trustgraph-vertexai 1.5.6__tar.gz → 1.8.16__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/PKG-INFO +2 -2
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/pyproject.toml +1 -1
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph/model/text_completion/vertexai/llm.py +118 -1
- trustgraph_vertexai-1.8.16/trustgraph/vertexai_version.py +1 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/PKG-INFO +2 -2
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/requires.txt +1 -1
- trustgraph_vertexai-1.5.6/trustgraph/vertexai_version.py +0 -1
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/README.md +0 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/setup.cfg +0 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph/model/text_completion/vertexai/__init__.py +0 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph/model/text_completion/vertexai/__main__.py +0 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/SOURCES.txt +0 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/dependency_links.txt +0 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/entry_points.txt +0 -0
- {trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: trustgraph-vertexai
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.8.16
|
|
4
4
|
Summary: TrustGraph provides a means to run a pipeline of flexible AI processing components in a flexible means to achieve a processing pipeline.
|
|
5
5
|
Author-email: "trustgraph.ai" <security@trustgraph.ai>
|
|
6
6
|
Project-URL: Homepage, https://github.com/trustgraph-ai/trustgraph
|
|
@@ -8,7 +8,7 @@ Classifier: Programming Language :: Python :: 3
|
|
|
8
8
|
Classifier: Operating System :: OS Independent
|
|
9
9
|
Requires-Python: >=3.8
|
|
10
10
|
Description-Content-Type: text/markdown
|
|
11
|
-
Requires-Dist: trustgraph-base<1.
|
|
11
|
+
Requires-Dist: trustgraph-base<1.9,>=1.8
|
|
12
12
|
Requires-Dist: pulsar-client
|
|
13
13
|
Requires-Dist: google-cloud-aiplatform
|
|
14
14
|
Requires-Dist: prometheus-client
|
|
@@ -10,7 +10,7 @@ description = "TrustGraph provides a means to run a pipeline of flexible AI proc
|
|
|
10
10
|
readme = "README.md"
|
|
11
11
|
requires-python = ">=3.8"
|
|
12
12
|
dependencies = [
|
|
13
|
-
"trustgraph-base>=1.
|
|
13
|
+
"trustgraph-base>=1.8,<1.9",
|
|
14
14
|
"pulsar-client",
|
|
15
15
|
"google-cloud-aiplatform",
|
|
16
16
|
"prometheus-client",
|
|
@@ -32,7 +32,7 @@ from vertexai.generative_models import (
|
|
|
32
32
|
from anthropic import AnthropicVertex, RateLimitError
|
|
33
33
|
|
|
34
34
|
from .... exceptions import TooManyRequests
|
|
35
|
-
from .... base import LlmService, LlmResult
|
|
35
|
+
from .... base import LlmService, LlmResult, LlmChunk
|
|
36
36
|
|
|
37
37
|
# Module logger
|
|
38
38
|
logger = logging.getLogger(__name__)
|
|
@@ -239,6 +239,123 @@ class Processor(LlmService):
|
|
|
239
239
|
logger.error(f"VertexAI LLM exception: {e}", exc_info=True)
|
|
240
240
|
raise e
|
|
241
241
|
|
|
242
|
+
def supports_streaming(self):
|
|
243
|
+
"""VertexAI supports streaming for both Gemini and Claude models"""
|
|
244
|
+
return True
|
|
245
|
+
|
|
246
|
+
async def generate_content_stream(self, system, prompt, model=None, temperature=None):
|
|
247
|
+
"""
|
|
248
|
+
Stream content generation from VertexAI (Gemini or Claude).
|
|
249
|
+
Yields LlmChunk objects with is_final=True on the last chunk.
|
|
250
|
+
"""
|
|
251
|
+
# Use provided model or fall back to default
|
|
252
|
+
model_name = model or self.default_model
|
|
253
|
+
# Use provided temperature or fall back to default
|
|
254
|
+
effective_temperature = temperature if temperature is not None else self.temperature
|
|
255
|
+
|
|
256
|
+
logger.debug(f"Using model (streaming): {model_name}")
|
|
257
|
+
logger.debug(f"Using temperature: {effective_temperature}")
|
|
258
|
+
|
|
259
|
+
try:
|
|
260
|
+
if 'claude' in model_name.lower():
|
|
261
|
+
# Claude/Anthropic streaming
|
|
262
|
+
logger.debug(f"Streaming request to Anthropic model '{model_name}'...")
|
|
263
|
+
client = self._get_anthropic_client()
|
|
264
|
+
|
|
265
|
+
total_in_tokens = 0
|
|
266
|
+
total_out_tokens = 0
|
|
267
|
+
|
|
268
|
+
with client.messages.stream(
|
|
269
|
+
model=model_name,
|
|
270
|
+
system=system,
|
|
271
|
+
messages=[{"role": "user", "content": prompt}],
|
|
272
|
+
max_tokens=self.api_params['max_output_tokens'],
|
|
273
|
+
temperature=effective_temperature,
|
|
274
|
+
top_p=self.api_params['top_p'],
|
|
275
|
+
top_k=self.api_params['top_k'],
|
|
276
|
+
) as stream:
|
|
277
|
+
# Stream text chunks
|
|
278
|
+
for text in stream.text_stream:
|
|
279
|
+
yield LlmChunk(
|
|
280
|
+
text=text,
|
|
281
|
+
in_token=None,
|
|
282
|
+
out_token=None,
|
|
283
|
+
model=model_name,
|
|
284
|
+
is_final=False
|
|
285
|
+
)
|
|
286
|
+
|
|
287
|
+
# Get final message with token counts
|
|
288
|
+
final_message = stream.get_final_message()
|
|
289
|
+
total_in_tokens = final_message.usage.input_tokens
|
|
290
|
+
total_out_tokens = final_message.usage.output_tokens
|
|
291
|
+
|
|
292
|
+
# Send final chunk with token counts
|
|
293
|
+
yield LlmChunk(
|
|
294
|
+
text="",
|
|
295
|
+
in_token=total_in_tokens,
|
|
296
|
+
out_token=total_out_tokens,
|
|
297
|
+
model=model_name,
|
|
298
|
+
is_final=True
|
|
299
|
+
)
|
|
300
|
+
|
|
301
|
+
logger.info(f"Input Tokens: {total_in_tokens}")
|
|
302
|
+
logger.info(f"Output Tokens: {total_out_tokens}")
|
|
303
|
+
|
|
304
|
+
else:
|
|
305
|
+
# Gemini streaming
|
|
306
|
+
logger.debug(f"Streaming request to Gemini model '{model_name}'...")
|
|
307
|
+
full_prompt = system + "\n\n" + prompt
|
|
308
|
+
|
|
309
|
+
llm, generation_config = self._get_gemini_model(model_name, effective_temperature)
|
|
310
|
+
|
|
311
|
+
response = llm.generate_content(
|
|
312
|
+
full_prompt,
|
|
313
|
+
generation_config=generation_config,
|
|
314
|
+
safety_settings=self.safety_settings,
|
|
315
|
+
stream=True # Enable streaming
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
total_in_tokens = 0
|
|
319
|
+
total_out_tokens = 0
|
|
320
|
+
|
|
321
|
+
# Stream chunks
|
|
322
|
+
for chunk in response:
|
|
323
|
+
if chunk.text:
|
|
324
|
+
yield LlmChunk(
|
|
325
|
+
text=chunk.text,
|
|
326
|
+
in_token=None,
|
|
327
|
+
out_token=None,
|
|
328
|
+
model=model_name,
|
|
329
|
+
is_final=False
|
|
330
|
+
)
|
|
331
|
+
|
|
332
|
+
# Accumulate token counts if available
|
|
333
|
+
if hasattr(chunk, 'usage_metadata') and chunk.usage_metadata:
|
|
334
|
+
if hasattr(chunk.usage_metadata, 'prompt_token_count'):
|
|
335
|
+
total_in_tokens = chunk.usage_metadata.prompt_token_count
|
|
336
|
+
if hasattr(chunk.usage_metadata, 'candidates_token_count'):
|
|
337
|
+
total_out_tokens = chunk.usage_metadata.candidates_token_count
|
|
338
|
+
|
|
339
|
+
# Send final chunk with token counts
|
|
340
|
+
yield LlmChunk(
|
|
341
|
+
text="",
|
|
342
|
+
in_token=total_in_tokens,
|
|
343
|
+
out_token=total_out_tokens,
|
|
344
|
+
model=model_name,
|
|
345
|
+
is_final=True
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
logger.info(f"Input Tokens: {total_in_tokens}")
|
|
349
|
+
logger.info(f"Output Tokens: {total_out_tokens}")
|
|
350
|
+
|
|
351
|
+
except (google.api_core.exceptions.ResourceExhausted, RateLimitError) as e:
|
|
352
|
+
logger.warning(f"Hit rate limit during streaming: {e}")
|
|
353
|
+
raise TooManyRequests()
|
|
354
|
+
|
|
355
|
+
except Exception as e:
|
|
356
|
+
logger.error(f"VertexAI streaming exception: {e}", exc_info=True)
|
|
357
|
+
raise e
|
|
358
|
+
|
|
242
359
|
@staticmethod
|
|
243
360
|
def add_args(parser):
|
|
244
361
|
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = "1.8.16"
|
{trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: trustgraph-vertexai
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.8.16
|
|
4
4
|
Summary: TrustGraph provides a means to run a pipeline of flexible AI processing components in a flexible means to achieve a processing pipeline.
|
|
5
5
|
Author-email: "trustgraph.ai" <security@trustgraph.ai>
|
|
6
6
|
Project-URL: Homepage, https://github.com/trustgraph-ai/trustgraph
|
|
@@ -8,7 +8,7 @@ Classifier: Programming Language :: Python :: 3
|
|
|
8
8
|
Classifier: Operating System :: OS Independent
|
|
9
9
|
Requires-Python: >=3.8
|
|
10
10
|
Description-Content-Type: text/markdown
|
|
11
|
-
Requires-Dist: trustgraph-base<1.
|
|
11
|
+
Requires-Dist: trustgraph-base<1.9,>=1.8
|
|
12
12
|
Requires-Dist: pulsar-client
|
|
13
13
|
Requires-Dist: google-cloud-aiplatform
|
|
14
14
|
Requires-Dist: prometheus-client
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
__version__ = "1.5.6"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/SOURCES.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{trustgraph_vertexai-1.5.6 → trustgraph_vertexai-1.8.16}/trustgraph_vertexai.egg-info/top_level.txt
RENAMED
|
File without changes
|