tritonparse 0.2.4.dev20251007071533__tar.gz → 0.2.4.dev20251008071501__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tritonparse might be problematic. Click here for more details.
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.gitignore +1 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/PKG-INFO +36 -31
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/README.md +35 -30
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/context_manager.py +14 -1
- tritonparse-0.2.4.dev20251008071501/tritonparse/reproducer/templates/example.py +387 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/structured_logging.py +320 -3
- tritonparse-0.2.4.dev20251008071501/tritonparse/tools/load_tensor.py +74 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse.egg-info/PKG-INFO +36 -31
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse.egg-info/SOURCES.txt +0 -1
- tritonparse-0.2.4.dev20251007071533/.github/copilot-instructions.md +0 -47
- tritonparse-0.2.4.dev20251007071533/tritonparse/reproducer/templates/example.py +0 -320
- tritonparse-0.2.4.dev20251007071533/tritonparse/tools/load_tensor.py +0 -58
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.ci/README.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.ci/install-project.sh +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.ci/install-triton-kernels.sh +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.ci/install-triton.sh +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.ci/run-tests.sh +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.ci/setup.sh +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.github/PAGES_SETUP.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.github/workflows/deploy-pages-standalone.yml +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.github/workflows/deploy-pages.yml +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.github/workflows/nightly-pypi.yml +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/.github/workflows/test.yml +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/CHANGELOG.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/CODE_OF_CONDUCT.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/CONTRIBUTING.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/LICENSE +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/Makefile +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/__init__.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/docs/README.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/docs/screenshots/code-comparison.png +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/docs/screenshots/kernel-overview.png +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/pyproject.toml +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/run.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/setup.cfg +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/README.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/__init__.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/example_output/logs/dedicated_log_triton_trace_findhao_.ndjson +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/example_output/parsed_output/dedicated_log_triton_trace_findhao__mapped.ndjson.gz +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/example_output/parsed_output/f0_fc0_a0_cai-.ndjson.gz +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/example_output/parsed_output/log_file_list.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/example_output/parsed_output_complex/dedicated_log_triton_trace_findhao__mapped.ndjson.gz +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/example_output/parsed_output_complex/log_file_list.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/example_output/repro/repro_context_20250816192455.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/test_add.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tests/test_tritonparse.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/__init__.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/__main__.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/cli.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/common.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/event_diff.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/extract_source_mappings.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/ir_parser.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/mapper.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/__init__.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/cli.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/ingestion/ndjson.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/orchestrator.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/placeholder_replacer.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/templates/__init__.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/templates/loader.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/reproducer/utils.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/shared_vars.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/source_type.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/sourcemap_utils.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/tools/__init__.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/tools/decompress_bin_ndjson.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/tools/disasm.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/tools/format_fix.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/tools/prettify_ndjson.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/tools/readme.md +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/tp_logger.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/trace_processor.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse/utils.py +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse.egg-info/dependency_links.txt +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse.egg-info/entry_points.txt +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse.egg-info/requires.txt +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/tritonparse.egg-info/top_level.txt +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/eslint.config.js +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/index.html +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/package-lock.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/package.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/postcss.config.js +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/public/dedicated_log_triton_trace_findhao__mapped.ndjson.gz +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/public/f0_fc0_a0_cai-.ndjson +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/public/favicon.ico +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/public/logo.svg +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/scripts/inline-html.js +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/App.css +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/App.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/assets/react.svg +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/ArgumentViewer.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/Callstack.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/CodeComparisonView.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/CodeViewer.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/CompilationInfo.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/CopyCodeButton.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/DataSourceSelector.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/DiffComparisonView.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/DiffViewer.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/ExternalLink.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/SingleCodeViewer.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/StackDiffViewer.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/ToggleSwitch.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/TritonIRs.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/components/WelcomeScreen.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/context/FileDiffSession.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/index.css +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/main.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/pages/CodeView.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/pages/FileDiffView.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/pages/KernelOverview.tsx +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/utils/dataLoader.ts +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/utils/fbDetection.ts +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/utils/safeImport.ts +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/utils/tensor.ts +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/src/vite-env.d.ts +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/tailwind.config.js +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/tsconfig.app.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/tsconfig.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/tsconfig.node.json +0 -0
- {tritonparse-0.2.4.dev20251007071533 → tritonparse-0.2.4.dev20251008071501}/website/vite.config.ts +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tritonparse
|
|
3
|
-
Version: 0.2.4.
|
|
3
|
+
Version: 0.2.4.dev20251008071501
|
|
4
4
|
Summary: TritonParse: A Compiler Tracer, Visualizer, and mini-Reproducer Generator for Triton Kernels
|
|
5
5
|
Author-email: Yueming Hao <yhao@meta.com>
|
|
6
6
|
License-Expression: BSD-3-Clause
|
|
@@ -27,13 +27,22 @@ Dynamic: license-file
|
|
|
27
27
|
|
|
28
28
|
## ✨ Key Features
|
|
29
29
|
|
|
30
|
-
|
|
31
|
-
-
|
|
32
|
-
- **📊
|
|
33
|
-
- **🔄
|
|
34
|
-
- **📝
|
|
35
|
-
-
|
|
36
|
-
|
|
30
|
+
### 🔍 Visualization & Analysis
|
|
31
|
+
- **🚀 Launch Difference Analysis** - Detect and visualize kernel launch parameter variations
|
|
32
|
+
- **📊 IR Code View** - Side-by-side IR viewing with synchronized highlighting and line mapping
|
|
33
|
+
- **🔄 File Diff View** - Compare kernels across different trace files side-by-side
|
|
34
|
+
- **📝 Multi-format IR Support** - View TTGIR, TTIR, LLIR, PTX, and AMDGCN
|
|
35
|
+
- **🎯 Interactive Code Views** - Click-to-highlight corresponding lines across IR stages
|
|
36
|
+
|
|
37
|
+
### 📊 Structured Logging & Analysis
|
|
38
|
+
- **📝 Compilation & Launch Tracing** - Capture detailed events with source mapping
|
|
39
|
+
- **🔍 Stack Trace Integration** - Full Python stack traces for debugging
|
|
40
|
+
- **📈 Metadata Extraction** - Comprehensive kernel statistics
|
|
41
|
+
|
|
42
|
+
### 🛠️ Developer Tools
|
|
43
|
+
- **🔧 Reproducer Generation** - Generate standalone Python scripts to reproduce kernels
|
|
44
|
+
- **🌐 Browser-based Interface** - No installation required, works in your browser
|
|
45
|
+
- **🔒 Privacy-first** - All processing happens locally, no data uploaded
|
|
37
46
|
|
|
38
47
|
## 🚀 Quick Start
|
|
39
48
|
|
|
@@ -41,22 +50,22 @@ Dynamic: license-file
|
|
|
41
50
|
|
|
42
51
|
```python
|
|
43
52
|
import tritonparse.structured_logging
|
|
53
|
+
import tritonparse.utils
|
|
44
54
|
|
|
45
|
-
# Initialize logging
|
|
55
|
+
# Initialize logging
|
|
46
56
|
tritonparse.structured_logging.init("./logs/", enable_trace_launch=True)
|
|
47
57
|
|
|
48
58
|
# Your Triton/PyTorch code here
|
|
49
59
|
# ... your kernels ...
|
|
50
60
|
|
|
51
61
|
# Parse and generate trace files
|
|
52
|
-
|
|
53
|
-
tritonparse.utils.unified_parse("./logs/")
|
|
62
|
+
tritonparse.utils.unified_parse("./logs/", out="./parsed_output")
|
|
54
63
|
```
|
|
55
|
-
The example terminal output is:
|
|
56
|
-
```bash
|
|
57
|
-
tritonparse log file list: /tmp/tmp1gan7zky/log_file_list.json
|
|
58
|
-
INFO:tritonparse:Copying parsed logs from /tmp/tmp1gan7zky to /scratch/findhao/tritonparse/tests/parsed_output
|
|
59
64
|
|
|
65
|
+
<details>
|
|
66
|
+
<summary>📝 Example output (click to expand)</summary>
|
|
67
|
+
|
|
68
|
+
```bash
|
|
60
69
|
================================================================================
|
|
61
70
|
📁 TRITONPARSE PARSING RESULTS
|
|
62
71
|
================================================================================
|
|
@@ -64,13 +73,13 @@ INFO:tritonparse:Copying parsed logs from /tmp/tmp1gan7zky to /scratch/findhao/t
|
|
|
64
73
|
📊 Total files generated: 2
|
|
65
74
|
|
|
66
75
|
📄 Generated files:
|
|
67
|
-
--------------------------------------------------
|
|
68
76
|
1. 📝 dedicated_log_triton_trace_findhao__mapped.ndjson.gz (7.2KB)
|
|
69
77
|
2. 📝 log_file_list.json (181B)
|
|
70
78
|
================================================================================
|
|
71
79
|
✅ Parsing completed successfully!
|
|
72
80
|
================================================================================
|
|
73
81
|
```
|
|
82
|
+
</details>
|
|
74
83
|
|
|
75
84
|
### 2. Visualize Results
|
|
76
85
|
|
|
@@ -106,18 +115,13 @@ pip install triton
|
|
|
106
115
|
|
|
107
116
|
| 📖 Guide | Description |
|
|
108
117
|
|----------|-------------|
|
|
109
|
-
| **[🏠 Wiki Home](https://github.com/meta-pytorch/tritonparse/wiki)** | Complete documentation and navigation |
|
|
110
|
-
| **[📦 Installation
|
|
111
|
-
| **[📋 Usage Guide](https://github.com/meta-pytorch/tritonparse/wiki/02.-Usage-Guide)** | Complete workflow and
|
|
112
|
-
| **[🌐 Web Interface
|
|
113
|
-
| **[🔧 Developer Guide](https://github.com/meta-pytorch/tritonparse/wiki/04.-Developer-Guide)** | Contributing and
|
|
114
|
-
| **[
|
|
115
|
-
|
|
116
|
-
## 🛠️ Tech Stack
|
|
117
|
-
|
|
118
|
-
- **Frontend**: React 19, TypeScript, Vite, Tailwind CSS, Monaco Editor
|
|
119
|
-
- **Backend**: Python with Triton integration, structured logging
|
|
120
|
-
- **Deployment**: GitHub Pages, automatic deployment
|
|
118
|
+
| **[🏠 Wiki Home](https://github.com/meta-pytorch/tritonparse/wiki)** | Complete documentation and quick navigation |
|
|
119
|
+
| **[📦 Installation](https://github.com/meta-pytorch/tritonparse/wiki/01.-Installation)** | Setup guide for all scenarios |
|
|
120
|
+
| **[📋 Usage Guide](https://github.com/meta-pytorch/tritonparse/wiki/02.-Usage-Guide)** | Complete workflow, examples, and reproducer |
|
|
121
|
+
| **[🌐 Web Interface](https://github.com/meta-pytorch/tritonparse/wiki/03.-Web-Interface-Guide)** | Master the visualization interface |
|
|
122
|
+
| **[🔧 Developer Guide](https://github.com/meta-pytorch/tritonparse/wiki/04.-Developer-Guide)** | Contributing and architecture overview |
|
|
123
|
+
| **[📝 Code Formatting](https://github.com/meta-pytorch/tritonparse/wiki/05.-Code-Formatting)** | Formatting standards and tools |
|
|
124
|
+
| **[❓ FAQ](https://github.com/meta-pytorch/tritonparse/wiki/06.-FAQ)** | Quick answers and troubleshooting |
|
|
121
125
|
|
|
122
126
|
## 📊 Understanding Triton Compilation
|
|
123
127
|
|
|
@@ -130,9 +134,10 @@ Each stage can be inspected and compared to understand optimization transformati
|
|
|
130
134
|
## 🤝 Contributing
|
|
131
135
|
|
|
132
136
|
We welcome contributions! Please see our **[Developer Guide](https://github.com/meta-pytorch/tritonparse/wiki/04.-Developer-Guide)** for:
|
|
133
|
-
- Development setup
|
|
134
|
-
- Code formatting standards
|
|
135
|
-
- Pull request process
|
|
137
|
+
- Development setup and prerequisites
|
|
138
|
+
- Code formatting standards (**[Formatting Guide](https://github.com/meta-pytorch/tritonparse/wiki/05.-Code-Formatting)**)
|
|
139
|
+
- Pull request and code review process
|
|
140
|
+
- Testing guidelines
|
|
136
141
|
- Architecture overview
|
|
137
142
|
|
|
138
143
|
## 📞 Support & Community
|
|
@@ -9,13 +9,22 @@
|
|
|
9
9
|
|
|
10
10
|
## ✨ Key Features
|
|
11
11
|
|
|
12
|
-
|
|
13
|
-
-
|
|
14
|
-
- **📊
|
|
15
|
-
- **🔄
|
|
16
|
-
- **📝
|
|
17
|
-
-
|
|
18
|
-
|
|
12
|
+
### 🔍 Visualization & Analysis
|
|
13
|
+
- **🚀 Launch Difference Analysis** - Detect and visualize kernel launch parameter variations
|
|
14
|
+
- **📊 IR Code View** - Side-by-side IR viewing with synchronized highlighting and line mapping
|
|
15
|
+
- **🔄 File Diff View** - Compare kernels across different trace files side-by-side
|
|
16
|
+
- **📝 Multi-format IR Support** - View TTGIR, TTIR, LLIR, PTX, and AMDGCN
|
|
17
|
+
- **🎯 Interactive Code Views** - Click-to-highlight corresponding lines across IR stages
|
|
18
|
+
|
|
19
|
+
### 📊 Structured Logging & Analysis
|
|
20
|
+
- **📝 Compilation & Launch Tracing** - Capture detailed events with source mapping
|
|
21
|
+
- **🔍 Stack Trace Integration** - Full Python stack traces for debugging
|
|
22
|
+
- **📈 Metadata Extraction** - Comprehensive kernel statistics
|
|
23
|
+
|
|
24
|
+
### 🛠️ Developer Tools
|
|
25
|
+
- **🔧 Reproducer Generation** - Generate standalone Python scripts to reproduce kernels
|
|
26
|
+
- **🌐 Browser-based Interface** - No installation required, works in your browser
|
|
27
|
+
- **🔒 Privacy-first** - All processing happens locally, no data uploaded
|
|
19
28
|
|
|
20
29
|
## 🚀 Quick Start
|
|
21
30
|
|
|
@@ -23,22 +32,22 @@
|
|
|
23
32
|
|
|
24
33
|
```python
|
|
25
34
|
import tritonparse.structured_logging
|
|
35
|
+
import tritonparse.utils
|
|
26
36
|
|
|
27
|
-
# Initialize logging
|
|
37
|
+
# Initialize logging
|
|
28
38
|
tritonparse.structured_logging.init("./logs/", enable_trace_launch=True)
|
|
29
39
|
|
|
30
40
|
# Your Triton/PyTorch code here
|
|
31
41
|
# ... your kernels ...
|
|
32
42
|
|
|
33
43
|
# Parse and generate trace files
|
|
34
|
-
|
|
35
|
-
tritonparse.utils.unified_parse("./logs/")
|
|
44
|
+
tritonparse.utils.unified_parse("./logs/", out="./parsed_output")
|
|
36
45
|
```
|
|
37
|
-
The example terminal output is:
|
|
38
|
-
```bash
|
|
39
|
-
tritonparse log file list: /tmp/tmp1gan7zky/log_file_list.json
|
|
40
|
-
INFO:tritonparse:Copying parsed logs from /tmp/tmp1gan7zky to /scratch/findhao/tritonparse/tests/parsed_output
|
|
41
46
|
|
|
47
|
+
<details>
|
|
48
|
+
<summary>📝 Example output (click to expand)</summary>
|
|
49
|
+
|
|
50
|
+
```bash
|
|
42
51
|
================================================================================
|
|
43
52
|
📁 TRITONPARSE PARSING RESULTS
|
|
44
53
|
================================================================================
|
|
@@ -46,13 +55,13 @@ INFO:tritonparse:Copying parsed logs from /tmp/tmp1gan7zky to /scratch/findhao/t
|
|
|
46
55
|
📊 Total files generated: 2
|
|
47
56
|
|
|
48
57
|
📄 Generated files:
|
|
49
|
-
--------------------------------------------------
|
|
50
58
|
1. 📝 dedicated_log_triton_trace_findhao__mapped.ndjson.gz (7.2KB)
|
|
51
59
|
2. 📝 log_file_list.json (181B)
|
|
52
60
|
================================================================================
|
|
53
61
|
✅ Parsing completed successfully!
|
|
54
62
|
================================================================================
|
|
55
63
|
```
|
|
64
|
+
</details>
|
|
56
65
|
|
|
57
66
|
### 2. Visualize Results
|
|
58
67
|
|
|
@@ -88,18 +97,13 @@ pip install triton
|
|
|
88
97
|
|
|
89
98
|
| 📖 Guide | Description |
|
|
90
99
|
|----------|-------------|
|
|
91
|
-
| **[🏠 Wiki Home](https://github.com/meta-pytorch/tritonparse/wiki)** | Complete documentation and navigation |
|
|
92
|
-
| **[📦 Installation
|
|
93
|
-
| **[📋 Usage Guide](https://github.com/meta-pytorch/tritonparse/wiki/02.-Usage-Guide)** | Complete workflow and
|
|
94
|
-
| **[🌐 Web Interface
|
|
95
|
-
| **[🔧 Developer Guide](https://github.com/meta-pytorch/tritonparse/wiki/04.-Developer-Guide)** | Contributing and
|
|
96
|
-
| **[
|
|
97
|
-
|
|
98
|
-
## 🛠️ Tech Stack
|
|
99
|
-
|
|
100
|
-
- **Frontend**: React 19, TypeScript, Vite, Tailwind CSS, Monaco Editor
|
|
101
|
-
- **Backend**: Python with Triton integration, structured logging
|
|
102
|
-
- **Deployment**: GitHub Pages, automatic deployment
|
|
100
|
+
| **[🏠 Wiki Home](https://github.com/meta-pytorch/tritonparse/wiki)** | Complete documentation and quick navigation |
|
|
101
|
+
| **[📦 Installation](https://github.com/meta-pytorch/tritonparse/wiki/01.-Installation)** | Setup guide for all scenarios |
|
|
102
|
+
| **[📋 Usage Guide](https://github.com/meta-pytorch/tritonparse/wiki/02.-Usage-Guide)** | