tsadmetrics 0.1.17__tar.gz → 1.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tsadmetrics-0.1.17/tsadmetrics.egg-info → tsadmetrics-1.0.0}/PKG-INFO +21 -6
- tsadmetrics-1.0.0/README.md +46 -0
- {tsadmetrics-0.1.17/docs_manual → tsadmetrics-1.0.0/docs/api_doc}/conf.py +3 -26
- {tsadmetrics-0.1.17/docs → tsadmetrics-1.0.0/docs/full_doc}/conf.py +1 -1
- {tsadmetrics-0.1.17/docs_api → tsadmetrics-1.0.0/docs/manual_doc}/conf.py +3 -26
- tsadmetrics-1.0.0/examples/example_direct_data.py +28 -0
- tsadmetrics-1.0.0/examples/example_direct_single_data.py +25 -0
- tsadmetrics-1.0.0/examples/example_file_reference.py +24 -0
- tsadmetrics-1.0.0/examples/example_global_config_file.py +13 -0
- tsadmetrics-1.0.0/examples/example_metric_config_file.py +19 -0
- tsadmetrics-1.0.0/examples/example_simple_metric.py +8 -0
- tsadmetrics-1.0.0/examples/specific_examples/AbsoluteDetectionDistance_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/AffiliationbasedFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/AverageDetectionCount_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/CompositeFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/DelayThresholdedPointadjustedFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/DetectionAccuracyInRange_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/EnhancedTimeseriesAwareFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/LatencySparsityawareFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/MeanTimeToDetect_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/NabScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/PateFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/Pate_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/PointadjustedAtKFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/PointadjustedAucPr_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/PointadjustedAucRoc_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/PointadjustedFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/RangebasedFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/SegmentwiseFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/TemporalDistance_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/TimeTolerantFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/TimeseriesAwareFScore_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/TotalDetectedInRange_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/VusPr_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/VusRoc_example.py +24 -0
- tsadmetrics-1.0.0/examples/specific_examples/WeightedDetectionDifference_example.py +24 -0
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/pyproject.toml +1 -4
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/setup.py +4 -8
- tsadmetrics-1.0.0/tests/test_dpm.py +212 -0
- tsadmetrics-1.0.0/tests/test_ptdm.py +366 -0
- tsadmetrics-1.0.0/tests/test_registry.py +58 -0
- tsadmetrics-1.0.0/tests/test_runner.py +185 -0
- tsadmetrics-1.0.0/tests/test_spm.py +213 -0
- tsadmetrics-1.0.0/tests/test_tmem.py +198 -0
- tsadmetrics-1.0.0/tests/test_tpdm.py +369 -0
- tsadmetrics-1.0.0/tests/test_tstm.py +338 -0
- tsadmetrics-1.0.0/tsadmetrics/base/Metric.py +188 -0
- tsadmetrics-1.0.0/tsadmetrics/evaluation/Report.py +25 -0
- tsadmetrics-1.0.0/tsadmetrics/evaluation/Runner.py +253 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/Registry.py +141 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/__init__.py +2 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/spm/PointwiseAucPr.py +62 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/spm/PointwiseAucRoc.py +63 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/spm/PointwiseFScore.py +86 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/spm/PrecisionAtK.py +81 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/spm/__init__.py +9 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/dpm/DelayThresholdedPointadjustedFScore.py +83 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/dpm/LatencySparsityawareFScore.py +76 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/dpm/MeanTimeToDetect.py +47 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/dpm/NabScore.py +60 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/dpm/__init__.py +11 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/ptdm/AverageDetectionCount.py +53 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/ptdm/DetectionAccuracyInRange.py +66 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/ptdm/PointadjustedAtKFScore.py +80 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/ptdm/TimeseriesAwareFScore.py +248 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/ptdm/TotalDetectedInRange.py +65 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/ptdm/WeightedDetectionDifference.py +97 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/ptdm/__init__.py +12 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tmem/AbsoluteDetectionDistance.py +48 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tmem/EnhancedTimeseriesAwareFScore.py +252 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tmem/TemporalDistance.py +68 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tmem/__init__.py +9 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tpdm/CompositeFScore.py +104 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tpdm/PointadjustedAucPr.py +123 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tpdm/PointadjustedAucRoc.py +119 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tpdm/PointadjustedFScore.py +96 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tpdm/RangebasedFScore.py +236 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tpdm/SegmentwiseFScore.py +73 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tpdm/__init__.py +12 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tstm/AffiliationbasedFScore.py +68 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tstm/Pate.py +62 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tstm/PateFScore.py +61 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tstm/TimeTolerantFScore.py +85 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tstm/VusPr.py +51 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tstm/VusRoc.py +55 -0
- tsadmetrics-1.0.0/tsadmetrics/metrics/tem/tstm/__init__.py +15 -0
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/affiliation/_integral_interval.py → tsadmetrics-1.0.0/tsadmetrics/utils/functions_affiliation.py +377 -9
- tsadmetrics-1.0.0/tsadmetrics/utils/functions_auc.py +393 -0
- tsadmetrics-1.0.0/tsadmetrics/utils/functions_conversion.py +63 -0
- tsadmetrics-1.0.0/tsadmetrics/utils/functions_counting_metrics.py +26 -0
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/latency_sparsity_aware.py → tsadmetrics-1.0.0/tsadmetrics/utils/functions_latency_sparsity_aware.py +1 -1
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/nabscore.py → tsadmetrics-1.0.0/tsadmetrics/utils/functions_nabscore.py +15 -1
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0/tsadmetrics.egg-info}/PKG-INFO +21 -6
- tsadmetrics-1.0.0/tsadmetrics.egg-info/SOURCES.txt +104 -0
- tsadmetrics-1.0.0/tsadmetrics.egg-info/top_level.txt +4 -0
- tsadmetrics-0.1.17/README.md +0 -31
- tsadmetrics-0.1.17/entorno/bin/activate_this.py +0 -32
- tsadmetrics-0.1.17/entorno/bin/rst2html.py +0 -23
- tsadmetrics-0.1.17/entorno/bin/rst2html4.py +0 -26
- tsadmetrics-0.1.17/entorno/bin/rst2html5.py +0 -33
- tsadmetrics-0.1.17/entorno/bin/rst2latex.py +0 -26
- tsadmetrics-0.1.17/entorno/bin/rst2man.py +0 -27
- tsadmetrics-0.1.17/entorno/bin/rst2odt.py +0 -28
- tsadmetrics-0.1.17/entorno/bin/rst2odt_prepstyles.py +0 -20
- tsadmetrics-0.1.17/entorno/bin/rst2pseudoxml.py +0 -23
- tsadmetrics-0.1.17/entorno/bin/rst2s5.py +0 -24
- tsadmetrics-0.1.17/entorno/bin/rst2xetex.py +0 -27
- tsadmetrics-0.1.17/entorno/bin/rst2xml.py +0 -23
- tsadmetrics-0.1.17/entorno/bin/rstpep2html.py +0 -25
- tsadmetrics-0.1.17/tests/test_binary.py +0 -946
- tsadmetrics-0.1.17/tests/test_non_binary.py +0 -450
- tsadmetrics-0.1.17/tests/test_utils.py +0 -49
- tsadmetrics-0.1.17/tsadmetrics/__init__.py +0 -21
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +0 -86
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +0 -68
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/affiliation/generics.py +0 -135
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/affiliation/metrics.py +0 -114
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/auc_roc_pr_plot.py +0 -295
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/discontinuity_graph.py +0 -109
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +0 -175
