tsam 2.3.1__tar.gz → 2.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (97) hide show
  1. {tsam-2.3.1 → tsam-2.3.2}/.github/workflows/pytest.yml +42 -35
  2. {tsam-2.3.1 → tsam-2.3.2}/.gitignore +17 -17
  3. {tsam-2.3.1 → tsam-2.3.2}/.gitlab-ci.yml +11 -11
  4. {tsam-2.3.1 → tsam-2.3.2}/.readthedocs.yml +14 -14
  5. {tsam-2.3.1 → tsam-2.3.2}/LICENSE.txt +20 -20
  6. {tsam-2.3.1 → tsam-2.3.2}/MANIFEST.in +3 -3
  7. tsam-2.3.2/Makefile +14 -0
  8. {tsam-2.3.1 → tsam-2.3.2}/PKG-INFO +168 -165
  9. {tsam-2.3.1 → tsam-2.3.2}/README.md +135 -135
  10. {tsam-2.3.1 → tsam-2.3.2}/docs/Makefile +25 -25
  11. {tsam-2.3.1 → tsam-2.3.2}/docs/make.bat +36 -36
  12. {tsam-2.3.1 → tsam-2.3.2}/docs/source/conf.py +197 -197
  13. {tsam-2.3.1 → tsam-2.3.2}/docs/source/durationRepresentationDoc.rst +15 -15
  14. {tsam-2.3.1 → tsam-2.3.2}/docs/source/exactKmedoidsDoc.rst +15 -15
  15. {tsam-2.3.1 → tsam-2.3.2}/docs/source/furtherReadingDoc.rst +28 -28
  16. {tsam-2.3.1 → tsam-2.3.2}/docs/source/gettingStartedDoc.rst +84 -84
  17. {tsam-2.3.1 → tsam-2.3.2}/docs/source/hypertunedaggregationDoc.rst +20 -20
  18. {tsam-2.3.1 → tsam-2.3.2}/docs/source/index.rst +44 -44
  19. {tsam-2.3.1 → tsam-2.3.2}/docs/source/installationDoc.rst +38 -38
  20. {tsam-2.3.1 → tsam-2.3.2}/docs/source/integratedSoftwareDoc.rst +19 -19
  21. {tsam-2.3.1 → tsam-2.3.2}/docs/source/kmaxoidsDoc.rst +15 -15
  22. {tsam-2.3.1 → tsam-2.3.2}/docs/source/legalNoticeDoc.rst +38 -38
  23. {tsam-2.3.1 → tsam-2.3.2}/docs/source/mathematicalBackgroundDoc.rst +66 -66
  24. {tsam-2.3.1 → tsam-2.3.2}/docs/source/newsDoc.rst +55 -55
  25. {tsam-2.3.1 → tsam-2.3.2}/docs/source/periodAggregationDoc.rst +15 -15
  26. {tsam-2.3.1 → tsam-2.3.2}/docs/source/representationsDoc.rst +15 -15
  27. {tsam-2.3.1 → tsam-2.3.2}/docs/source/segmentationDoc.rst +15 -15
  28. {tsam-2.3.1 → tsam-2.3.2}/docs/source/structureOfTsamDoc.rst +29 -29
  29. {tsam-2.3.1 → tsam-2.3.2}/docs/source/timeseriesaggregationDoc.rst +21 -21
  30. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_example.ipynb +790 -790
  31. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_method_showcase.ipynb +281 -281
  32. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_optiinput.ipynb +480 -480
  33. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_representation.ipynb +1211 -1211
  34. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_segment_period_animation.ipynb +868 -868
  35. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_segment_period_building_timeseries.ipynb +329 -329
  36. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_segment_period_opti.ipynb +249 -249
  37. {tsam-2.3.1 → tsam-2.3.2}/examples/aggregation_segmentation.ipynb +1883 -1883
  38. {tsam-2.3.1 → tsam-2.3.2}/examples/example_k_maxoids.ipynb +674 -674
  39. {tsam-2.3.1 → tsam-2.3.2}/examples/get_clustercenter_indices.py +24 -24
  40. {tsam-2.3.1 → tsam-2.3.2}/examples/predefined_sequence_example.ipynb +1117 -1117
  41. {tsam-2.3.1 → tsam-2.3.2}/examples/results/paretoOptimalAggregation.csv +389 -389
  42. {tsam-2.3.1 → tsam-2.3.2}/examples/results/preprocessed_wind.csv +368 -368
  43. {tsam-2.3.1 → tsam-2.3.2}/examples/results/testperiods_hierarchical.csv +241 -241
  44. {tsam-2.3.1 → tsam-2.3.2}/examples/results/testperiods_kmeans.csv +193 -193
  45. {tsam-2.3.1 → tsam-2.3.2}/examples/results/testperiods_kmedoids.csv +1345 -1345
  46. {tsam-2.3.1 → tsam-2.3.2}/examples/results/testperiods_predefClusterOrder.csv +193 -193
  47. {tsam-2.3.1 → tsam-2.3.2}/examples/results/testperiods_predefClusterOrderAndClusterCenters.csv +193 -193
  48. {tsam-2.3.1 → tsam-2.3.2}/examples/results/testperiods_segmentation.csv +241 -241
  49. {tsam-2.3.1 → tsam-2.3.2}/examples/testdata.csv +8761 -8761
  50. tsam-2.3.2/requirements.txt +7 -0
  51. {tsam-2.3.1 → tsam-2.3.2}/requirements.yml +7 -7
  52. {tsam-2.3.1 → tsam-2.3.2}/requirements_dev.txt +11 -11
  53. {tsam-2.3.1 → tsam-2.3.2}/requirements_dev.yml +8 -8
  54. {tsam-2.3.1 → tsam-2.3.2}/setup.cfg +4 -4
  55. {tsam-2.3.1 → tsam-2.3.2}/setup.py +40 -40
  56. {tsam-2.3.1 → tsam-2.3.2}/test/test_accuracyIndicators.py +63 -63
  57. {tsam-2.3.1 → tsam-2.3.2}/test/test_adjacent_periods.py +42 -42
  58. {tsam-2.3.1 → tsam-2.3.2}/test/test_aggregate_hiearchical.py +402 -402
  59. {tsam-2.3.1 → tsam-2.3.2}/test/test_assert_raises.py +234 -234
  60. {tsam-2.3.1 → tsam-2.3.2}/test/test_averaging.py +57 -57
  61. {tsam-2.3.1 → tsam-2.3.2}/test/test_cluster_order.py +132 -132
  62. {tsam-2.3.1 → tsam-2.3.2}/test/test_durationCurve.py +63 -63
  63. {tsam-2.3.1 → tsam-2.3.2}/test/test_durationRepresentation.py +157 -157
  64. {tsam-2.3.1 → tsam-2.3.2}/test/test_extremePeriods.py +93 -93
  65. {tsam-2.3.1 → tsam-2.3.2}/test/test_hierarchical.py +78 -78
  66. {tsam-2.3.1 → tsam-2.3.2}/test/test_hypertuneAggregation.py +169 -169
  67. {tsam-2.3.1 → tsam-2.3.2}/test/test_k_maxoids.py +57 -57
  68. {tsam-2.3.1 → tsam-2.3.2}/test/test_k_medoids.py +53 -53
  69. {tsam-2.3.1 → tsam-2.3.2}/test/test_k_medoids_contiguity.py +83 -83
  70. {tsam-2.3.1 → tsam-2.3.2}/test/test_minmaxRepresentation.py +70 -70
  71. {tsam-2.3.1 → tsam-2.3.2}/test/test_preprocess.py +43 -43
  72. {tsam-2.3.1 → tsam-2.3.2}/test/test_properties.py +190 -190
  73. {tsam-2.3.1 → tsam-2.3.2}/test/test_samemean.py +51 -51
  74. {tsam-2.3.1 → tsam-2.3.2}/test/test_segmentation.py +109 -109
  75. {tsam-2.3.1 → tsam-2.3.2}/test/test_subhourlyResolution.py +54 -54
  76. {tsam-2.3.1 → tsam-2.3.2}/test/test_subhourly_periods.py +41 -41
  77. {tsam-2.3.1 → tsam-2.3.2}/test/test_weightingFactors.py +70 -70
  78. tsam-2.3.2/tsam/__init__.py +11 -0
  79. {tsam-2.3.1 → tsam-2.3.2}/tsam/hyperparametertuning.py +245 -245
  80. {tsam-2.3.1 → tsam-2.3.2}/tsam/periodAggregation.py +141 -141
  81. {tsam-2.3.1 → tsam-2.3.2}/tsam/representations.py +167 -167
  82. {tsam-2.3.1 → tsam-2.3.2}/tsam/timeseriesaggregation.py +1343 -1343
  83. {tsam-2.3.1 → tsam-2.3.2}/tsam/utils/durationRepresentation.py +204 -204
  84. {tsam-2.3.1 → tsam-2.3.2}/tsam/utils/k_maxoids.py +145 -145
  85. {tsam-2.3.1 → tsam-2.3.2}/tsam/utils/k_medoids_contiguity.py +133 -133
  86. {tsam-2.3.1 → tsam-2.3.2}/tsam/utils/k_medoids_exact.py +234 -234
  87. {tsam-2.3.1 → tsam-2.3.2}/tsam/utils/segmentation.py +118 -118
  88. {tsam-2.3.1 → tsam-2.3.2}/tsam.egg-info/PKG-INFO +168 -165
  89. {tsam-2.3.1 → tsam-2.3.2}/tsam.egg-info/SOURCES.txt +1 -0
  90. {tsam-2.3.1 → tsam-2.3.2}/tsam.egg-info/requires.txt +2 -2
  91. tsam-2.3.1/requirements.txt +0 -7
  92. tsam-2.3.1/tsam/utils/__init__.py +0 -0
  93. {tsam-2.3.1 → tsam-2.3.2}/docs/source/_static/logo.png +0 -0
  94. {tsam-2.3.1 → tsam-2.3.2}/docs/source/_static/tsam-logo.png +0 -0
  95. {tsam-2.3.1/tsam → tsam-2.3.2/tsam/utils}/__init__.py +0 -0
  96. {tsam-2.3.1 → tsam-2.3.2}/tsam.egg-info/dependency_links.txt +0 -0
  97. {tsam-2.3.1 → tsam-2.3.2}/tsam.egg-info/top_level.txt +0 -0
@@ -1,36 +1,43 @@
1
- # This workflow will install Python dependencies and run tests and lint with a single version of Python
2
- # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
3
-
4
- # Based on David Neuroth pylpg
5
-
6
- name: pytest
7
-
8
- on:
9
- push:
10
- pull_request:
11
- branches: [ master ]
12
-
13
- jobs:
14
- build:
15
- runs-on: ubuntu-latest
16
-
17
- steps:
18
- - uses: actions/checkout@v2
19
- - name: Set up Python 3.10
20
- uses: actions/setup-python@v2
21
- with:
22
- python-version: '3.10'
23
- - name: Install dependencies
24
- run: |
25
- python -m pip install --upgrade pip
26
- pip install pytest
27
- pip install pytest-cov
28
- pip install codecov
29
- if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
30
- pip install --no-cache-dir -e .
31
-
32
- - name: Test with pytest
33
- working-directory: ./test/
34
- run: |
35
- pytest
1
+ # This workflow will install Python dependencies and run tests and lint with a single version of Python
2
+ # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
3
+
4
+ # Based on David Neuroth pylpg
5
+
6
+ name: pytest
7
+
8
+ on:
9
+ push:
10
+ pull_request:
11
+ branches: [ master ]
12
+ #if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
13
+
14
+ jobs:
15
+ build:
16
+ runs-on: ${{matrix.os}}
17
+ strategy:
18
+ fail-fast: false
19
+ matrix:
20
+ os: ["ubuntu-latest","ubuntu-20.04", "macos-latest","macos-13","macos-12", "windows-latest","windows-2019"]
21
+ # os: ["ubuntu-latest"]
22
+ python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
23
+
24
+ steps:
25
+ - uses: actions/checkout@v2
26
+ - name: Set up Python 3.10
27
+ uses: actions/setup-python@v2
28
+ with:
29
+ python-version: ${{matrix.python-version}}
30
+ - name: Install dependencies
31
+ run: |
32
+ python -m pip install --upgrade pip
33
+ pip install pytest
34
+ pip install pytest-cov
35
+ pip install codecov
36
+ pip install -r requirements.txt
37
+ pip install --no-cache-dir -e .
38
+
39
+ - name: Test with pytest
40
+ working-directory: ./test/
41
+ run: |
42
+ pytest
36
43
  codecov
@@ -1,17 +1,17 @@
1
- # directories
2
- .idea/
3
- .vscode/
4
- __pycache__/
5
- trash/
6
- *.pytest_cache/
7
- *ipynb_checkpoints/
8
- *.eggs/
9
- docs/build
10
-
11
- # file types to ignore
12
- *.pyc
13
- *.egg-info
14
- *.log
15
- *.lp
16
- *.glp
17
- *.mp4
1
+ # directories
2
+ .idea/
3
+ .vscode/
4
+ __pycache__/
5
+ trash/
6
+ *.pytest_cache/
7
+ *ipynb_checkpoints/
8
+ *.eggs/
9
+ docs/build
10
+
11
+ # file types to ignore
12
+ *.pyc
13
+ *.egg-info
14
+ *.log
15
+ *.lp
16
+ *.glp
17
+ *.mp4
@@ -1,11 +1,11 @@
1
- conda:
2
- image: continuumio/miniconda:latest
3
- tags:
4
- - linux
5
-
6
- script:
7
- - conda env update -q --file=requirements.yml
8
- - conda env update -q --file=requirements_dev.yml
9
- - source activate tsam
10
- - pip install -e .
11
- - pytest --cov=tsam test/
1
+ conda:
2
+ image: continuumio/miniconda:latest
3
+ tags:
4
+ - linux
5
+
6
+ script:
7
+ - conda env update -q --file=requirements.yml
8
+ - conda env update -q --file=requirements_dev.yml
9
+ - source activate tsam
10
+ - pip install -e .
11
+ - pytest --cov=tsam test/
@@ -1,15 +1,15 @@
1
- version: 2
2
-
3
- build:
4
- os: ubuntu-22.04
5
- tools:
6
- python: "3.11"
7
- apt_packages:
8
- - texlive-latex-base
9
- - texlive-latex-extra
10
- - dvipng
11
-
12
- python:
13
- install:
14
- - requirements: requirements_dev.txt
1
+ version: 2
2
+
3
+ build:
4
+ os: ubuntu-22.04
5
+ tools:
6
+ python: "3.11"
7
+ apt_packages:
8
+ - texlive-latex-base
9
+ - texlive-latex-extra
10
+ - dvipng
11
+
12
+ python:
13
+ install:
14
+ - requirements: requirements_dev.txt
15
15
  system_packages: false
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2017 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
1
+ MIT License
2
+
3
+ Copyright (c) 2017 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
21
  SOFTWARE.
@@ -1,3 +1,3 @@
1
- include examples/testdata.csv
2
- include examples/results/*.csv
3
- include requirements.yml
1
+ include examples/testdata.csv
2
+ include examples/results/*.csv
3
+ include requirements.yml
tsam-2.3.2/Makefile ADDED
@@ -0,0 +1,14 @@
1
+ test:
2
+ pytest
3
+
4
+ sdist :
5
+ python setup.py sdist
6
+
7
+ upload:
8
+ twine upload dist/*
9
+
10
+ clean:
11
+ rm dist/*
12
+
13
+ dist: sdist upload clean
14
+
@@ -1,165 +1,168 @@
1
- Metadata-Version: 2.1
2
- Name: tsam
3
- Version: 2.3.1
4
- Summary: Time series aggregation module (tsam) to create typical periods
5
- Home-page: https://github.com/FZJ-IEK3-VSA/tsam
6
- Author: Leander Kotzur, Maximilian Hoffmann
7
- Author-email: leander.kotzur@googlemail.com, max.hoffmann@fz-juelich.de
8
- License: UNKNOWN
9
- Keywords: clustering,optimization
10
- Platform: UNKNOWN
11
- Classifier: Development Status :: 4 - Beta
12
- Classifier: Intended Audience :: End Users/Desktop
13
- Classifier: Intended Audience :: Science/Research
14
- Classifier: License :: OSI Approved :: MIT License
15
- Classifier: Natural Language :: English
16
- Classifier: Operating System :: OS Independent
17
- Classifier: Programming Language :: Python
18
- Classifier: Programming Language :: Python :: 2
19
- Classifier: Programming Language :: Python :: 2.7
20
- Classifier: Programming Language :: Python :: 3
21
- Classifier: Programming Language :: Python :: 3.4
22
- Classifier: Programming Language :: Python :: 3.5
23
- Classifier: Programming Language :: Python :: 3.6
24
- Classifier: Topic :: Scientific/Engineering :: Mathematics
25
- Classifier: Topic :: Software Development :: Libraries :: Python Modules
26
- Description-Content-Type: text/markdown
27
- License-File: LICENSE.txt
28
-
29
- [![pytest master status](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/pytest.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
30
- [![badge](https://img.shields.io/badge/launch-binder-579aca.svg?logo=)](https://mybinder.org/v2/gh/FZJ-IEK3-VSA/voila-tsam/HEAD?urlpath=voila/render/Time-Series-Aggregation-Module.ipynb)
31
-
32
- <a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
33
-
34
- # tsam - Time Series Aggregation Module
35
- tsam is a python package which uses different machine learning algorithms for the aggregation of time series. The data aggregation can be performed in two freely combinable dimensions: By representing the time series by a user-defined number of typical periods or by decreasing the temporal resolution.
36
- tsam was originally designed for reducing the computational load for large-scale energy system optimization models by aggregating their input data, but is applicable for all types of time series, e.g., weather data, load data, both simultaneously or other arbitrary groups of time series.
37
-
38
- The documentation of the tsam code can be found [**here**](https://tsam.readthedocs.io/en/latest/index.html).
39
-
40
- ## Features
41
- * flexible handling of multidimensional time-series via the pandas module
42
- * different aggregation methods implemented (averaging, k-means, exact k-medoids, hierarchical, k-maxoids, k-medoids with contiguity), which are based on scikit-learn, or self-programmed with pyomo
43
- * hypertuning of aggregation parameters to find the optimal combination of the number of segments inside a period and the number of typical periods
44
- * novel representation methods, keeping statistical attributes, such as the distribution
45
- * flexible integration of extreme periods as own cluster centers
46
- * weighting for the case of multidimensional time-series to represent their relevance
47
-
48
-
49
- ## Installation
50
- Directly install via pip as follows:
51
-
52
- pip install tsam
53
-
54
- Alternatively, clone a local copy of the repository to your computer
55
-
56
- git clone https://github.com/FZJ-IEK3-VSA/tsam.git
57
-
58
- Then install tsam via pip as follow
59
-
60
- cd tsam
61
- pip install .
62
-
63
- Or install directly via python as
64
-
65
- python setup.py install
66
-
67
- In order to use the k-medoids clustering, make sure that you have installed a MILP solver. As default [HiGHS](https://github.com/ERGO-Code/HiGHS) is used. Nevertheless, in case you have access to a license we recommend commercial solvers (e.g. Gurobi or CPLEX) since they have a better performance.
68
-
69
-
70
- ## Examples
71
-
72
- ### Basic workflow
73
-
74
- A small example how tsam can be used is decribed as follows
75
- ```python
76
- import pandas as pd
77
- import tsam.timeseriesaggregation as tsam
78
- ```
79
-
80
-
81
- Read in the time series data set with pandas
82
- ```python
83
- raw = pd.read_csv('testdata.csv', index_col = 0)
84
- ```
85
-
86
- Initialize an aggregation object and define the length of a single period, the number of typical periods, the number of segments in each period, the aggregation method and the representation method - here duration/distribution representation which contains the minimum and maximum value of the original time series
87
- ```python
88
- aggregation = tsam.TimeSeriesAggregation(raw,
89
- noTypicalPeriods = 8,
90
- hoursPerPeriod = 24,
91
- segmentation = True,
92
- noSegments = 8,
93
- representationMethod = "distributionAndMinMaxRepresentation",
94
- distributionPeriodWise = False
95
- clusterMethod = 'hierarchical'
96
- )
97
- ```
98
-
99
- Run the aggregation to typical periods
100
- ```python
101
- typPeriods = aggregation.createTypicalPeriods()
102
- ```
103
-
104
- Store the results as .csv file
105
-
106
- ```python
107
- typPeriods.to_csv('typperiods.csv')
108
- ```
109
-
110
- ### Detailed examples
111
-
112
- A [**first example**](/examples/aggregation_example.ipynb) shows the capabilites of tsam as jupyter notebook.
113
-
114
- A [**second example**](/examples/aggregation_optiinput.ipynb) shows in more detail how to access the relevant aggregation results required for paramtrizing e.g. an optimization.
115
-
116
- The example time series are based on a department [publication](https://www.mdpi.com/1996-1073/10/3/361) and the [test reference years of the DWD](https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.html).
117
-
118
- ## License
119
-
120
- MIT License
121
-
122
- Copyright (C) 2016-2022 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
123
-
124
- You should have received a copy of the MIT License along with this program.
125
- If not, see https://opensource.org/licenses/MIT
126
-
127
- The core developer team sits in the [Institute of Energy and Climate Research - Techno-Economic Energy Systems Analysis (IEK-3)](https://www.fz-juelich.de/iek/iek-3/EN/Home/home_node.html) belonging to the [Forschungszentrum Jülich](https://www.fz-juelich.de/).
128
-
129
- ## Citing and further reading
130
-
131
- If you want to use tsam in a published work, **please kindly cite** our latest journal articles:
132
- * Hoffmann et al. (2022):\
133
- [**The Pareto-Optimal Temporal Aggregation of Energy System Models**](https://www.sciencedirect.com/science/article/abs/pii/S0306261922004342)
134
-
135
-
136
- If you are further interested in the impact of time series aggregation on the cost-optimal results on different energy system use cases, you can find a publication which validates the methods and describes their cababilites via the following [**link**](https://www.sciencedirect.com/science/article/pii/S0960148117309783). A second publication introduces a method how to model state variables (e.g. the state of charge of energy storage components) between the aggregated typical periods which can be found [**here**](https://www.sciencedirect.com/science/article/pii/S0306261918300242). Finally yet importantly the potential of time series aggregation to simplify mixed integer linear problems is investigated [**here**](https://www.mdpi.com/1996-1073/12/14/2825).
137
-
138
- The publications about time series aggregation for energy system optimization models published alongside the development of tsam are listed below:
139
- * Hoffmann et al. (2021):\
140
- [**The Pareto-Optimal Temporal Aggregation of Energy System Models**](https://www.sciencedirect.com/science/article/abs/pii/S0306261922004342)\
141
- (open access manuscript to be found [**here**](https://arxiv.org/abs/1710.07593))
142
- * Hoffmann et al. (2021):\
143
- [**Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models**](https://www.sciencedirect.com/science/article/abs/pii/S0306261921011545)
144
- * Hoffmann et al. (2020):\
145
- [**A Review on Time Series Aggregation Methods for Energy System Models**](https://www.mdpi.com/1996-1073/13/3/641)
146
- * Kannengießer et al. (2019):\
147
- [**Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System**](https://www.mdpi.com/1996-1073/12/14/2825)
148
- * Kotzur et al. (2018):\
149
- [**Time series aggregation for energy system design: Modeling seasonal storage**](https://www.sciencedirect.com/science/article/pii/S0306261918300242)\
150
- (open access manuscript to be found [**here**](https://arxiv.org/abs/1710.07593))
151
- * Kotzur et al. (2018):\
152
- [**Impact of different time series aggregation methods on optimal energy system design**](https://www.sciencedirect.com/science/article/abs/pii/S0960148117309783)\
153
- (open access manuscript to be found [**here**](https://arxiv.org/abs/1708.00420))
154
-
155
-
156
-
157
- ## Acknowledgement
158
-
159
- This work is supported by the Helmholtz Association under the Joint Initiative ["Energy System 2050 A Contribution of the Research Field Energy"](https://www.helmholtz.de/en/research/energy/energy_system_2050/) and the program ["Energy System Design"](https://www.esd.kit.edu/index.php) and within the [BMWi/BMWk](https://www.bmwk.de/Navigation/DE/Home/home.html) funded project [**METIS**](http://www.metis-platform.net/).
160
-
161
- <a href="https://www.helmholtz.de/en/"><img src="https://www.helmholtz.de/fileadmin/user_upload/05_aktuelles/Marke_Design/logos/HG_LOGO_S_ENG_RGB.jpg" alt="Helmholtz Logo" width="200px" style="float:right"></a>
162
-
163
-
164
-
165
-
1
+ Metadata-Version: 2.1
2
+ Name: tsam
3
+ Version: 2.3.2
4
+ Summary: Time series aggregation module (tsam) to create typical periods
5
+ Home-page: https://github.com/FZJ-IEK3-VSA/tsam
6
+ Author: Leander Kotzur, Maximilian Hoffmann
7
+ Author-email: leander.kotzur@googlemail.com, maximilian.hoffmann@julumni.fz-juelich.de
8
+ Keywords: clustering,optimization
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: Intended Audience :: End Users/Desktop
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Natural Language :: English
14
+ Classifier: Operating System :: OS Independent
15
+ Classifier: Programming Language :: Python
16
+ Classifier: Programming Language :: Python :: 2
17
+ Classifier: Programming Language :: Python :: 2.7
18
+ Classifier: Programming Language :: Python :: 3
19
+ Classifier: Programming Language :: Python :: 3.4
20
+ Classifier: Programming Language :: Python :: 3.5
21
+ Classifier: Programming Language :: Python :: 3.6
22
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
23
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
24
+ Description-Content-Type: text/markdown
25
+ License-File: LICENSE.txt
26
+ Requires-Dist: scikit-learn>=0.0
27
+ Requires-Dist: pandas<3.0,>=0.18.1
28
+ Requires-Dist: numpy<2.0,>=1.11.0
29
+ Requires-Dist: pyomo>=6.4.3
30
+ Requires-Dist: networkx
31
+ Requires-Dist: tqdm
32
+ Requires-Dist: highspy
33
+
34
+ [![pytest master status](https://github.com/FZJ-IEK3-VSA/tsam/actions/workflows/pytest.yml/badge.svg?branch=master)](https://github.com/FZJ-IEK3-VSA/tsam/actions) [![Version](https://img.shields.io/pypi/v/tsam.svg)](https://pypi.python.org/pypi/tsam) [![Documentation Status](https://readthedocs.org/projects/tsam/badge/?version=latest)](https://tsam.readthedocs.io/en/latest/) [![PyPI - License](https://img.shields.io/pypi/l/tsam)]((https://github.com/FZJ-IEK3-VSA/tsam/blob/master/LICENSE.txt)) [![codecov](https://codecov.io/gh/FZJ-IEK3-VSA/tsam/branch/master/graph/badge.svg)](https://codecov.io/gh/FZJ-IEK3-VSA/tsam)
35
+ [![badge](https://img.shields.io/badge/launch-binder-579aca.svg?logo=)](https://mybinder.org/v2/gh/FZJ-IEK3-VSA/voila-tsam/HEAD?urlpath=voila/render/Time-Series-Aggregation-Module.ipynb)
36
+
37
+ <a href="https://www.fz-juelich.de/en/iek/iek-3"><img src="https://www.fz-juelich.de/static/media/Logo.2ceb35fc.svg" alt="Forschungszentrum Juelich Logo" width="230px"></a>
38
+
39
+ # tsam - Time Series Aggregation Module
40
+ tsam is a python package which uses different machine learning algorithms for the aggregation of time series. The data aggregation can be performed in two freely combinable dimensions: By representing the time series by a user-defined number of typical periods or by decreasing the temporal resolution.
41
+ tsam was originally designed for reducing the computational load for large-scale energy system optimization models by aggregating their input data, but is applicable for all types of time series, e.g., weather data, load data, both simultaneously or other arbitrary groups of time series.
42
+
43
+ The documentation of the tsam code can be found [**here**](https://tsam.readthedocs.io/en/latest/index.html).
44
+
45
+ ## Features
46
+ * flexible handling of multidimensional time-series via the pandas module
47
+ * different aggregation methods implemented (averaging, k-means, exact k-medoids, hierarchical, k-maxoids, k-medoids with contiguity), which are based on scikit-learn, or self-programmed with pyomo
48
+ * hypertuning of aggregation parameters to find the optimal combination of the number of segments inside a period and the number of typical periods
49
+ * novel representation methods, keeping statistical attributes, such as the distribution
50
+ * flexible integration of extreme periods as own cluster centers
51
+ * weighting for the case of multidimensional time-series to represent their relevance
52
+
53
+
54
+ ## Installation
55
+ Directly install via pip as follows:
56
+
57
+ pip install tsam
58
+
59
+ Alternatively, clone a local copy of the repository to your computer
60
+
61
+ git clone https://github.com/FZJ-IEK3-VSA/tsam.git
62
+
63
+ Then install tsam via pip as follow
64
+
65
+ cd tsam
66
+ pip install .
67
+
68
+ Or install directly via python as
69
+
70
+ python setup.py install
71
+
72
+ In order to use the k-medoids clustering, make sure that you have installed a MILP solver. As default [HiGHS](https://github.com/ERGO-Code/HiGHS) is used. Nevertheless, in case you have access to a license we recommend commercial solvers (e.g. Gurobi or CPLEX) since they have a better performance.
73
+
74
+
75
+ ## Examples
76
+
77
+ ### Basic workflow
78
+
79
+ A small example how tsam can be used is decribed as follows
80
+ ```python
81
+ import pandas as pd
82
+ import tsam.timeseriesaggregation as tsam
83
+ ```
84
+
85
+
86
+ Read in the time series data set with pandas
87
+ ```python
88
+ raw = pd.read_csv('testdata.csv', index_col = 0)
89
+ ```
90
+
91
+ Initialize an aggregation object and define the length of a single period, the number of typical periods, the number of segments in each period, the aggregation method and the representation method - here duration/distribution representation which contains the minimum and maximum value of the original time series
92
+ ```python
93
+ aggregation = tsam.TimeSeriesAggregation(raw,
94
+ noTypicalPeriods = 8,
95
+ hoursPerPeriod = 24,
96
+ segmentation = True,
97
+ noSegments = 8,
98
+ representationMethod = "distributionAndMinMaxRepresentation",
99
+ distributionPeriodWise = False
100
+ clusterMethod = 'hierarchical'
101
+ )
102
+ ```
103
+
104
+ Run the aggregation to typical periods
105
+ ```python
106
+ typPeriods = aggregation.createTypicalPeriods()
107
+ ```
108
+
109
+ Store the results as .csv file
110
+
111
+ ```python
112
+ typPeriods.to_csv('typperiods.csv')
113
+ ```
114
+
115
+ ### Detailed examples
116
+
117
+ A [**first example**](/examples/aggregation_example.ipynb) shows the capabilites of tsam as jupyter notebook.
118
+
119
+ A [**second example**](/examples/aggregation_optiinput.ipynb) shows in more detail how to access the relevant aggregation results required for paramtrizing e.g. an optimization.
120
+
121
+ The example time series are based on a department [publication](https://www.mdpi.com/1996-1073/10/3/361) and the [test reference years of the DWD](https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.html).
122
+
123
+ ## License
124
+
125
+ MIT License
126
+
127
+ Copyright (C) 2016-2022 Leander Kotzur (FZJ IEK-3), Maximilian Hoffmann (FZJ IEK-3), Peter Markewitz (FZJ IEK-3), Martin Robinius (FZJ IEK-3), Detlef Stolten (FZJ IEK-3)
128
+
129
+ You should have received a copy of the MIT License along with this program.
130
+ If not, see https://opensource.org/licenses/MIT
131
+
132
+ The core developer team sits in the [Institute of Energy and Climate Research - Techno-Economic Energy Systems Analysis (IEK-3)](https://www.fz-juelich.de/iek/iek-3/EN/Home/home_node.html) belonging to the [Forschungszentrum Jülich](https://www.fz-juelich.de/).
133
+
134
+ ## Citing and further reading
135
+
136
+ If you want to use tsam in a published work, **please kindly cite** our latest journal articles:
137
+ * Hoffmann et al. (2022):\
138
+ [**The Pareto-Optimal Temporal Aggregation of Energy System Models**](https://www.sciencedirect.com/science/article/abs/pii/S0306261922004342)
139
+
140
+
141
+ If you are further interested in the impact of time series aggregation on the cost-optimal results on different energy system use cases, you can find a publication which validates the methods and describes their cababilites via the following [**link**](https://www.sciencedirect.com/science/article/pii/S0960148117309783). A second publication introduces a method how to model state variables (e.g. the state of charge of energy storage components) between the aggregated typical periods which can be found [**here**](https://www.sciencedirect.com/science/article/pii/S0306261918300242). Finally yet importantly the potential of time series aggregation to simplify mixed integer linear problems is investigated [**here**](https://www.mdpi.com/1996-1073/12/14/2825).
142
+
143
+ The publications about time series aggregation for energy system optimization models published alongside the development of tsam are listed below:
144
+ * Hoffmann et al. (2021):\
145
+ [**The Pareto-Optimal Temporal Aggregation of Energy System Models**](https://www.sciencedirect.com/science/article/abs/pii/S0306261922004342)\
146
+ (open access manuscript to be found [**here**](https://arxiv.org/abs/1710.07593))
147
+ * Hoffmann et al. (2021):\
148
+ [**Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models**](https://www.sciencedirect.com/science/article/abs/pii/S0306261921011545)
149
+ * Hoffmann et al. (2020):\
150
+ [**A Review on Time Series Aggregation Methods for Energy System Models**](https://www.mdpi.com/1996-1073/13/3/641)
151
+ * Kannengießer et al. (2019):\
152
+ [**Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System**](https://www.mdpi.com/1996-1073/12/14/2825)
153
+ * Kotzur et al. (2018):\
154
+ [**Time series aggregation for energy system design: Modeling seasonal storage**](https://www.sciencedirect.com/science/article/pii/S0306261918300242)\
155
+ (open access manuscript to be found [**here**](https://arxiv.org/abs/1710.07593))
156
+ * Kotzur et al. (2018):\
157
+ [**Impact of different time series aggregation methods on optimal energy system design**](https://www.sciencedirect.com/science/article/abs/pii/S0960148117309783)\
158
+ (open access manuscript to be found [**here**](https://arxiv.org/abs/1708.00420))
159
+
160
+
161
+
162
+ ## Acknowledgement
163
+
164
+ This work is supported by the Helmholtz Association under the Joint Initiative ["Energy System 2050 A Contribution of the Research Field Energy"](https://www.helmholtz.de/en/research/energy/energy_system_2050/) and the program ["Energy System Design"](https://www.esd.kit.edu/index.php) and within the [BMWi/BMWk](https://www.bmwk.de/Navigation/DE/Home/home.html) funded project [**METIS**](http://www.metis-platform.net/).
165
+
166
+ <a href="https://www.helmholtz.de/en/"><img src="https://www.helmholtz.de/fileadmin/user_upload/05_aktuelles/Marke_Design/logos/HG_LOGO_S_ENG_RGB.jpg" alt="Helmholtz Logo" width="200px" style="float:right"></a>
167
+
168
+