ class TimeSeriesAggregation(object):
870
872
  )
871
873
 
872
874
  # reset values higher than the upper sacle or less than zero
873
- typicalPeriods[column].clip(lower=0, upper=scale_ub, inplace=True)
875
+ typicalPeriods[column] = typicalPeriods[column].clip(lower=0, upper=scale_ub)
874
876
 
875
- typicalPeriods[column].fillna(0.0, inplace=True)
877
+ typicalPeriods[column] = typicalPeriods[column].fillna(0.0)
876
878
 
877
879
  # calc new sum and new diff to orig data
878
880
  sum_clu_wo_peak = np.sum(
@@ -967,7 +969,7 @@ class TimeSeriesAggregation(object):
967
969
  # check for additional cluster parameters
968
970
  if self.evalSumPeriods:
969
971
  evaluationValues = (
970
- self.normalizedPeriodlyProfiles.stack(level=0)
972
+ self.normalizedPeriodlyProfiles.stack(future_stack=True,level=0)
971
973
  .sum(axis=1)
972
974
  .unstack(level=1)
973
975
  )
@@ -1237,7 +1239,7 @@ class TimeSeriesAggregation(object):
1237
1239
  columns=self.normalizedPeriodlyProfiles.columns,
1238
1240
  index=self.normalizedPeriodlyProfiles.index,
1239
1241
  )
1240
- clustered_data_df = clustered_data_df.stack(level="TimeStep")
1242
+ clustered_data_df = clustered_data_df.stack(future_stack=True,level="TimeStep")
1241
1243
 
1242
1244
  # back in form
1243
1245
  self.normalizedPredictedData = pd.DataFrame(
@@ -57,7 +57,7 @@ def durationRepresentation(
57
57
  # get all the values of a certain attribute and cluster
58
58
  candidateValues = candidates.loc[indice[0], a]
59
59
  # sort all values
60
- sortedAttr = candidateValues.stack().sort_values()
60
+ sortedAttr = candidateValues.stack(future_stack=True,).sort_values()
61
61
  # reindex and arrange such that every sorted segment gets represented by its mean
62
62
  sortedAttr.index = pd.MultiIndex.from_tuples(clean_index)
63
63
  representationValues = sortedAttr.unstack(level=0).mean(axis=1)
@@ -97,8 +97,8 @@ def durationRepresentation(
97
97
  # concat centroid values and cluster weights for all clusters
98
98
  meansAndWeights = pd.concat(
99
99
  [
100
- pd.DataFrame(np.array(meanVals)).stack(),
101
- pd.DataFrame(np.array(clusterLengths)).stack(),
100
+ pd.DataFrame(np.array(meanVals)).stack(future_stack=True,),
101
+ pd.DataFrame(np.array(clusterLengths)).stack(future_stack=True,),
102
102
  ],
103
103
  axis=1,
104
104
  )
@@ -107,7 +107,7 @@ def durationRepresentation(
107
107
  # save order of the sorted centroid values across all clusters
108
108
  order = meansAndWeightsSorted.index
109
109
  # sort all values of the original time series
110
- sortedAttr = candidates.loc[:, a].stack().sort_values().values
110
+ sortedAttr = candidates.loc[:, a].stack(future_stack=True,).sort_values().values
111
111
  # take mean of sections of the original duration curve according to the cluster and its weight the
112
112
  # respective section is assigned to
113
113
  representationValues = []
@@ -1,7 +1,14 @@
1
1
  # -*- coding: utf-8 -*-
2
2
 
3
3
  import numpy as np
4
+
5
+
4
6
  import time
7
+
8
+ # switch to numpy 2.0
9
+ np.float_ = np.float64
10
+ np.complex_=np.complex128
11
+
5
12
  import pyomo.environ as pyomo
6
13
  import pyomo.opt as opt
7
14
  import networkx as nx
@@ -5,6 +5,11 @@ import numpy as np
5
5
  from sklearn.base import BaseEstimator, ClusterMixin, TransformerMixin
6
6
  from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS
7
7
  from sklearn.utils import check_array
8
+
9
+ # switch to numpy 2.0
10
+ np.float_ = np.float64
11
+ np.complex_=np.complex128
12
+
8
13
  import pyomo.environ as pyomo
9
14
  import pyomo.opt as opt
10
15
  from pyomo.contrib import appsi
@@ -1,13 +1,11 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tsam
3
- Version: 2.3.1
3
+ Version: 2.3.3
4
4
  Summary: Time series aggregation module (tsam) to create typical periods
5
5
  Home-page: https://github.com/FZJ-IEK3-VSA/tsam
6
6
  Author: Leander Kotzur, Maximilian Hoffmann
7
- Author-email: leander.kotzur@googlemail.com, max.hoffmann@fz-juelich.de
8
- License: UNKNOWN
7
+ Author-email: leander.kotzur@googlemail.com, maximilian.hoffmann@julumni.fz-juelich.de
9
8
  Keywords: clustering,optimization
10
- Platform: UNKNOWN
11
9
  Classifier: Development Status :: 4 - Beta
12
10
  Classifier: Intended Audience :: End Users/Desktop
13
11
  Classifier: Intended Audience :: Science/Research
@@ -16,17 +14,14 @@ Classifier: Natural Language :: English
16
14
  Classifier: Operating System :: OS Independent
17
15
  Classifier: Programming Language :: Python
18
16
  Classifier: Programming Language :: Python :: 2
19
- Classifier: Programming Language :: Python :: 2.7
20
17
  Classifier: Programming Language :: Python :: 3
21
- Classifier: Programming Language :: Python :: 3.4
22
- Classifier: Programming Language :: Python :: 3.5
23
- Classifier: Programming Language :: Python :: 3.6
24
18
  Classifier: Topic :: Scientific/Engineering :: Mathematics
25
19
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
20
+ Requires-Python: >=3.9
26
21
  Description-Content-Type: text/markdown
27
22
  License-File: LICENSE.txt
28
23
 