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +0 -50
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +0 -184
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +0 -386
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +0 -362
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/metrics.py +0 -698
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/__init__.py +0 -0
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +0 -165
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +0 -121
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +0 -61
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +0 -86
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +0 -21
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +0 -85
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/tests.py +0 -376
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/threshold_plt.py +0 -30
- tsadmetrics-0.1.17/tsadmetrics/_tsadeval/time_tolerant.py +0 -33
- tsadmetrics-0.1.17/tsadmetrics/binary_metrics.py +0 -1652
- tsadmetrics-0.1.17/tsadmetrics/metric_utils.py +0 -98
- tsadmetrics-0.1.17/tsadmetrics/non_binary_metrics.py +0 -372
- tsadmetrics-0.1.17/tsadmetrics/scripts/__init__.py +0 -0
- tsadmetrics-0.1.17/tsadmetrics/scripts/compute_metrics.py +0 -42
- tsadmetrics-0.1.17/tsadmetrics/utils.py +0 -124
- tsadmetrics-0.1.17/tsadmetrics/validation.py +0 -35
- tsadmetrics-0.1.17/tsadmetrics.egg-info/SOURCES.txt +0 -71
- tsadmetrics-0.1.17/tsadmetrics.egg-info/entry_points.txt +0 -2
- tsadmetrics-0.1.17/tsadmetrics.egg-info/top_level.txt +0 -6
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/MANIFEST.in +0 -0
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/setup.cfg +0 -0
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/tests/__init__.py +0 -0
- {tsadmetrics-0.1.17/tsadmetrics/_tsadeval → tsadmetrics-1.0.0/tsadmetrics}/__init__.py +0 -0
- {tsadmetrics-0.1.17/tsadmetrics/_tsadeval/affiliation → tsadmetrics-1.0.0/tsadmetrics/base}/__init__.py +0 -0
- {tsadmetrics-0.1.17/tsadmetrics/_tsadeval/eTaPR_pkg/DataManage → tsadmetrics-1.0.0/tsadmetrics/evaluation}/__init__.py +0 -0
- {tsadmetrics-0.1.17/tsadmetrics/_tsadeval/eTaPR_pkg → tsadmetrics-1.0.0/tsadmetrics/metrics/tem}/__init__.py +0 -0
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/tsadmetrics/py.typed +0 -0
- /tsadmetrics-0.1.17/tsadmetrics/_tsadeval/vus_utils.py → /tsadmetrics-1.0.0/tsadmetrics/utils/functions_vus.py +0 -0
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/tsadmetrics.egg-info/dependency_links.txt +0 -0
- {tsadmetrics-0.1.17 → tsadmetrics-1.0.0}/tsadmetrics.egg-info/requires.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: tsadmetrics
|
3
|
-
Version: 0.
|
3
|
+
Version: 1.0.0
|
4
4
|
Summary: Librería para evaluación de detección de anomalías en series temporales
|
5
5
|
Home-page: https://github.com/pathsko/TSADmetrics
|
6
6
|
Author: Pedro Rafael Velasco Priego
|
@@ -23,17 +23,32 @@ Requires-Dist: tzdata==2024.1
|
|
23
23
|
|
24
24
|
# TSADmetrics - Time Series Anomaly Detection Metrics
|
25
25
|
|
26
|
-
**TSADmetrics** is a Python library for evaluating anomaly detection algorithms in time series data.
|
26
|
+
**TSADmetrics** is a Python library for evaluating anomaly detection algorithms in time series data.
|
27
|
+
It provides a comprehensive set of metrics specifically designed to handle the temporal nature of anomalies.
|
28
|
+
|
29
|
+
---
|
27
30
|
|
28
31
|
## Features
|
29
32
|
|
30
|
-
- **
|
33
|
+
- **Metric Taxonomy**: Metrics are categorized into types based on how they handle temporal context:
|
34
|
+
|
35
|
+
- **MPI Metrics**: Evaluate predictions at each point independently, ignoring temporal continuity.
|
36
|
+
- **MET Metrics**: Consider temporal context, analyzing when and how anomalies occur.
|
37
|
+
- **MDPT**: Partial detection within a real anomaly event counts as correct.
|
38
|
+
- **MDTP**: Requires detection to cover a significant fraction of the real anomaly.
|
39
|
+
- **MECT**: Measures alignment of real vs predicted anomaly events.
|
40
|
+
- **MPR**: Penalizes late detections.
|
41
|
+
- **MTDT**: Allows temporal tolerance for early or late detections.
|
42
|
+
|
43
|
+
- **Direct Metric Usage**: Instantiate any metric class and call `compute()` for individual evaluation.
|
44
|
+
|
45
|
+
- **Batch Evaluation**: Use `Runner` to evaluate multiple datasets and metrics at once, with support for both direct data and CSV/JSON input.
|
31
46
|
|
32
|
-
- **
|
47
|
+
- **Flexible Configuration**: Load metrics from YAML configuration files or global evaluation config files.
|
33
48
|
|
34
|
-
- **
|
49
|
+
- **CLI Tool**: Compute metrics directly from files without writing Python code.
|
35
50
|
|
36
|
-
|
51
|
+
---
|
37
52
|
|
38
53
|
## Installation
|
39
54
|
|
@@ -0,0 +1,46 @@
|
|
1
|
+
# TSADmetrics - Time Series Anomaly Detection Metrics
|
2
|
+
|
3
|
+
**TSADmetrics** is a Python library for evaluating anomaly detection algorithms in time series data.
|
4
|
+
It provides a comprehensive set of metrics specifically designed to handle the temporal nature of anomalies.
|
5
|
+
|
6
|
+
---
|
7
|
+
|
8
|
+
## Features
|
9
|
+
|
10
|
+
- **Metric Taxonomy**: Metrics are categorized into types based on how they handle temporal context:
|
11
|
+
|
12
|
+
- **MPI Metrics**: Evaluate predictions at each point independently, ignoring temporal continuity.
|
13
|
+
- **MET Metrics**: Consider temporal context, analyzing when and how anomalies occur.
|
14
|
+
- **MDPT**: Partial detection within a real anomaly event counts as correct.
|
15
|
+
- **MDTP**: Requires detection to cover a significant fraction of the real anomaly.
|
16
|
+
- **MECT**: Measures alignment of real vs predicted anomaly events.
|
17
|
+
- **MPR**: Penalizes late detections.
|
18
|
+
- **MTDT**: Allows temporal tolerance for early or late detections.
|
19
|
+
|
20
|
+
- **Direct Metric Usage**: Instantiate any metric class and call `compute()` for individual evaluation.
|
21
|
+
|
22
|
+
- **Batch Evaluation**: Use `Runner` to evaluate multiple datasets and metrics at once, with support for both direct data and CSV/JSON input.
|
23
|
+
|
24
|
+
- **Flexible Configuration**: Load metrics from YAML configuration files or global evaluation config files.
|
25
|
+
|
26
|
+
- **CLI Tool**: Compute metrics directly from files without writing Python code.
|
27
|
+
|
28
|
+
---
|
29
|
+
|
30
|
+
## Installation
|
31
|
+
|
32
|
+
Install TSADmetrics via pip:
|
33
|
+
|
34
|
+
```bash
|
35
|
+
pip install tsadmetrics
|
36
|
+
```
|
37
|
+
|
38
|
+
## Documentation
|
39
|
+
|
40
|
+
The complete documentation for TSADmetrics is available at:
|
41
|
+
📚 [https://tsadmetrics.readthedocs.io/](https://tsadmetrics.readthedocs.io/)
|
42
|
+
|
43
|
+
## Acknowledgements
|
44
|
+
|
45
|
+
This library is based on the concepts and implementations from:
|
46
|
+
Sørbø, S., & Ruocco, M. (2023). *Navigating the metric maze: a taxonomy of evaluation metrics for anomaly detection in time series*. https://doi.org/10.1007/s10618-023-00988-8
|
@@ -6,7 +6,7 @@ import sys
|
|
6
6
|
sys.path.insert(0, os.path.abspath('../'))
|
7
7
|
|
8
8
|
|
9
|
-
project = 'TSADmetrics'
|
9
|
+
project = 'TSADmetrics API Reference'
|
10
10
|
copyright = '2025, Pedro Rafael Velasco Priego'
|
11
11
|
author = 'Pedro Rafael Velasco Priego'
|
12
12
|
release = 'MIT'
|
@@ -15,7 +15,7 @@ release = 'MIT'
|
|
15
15
|
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
16
16
|
|
17
17
|
|
18
|
-
extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc',]
|
18
|
+
extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc','sphinx.ext.mathjax']
|
19
19
|
|
20
20
|
|
21
21
|
|
@@ -63,28 +63,5 @@ latex_elements = {
|
|
63
63
|
'maxlistdepth': '10', # Aumenta el límite de anidamiento
|
64
64
|
'papersize': 'a4paper',
|
65
65
|
'pointsize': '10pt',
|
66
|
-
|
67
|
-
\makeatletter
|
68
|
-
\begin{titlepage}
|
69
|
-
\noindent\rule{\textwidth}{1pt}\\[3cm]
|
70
|
-
\begin{center}
|
71
|
-
{\Huge\sffamily\bfseries TSADmetrics User Manual}\\[1.5cm]
|
72
|
-
{\Large\sffamily Time Series Anomaly Detection Metrics}\\[3cm]
|
73
|
-
\begin{minipage}{0.8\textwidth}
|
74
|
-
\centering
|
75
|
-
{\large\sffamily
|
76
|
-
\begin{tabular}{l@{\hspace{1cm}}l}
|
77
|
-
\textbf{Autor:} & Pedro Rafael Velasco Priego \\
|
78
|
-
\textbf{Directores:} & Dra. Amelia Zafra Gómez \\
|
79
|
-
& Dr. Sebastián Ventura Soto \\
|
80
|
-
\end{tabular}
|
81
|
-
}
|
82
|
-
\end{minipage}\\[5cm]
|
83
|
-
{\large\sffamily \@date}\\
|
84
|
-
{\large\sffamily \copyright\ 2025 Pedro Rafael Velasco Priego}
|
85
|
-
\end{center}
|
86
|
-
\noindent\rule{\textwidth}{1pt}
|
87
|
-
\end{titlepage}
|
88
|
-
\makeatother
|
89
|
-
''',
|
66
|
+
|
90
67
|
}
|
@@ -15,7 +15,7 @@ release = 'MIT'
|
|
15
15
|
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
16
16
|
|
17
17
|
|
18
|
-
extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc',]
|
18
|
+
extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc','sphinx.ext.mathjax']
|
19
19
|
|
20
20
|
|
21
21
|
|
@@ -6,7 +6,7 @@ import sys
|
|
6
6
|
sys.path.insert(0, os.path.abspath('../'))
|
7
7
|
|
8
8
|
|
9
|
-
project = 'TSADmetrics'
|
9
|
+
project = 'TSADmetrics User Manual'
|
10
10
|
copyright = '2025, Pedro Rafael Velasco Priego'
|
11
11
|
author = 'Pedro Rafael Velasco Priego'
|
12
12
|
release = 'MIT'
|
@@ -15,7 +15,7 @@ release = 'MIT'
|
|
15
15
|
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
16
16
|
|
17
17
|
|
18
|
-
extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc',]
|
18
|
+
extensions = ['sphinx.ext.duration', 'sphinx.ext.doctest', 'sphinx.ext.autodoc','sphinx.ext.mathjax']
|
19
19
|
|
20
20
|
|
21
21
|
|
@@ -63,28 +63,5 @@ latex_elements = {
|
|
63
63
|
'maxlistdepth': '10', # Aumenta el límite de anidamiento
|
64
64
|
'papersize': 'a4paper',
|
65
65
|
'pointsize': '10pt',
|
66
|
-
|
67
|
-
\makeatletter
|
68
|
-
\begin{titlepage}
|
69
|
-
\noindent\rule{\textwidth}{1pt}\\[3cm]
|
70
|
-
\begin{center}
|
71
|
-
{\Huge\sffamily\bfseries TSADmetrics API Reference}\\[1.5cm]
|
72
|
-
{\Large\sffamily Time Series Anomaly Detection Metrics}\\[3cm]
|
73
|
-
\begin{minipage}{0.8\textwidth}
|
74
|
-
\centering
|
75
|
-
{\large\sffamily
|
76
|
-
\begin{tabular}{l@{\hspace{1cm}}l}
|
77
|
-
\textbf{Autor:} & Pedro Rafael Velasco Priego \\
|
78
|
-
\textbf{Directores:} & Dra. Amelia Zafra Gómez \\
|
79
|
-
& Dr. Sebastián Ventura Soto \\
|
80
|
-
\end{tabular}
|
81
|
-
}
|
82
|
-
\end{minipage}\\[5cm]
|
83
|
-
{\large\sffamily \@date}\\
|
84
|
-
{\large\sffamily \copyright\ 2025 Pedro Rafael Velasco Priego}
|
85
|
-
\end{center}
|
86
|
-
\noindent\rule{\textwidth}{1pt}
|
87
|
-
\end{titlepage}
|
88
|
-
\makeatother
|
89
|
-
''',
|
66
|
+
|
90
67
|
}
|
@@ -0,0 +1,28 @@
|
|
1
|
+
from tsadmetrics.evaluation.Runner import Runner
|
2
|
+
|
3
|
+
|
4
|
+
y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
5
|
+
y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
7
|
+
y_pred1_cont = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
8
|
+
y_pred2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
9
|
+
y_pred2_cont = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
10
|
+
|
11
|
+
dataset_evaluations = [
|
12
|
+
("dataset1", y_true1, (y_pred1, y_pred1_cont)),
|
13
|
+
("dataset2", y_true2, (y_pred2, y_pred2_cont))
|
14
|
+
|
15
|
+
]
|
16
|
+
|
17
|
+
metrics = [
|
18
|
+
("adc",{}),
|
19
|
+
("dair",{}),
|
20
|
+
("pakf",{"k":0.2}),
|
21
|
+
("pakf",{"k":0.4}),
|
22
|
+
("pakf",{"k":0.5}),
|
23
|
+
]
|
24
|
+
|
25
|
+
runner = Runner(dataset_evaluations, metrics)
|
26
|
+
results = runner.run(generate_report=True, report_file="./example_output/example_direct_data_report.csv")
|
27
|
+
print(results)
|
28
|
+
|
@@ -0,0 +1,25 @@
|
|
1
|
+
from tsadmetrics.evaluation.Runner import Runner
|
2
|
+
|
3
|
+
|
4
|
+
y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
5
|
+
y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
7
|
+
y_pred2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
8
|
+
|
9
|
+
dataset_evaluations = [
|
10
|
+
("dataset1", y_true1, (y_pred1, y_pred1)),
|
11
|
+
("dataset2", y_true2, (y_pred2, y_pred2))
|
12
|
+
|
13
|
+
]
|
14
|
+
|
15
|
+
metrics = [
|
16
|
+
("adc",{}),
|
17
|
+
("dair",{}),
|
18
|
+
("pakf",{"k":0.2}),
|
19
|
+
("pakf",{"k":0.4})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run(generate_report=True, report_file="./example_output/example_direct_single_data_report.csv")
|
24
|
+
print(results)
|
25
|
+
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.evaluation.Runner import Runner
|
2
|
+
|
3
|
+
|
4
|
+
y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
5
|
+
y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
|
7
|
+
|
8
|
+
dataset_evaluations = [
|
9
|
+
("dataset1", "example_input/results1.csv"),
|
10
|
+
("dataset2", "example_input/results2.csv")
|
11
|
+
|
12
|
+
]
|
13
|
+
|
14
|
+
metrics = [
|
15
|
+
("adc",{}),
|
16
|
+
("dair",{}),
|
17
|
+
("pakf",{"k":0.2}),
|
18
|
+
("pakf",{"k":0.4})
|
19
|
+
]
|
20
|
+
|
21
|
+
runner = Runner(dataset_evaluations, metrics)
|
22
|
+
results = runner.run(generate_report=True, report_file="./example_output/example_file_reference_report.csv")
|
23
|
+
print(results)
|
24
|
+
|
@@ -0,0 +1,13 @@
|
|
1
|
+
from tsadmetrics.evaluation.Runner import Runner
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
5
|
+
y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
|
7
|
+
|
8
|
+
global_config_file = "example_input/example_evaluation_config.yaml"
|
9
|
+
|
10
|
+
runner = Runner(global_config_file)
|
11
|
+
results = runner.run(generate_report=True, report_file="./example_output/example_global_config_file_report.csv")
|
12
|
+
print(results)
|
13
|
+
|
@@ -0,0 +1,19 @@
|
|
1
|
+
from tsadmetrics.evaluation.Runner import Runner
|
2
|
+
|
3
|
+
|
4
|
+
y_true1 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
5
|
+
y_true2 = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
|
7
|
+
|
8
|
+
dataset_evaluations = [
|
9
|
+
("dataset1", "example_input/results1.csv"),
|
10
|
+
("dataset2", "example_input/results2.csv")
|
11
|
+
|
12
|
+
]
|
13
|
+
|
14
|
+
metrics_file = "example_input/example_metrics_config.yaml"
|
15
|
+
|
16
|
+
runner = Runner(dataset_evaluations, metrics_file)
|
17
|
+
results = runner.run(generate_report=True, report_file="./example_output/example_metric_config_file_report.csv")
|
18
|
+
print(results)
|
19
|
+
|
@@ -0,0 +1,8 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mdpt import PointadjustedFScore
|
2
|
+
|
3
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
4
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
5
|
+
metric = PointadjustedFScore()
|
6
|
+
|
7
|
+
result = metric.compute(y_true, y_pred)
|
8
|
+
print(f"PointadjustedFScore: {result}")
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mect.AbsoluteDetectionDistance import AbsoluteDetectionDistance
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = AbsoluteDetectionDistance()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("AbsoluteDetectionDistance:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("add", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mtdt.AffiliationbasedFScore import AffiliationbasedFScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = AffiliationbasedFScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("AffiliationbasedFScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("aff_f", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mdtp.AverageDetectionCount import AverageDetectionCount
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = AverageDetectionCount()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("AverageDetectionCount:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("adc", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mdpt.CompositeFScore import CompositeFScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = CompositeFScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("CompositeFScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("cf", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mpr.DelayThresholdedPointadjustedFScore import DelayThresholdedPointadjustedFScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = DelayThresholdedPointadjustedFScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("DelayThresholdedPointadjustedFScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("dtpaf", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mdtp.DetectionAccuracyInRange import DetectionAccuracyInRange
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = DetectionAccuracyInRange()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("DetectionAccuracyInRange:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("dair", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mect.EnhancedTimeseriesAwareFScore import EnhancedTimeseriesAwareFScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = EnhancedTimeseriesAwareFScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("EnhancedTimeseriesAwareFScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("etaf", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mpr.LatencySparsityawareFScore import LatencySparsityawareFScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = LatencySparsityawareFScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("LatencySparsityawareFScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("lsaf", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mpr.MeanTimeToDetect import MeanTimeToDetect
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = MeanTimeToDetect()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("MeanTimeToDetect:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("mttd", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mpr.NabScore import NabScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = NabScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("NabScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("nab_score", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mtdt.PateFScore import PateFScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = PateFScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("PateFScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("pate_f1", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mtdt.Pate import Pate
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = Pate()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("Pate:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("pate", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from tsadmetrics.metrics.tem.mdtp.PointadjustedAtKFScore import PointadjustedAtKFScore
|
2
|
+
from tsadmetrics.evaluation.Runner import Runner
|
3
|
+
import numpy as np
|
4
|
+
|
5
|
+
y_true = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
6
|
+
y_pred = [0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1]
|
7
|
+
|
8
|
+
# Direct usage
|
9
|
+
metric = PointadjustedAtKFScore()
|
10
|
+
result = metric.compute(y_true, y_pred)
|
11
|
+
print("PointadjustedAtKFScore:", result)
|
12
|
+
|
13
|
+
# Usage with Runner
|
14
|
+
dataset_evaluations = [
|
15
|
+
("dataset1", y_true, (y_pred, y_pred))
|
16
|
+
]
|
17
|
+
|
18
|
+
metrics = [
|
19
|
+
("pakf", {})
|
20
|
+
]
|
21
|
+
|
22
|
+
runner = Runner(dataset_evaluations, metrics)
|
23
|
+
results = runner.run()
|
24
|
+
print(results)
|