trustgraph-embeddings-hf 0.22.5__tar.gz → 0.22.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (18) hide show
  1. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/PKG-INFO +2 -2
  2. trustgraph-embeddings-hf-0.22.7/trustgraph/embeddings/hf/hf.py +48 -0
  3. trustgraph-embeddings-hf-0.22.7/trustgraph/embeddings_hf_version.py +1 -0
  4. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph_embeddings_hf.egg-info/PKG-INFO +2 -2
  5. trustgraph-embeddings-hf-0.22.5/trustgraph/embeddings/hf/hf.py +0 -100
  6. trustgraph-embeddings-hf-0.22.5/trustgraph/embeddings_hf_version.py +0 -1
  7. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/README.md +0 -0
  8. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/scripts/embeddings-hf +0 -0
  9. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/setup.cfg +0 -0
  10. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/setup.py +0 -0
  11. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph/__init__.py +0 -0
  12. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph/embeddings/__init__.py +0 -0
  13. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph/embeddings/hf/__init__.py +0 -0
  14. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph/embeddings/hf/__main__.py +0 -0
  15. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph_embeddings_hf.egg-info/SOURCES.txt +0 -0
  16. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph_embeddings_hf.egg-info/dependency_links.txt +0 -0
  17. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph_embeddings_hf.egg-info/requires.txt +0 -0
  18. {trustgraph-embeddings-hf-0.22.5 → trustgraph-embeddings-hf-0.22.7}/trustgraph_embeddings_hf.egg-info/top_level.txt +0 -0
@@ -1,9 +1,9 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: trustgraph-embeddings-hf
3
- Version: 0.22.5
3
+ Version: 0.22.7
4
4
  Summary: HuggingFace embeddings support for TrustGraph.
5
5
  Home-page: https://github.com/trustgraph-ai/trustgraph
6
- Download-URL: https://github.com/trustgraph-ai/trustgraph/archive/refs/tags/v0.22.5.tar.gz
6
+ Download-URL: https://github.com/trustgraph-ai/trustgraph/archive/refs/tags/v0.22.7.tar.gz
7
7
  Author: trustgraph.ai
8
8
  Author-email: security@trustgraph.ai
9
9
  Classifier: Programming Language :: Python :: 3
@@ -0,0 +1,48 @@
1
+
2
+ """
3
+ Embeddings service, applies an embeddings model selected from HuggingFace.
4
+ Input is text, output is embeddings vector.
5
+ """
6
+
7
+ from ... base import EmbeddingsService
8
+
9
+ from langchain_huggingface import HuggingFaceEmbeddings
10
+
11
+ default_ident = "embeddings"
12
+
13
+ default_model="all-MiniLM-L6-v2"
14
+
15
+ class Processor(EmbeddingsService):
16
+
17
+ def __init__(self, **params):
18
+
19
+ model = params.get("model", default_model)
20
+
21
+ super(Processor, self).__init__(
22
+ **params | { "model": model }
23
+ )
24
+
25
+ print("Get model...", flush=True)
26
+ self.embeddings = HuggingFaceEmbeddings(model_name=model)
27
+
28
+ async def on_embeddings(self, text):
29
+
30
+ embeds = self.embeddings.embed_documents([text])
31
+ print("Done.", flush=True)
32
+ return embeds
33
+
34
+ @staticmethod
35
+ def add_args(parser):
36
+
37
+ EmbeddingsService.add_args(parser)
38
+
39
+ parser.add_argument(
40
+ '-m', '--model',
41
+ default="all-MiniLM-L6-v2",
42
+ help=f'LLM model (default: all-MiniLM-L6-v2)'
43
+ )
44
+
45
+ def run():
46
+
47
+ Processor.launch(default_ident, __doc__)
48
+
@@ -0,0 +1 @@
1
+ __version__ = "0.22.7"
@@ -1,9 +1,9 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: trustgraph-embeddings-hf
3
- Version: 0.22.5
3
+ Version: 0.22.7
4
4
  Summary: HuggingFace embeddings support for TrustGraph.
5
5
  Home-page: https://github.com/trustgraph-ai/trustgraph
6
- Download-URL: https://github.com/trustgraph-ai/trustgraph/archive/refs/tags/v0.22.5.tar.gz
6
+ Download-URL: https://github.com/trustgraph-ai/trustgraph/archive/refs/tags/v0.22.7.tar.gz
7
7
  Author: trustgraph.ai
8
8
  Author-email: security@trustgraph.ai
9
9
  Classifier: Programming Language :: Python :: 3
@@ -1,100 +0,0 @@
1
-
2
- """
3
- Embeddings service, applies an embeddings model selected from HuggingFace.
4
- Input is text, output is embeddings vector.
5
- """
6
-
7
- from langchain_huggingface import HuggingFaceEmbeddings
8
-
9
- from trustgraph.schema import EmbeddingsRequest, EmbeddingsResponse, Error
10
- from trustgraph.schema import embeddings_request_queue
11
- from trustgraph.schema import embeddings_response_queue
12
- from trustgraph.log_level import LogLevel
13
- from trustgraph.base import ConsumerProducer
14
-
15
- module = ".".join(__name__.split(".")[1:-1])
16
-
17
- default_input_queue = embeddings_request_queue
18
- default_output_queue = embeddings_response_queue
19
- default_subscriber = module
20
- default_model="all-MiniLM-L6-v2"
21
-
22
- class Processor(ConsumerProducer):
23
-
24
- def __init__(self, **params):
25
-
26
- input_queue = params.get("input_queue", default_input_queue)
27
- output_queue = params.get("output_queue", default_output_queue)
28
- subscriber = params.get("subscriber", default_subscriber)
29
- model = params.get("model", default_model)
30
-
31
- super(Processor, self).__init__(
32
- **params | {
33
- "input_queue": input_queue,
34
- "output_queue": output_queue,
35
- "subscriber": subscriber,
36
- "input_schema": EmbeddingsRequest,
37
- "output_schema": EmbeddingsResponse,
38
- }
39
- )
40
-
41
- self.embeddings = HuggingFaceEmbeddings(model_name=model)
42
-
43
- async def handle(self, msg):
44
-
45
- v = msg.value()
46
-
47
- # Sender-produced ID
48
- id = msg.properties()["id"]
49
-
50
- print(f"Handling input {id}...", flush=True)
51
-
52
- try:
53
-
54
- text = v.text
55
- embeds = self.embeddings.embed_documents([text])
56
-
57
- print("Send response...", flush=True)
58
- r = EmbeddingsResponse(vectors=embeds, error=None)
59
- await self.send(r, properties={"id": id})
60
-
61
- print("Done.", flush=True)
62
-
63
-
64
- except Exception as e:
65
-
66
- print(f"Exception: {e}")
67
-
68
- print("Send error response...", flush=True)
69
-
70
- r = EmbeddingsResponse(
71
- error=Error(
72
- type = "llm-error",
73
- message = str(e),
74
- ),
75
- response=None,
76
- )
77
-
78
- await self.send(r, properties={"id": id})
79
-
80
- self.consumer.acknowledge(msg)
81
-
82
-
83
- @staticmethod
84
- def add_args(parser):
85
-
86
- ConsumerProducer.add_args(
87
- parser, default_input_queue, default_subscriber,
88
- default_output_queue,
89
- )
90
-
91
- parser.add_argument(
92
- '-m', '--model',
93
- default="all-MiniLM-L6-v2",
94
- help=f'LLM model (default: all-MiniLM-L6-v2)'
95
- )
96
-
97
- def run():
98
-
99
- Processor.launch(module, __doc__)
100
-
@@ -1 +0,0 @@
1
- __version__ = "0.22.5"