29
- [![pytest master status](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/pytest.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
24
+ [![daily pytest](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/daily_tests.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/tsam.svg)](https://anaconda.org/conda-forge/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
30
25
  [![badge](https://img.shields.io/badge/launch-binder-579aca.svg?logo=)](https://mybinder.org/v2/gh/FZJ-IEK3-VSA/voila-tsam/HEAD?urlpath=voila/render/Time-Series-Aggregation-Module.ipynb)
31
26
 
32
27
  <a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
@@ -47,10 +42,14 @@ The documentation of the tsam code can be found [**here**](https://tsam.readthed
47
42
 
48
43
 
49
44
  ## Installation
50
- Directly install via pip as follows:
45
+ Directly install via pip from pypi as follows:
51
46
 
52
47
  pip install tsam
53
48
 
49
+ of install from conda forge with the following command:
50
+
51
+ conda install tsam -c conda-forge
52
+
54
53
  Alternatively, clone a local copy of the repository to your computer
55
54
 
56
55
  git clone https://github.com/FZJ-IEK3-VSA/tsam.git
@@ -65,6 +64,12 @@ Or install directly via python as
65
64
  python setup.py install
66
65
 
67
66
  In order to use the k-medoids clustering, make sure that you have installed a MILP solver. As default [HiGHS](https://github.com/ERGO-Code/HiGHS) is used. Nevertheless, in case you have access to a license we recommend commercial solvers (e.g. Gurobi or CPLEX) since they have a better performance.
67
+
68
+ ### Developer installation
69
+
70
+ In order to setup a virtual environment in Linux, correct the python name in the Makefile and call
71
+
72
+ make setup_venv
68
73
 
69
74
 
70
75
  ## Examples
@@ -161,5 +166,3 @@ This work is supported by the Helmholtz Association under the Joint Initiative [
161
166
  <a href="https://www.helmholtz.de/en/"><img src="https://www.helmholtz.de/fileadmin/user_upload/05_aktuelles/Marke_Design/logos/HG_LOGO_S_ENG_RGB.jpg" alt="Helmholtz Logo" width="200px" style="float:right"></a>
162
167
 
163
168
 
164
-
165
-
@@ -3,13 +3,15 @@
3
3
  .readthedocs.yml
4
4
  LICENSE.txt
5
5
  MANIFEST.in
6
+ Makefile
6
7
  README.md
7
8
  requirements.txt
8
9
  requirements.yml
9
10
  requirements_dev.txt
10
11
  requirements_dev.yml
11
12
  setup.py
12
- .github/workflows/pytest.yml
13
+ .github/workflows/daily_tests.yml
14
+ .github/workflows/test_on_push_and_pull.yml
13
15
  docs/Makefile
14
16
  docs/make.bat
15
17
  docs/source/conf.py
@@ -1,6 +1,6 @@
1
1
  scikit-learn>=0.0
2
- pandas>=0.18.1
3
- numpy>=1.11.0
2
+ pandas>=2.0.3
3
+ numpy>=1.20.0
4
4
  pyomo>=6.4.3
5
5
  networkx
6
6
  tqdm
@@ -1,36 +0,0 @@
1
- # This workflow will install Python dependencies and run tests and lint with a single version of Python
2
- # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
3
-
4
- # Based on David Neuroth pylpg
5
-
6
- name: pytest
7
-
8
- on:
9
- push:
10
- pull_request:
11
- branches: [ master ]
12
-
13
- jobs:
14
- build:
15
- runs-on: ubuntu-latest
16
-
17
- steps:
18
- - uses: actions/checkout@v2
19
- - name: Set up Python 3.10
20
- uses: actions/setup-python@v2
21
- with:
22
- python-version: '3.10'
23
- - name: Install dependencies
24
- run: |
25
- python -m pip install --upgrade pip
26
- pip install pytest
27
- pip install pytest-cov
28
- pip install codecov
29
- if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
30
- pip install --no-cache-dir -e .
31
-
32
- - name: Test with pytest
33
- working-directory: ./test/
34
- run: |
35
- pytest
36
- codecov
@@ -1,8 +0,0 @@
1
- name: tsam
2
-
3
- channels:
4
- - conda-forge
5
-
6
- dependencies:
7
- - pytest
8
- - pytest-cov
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes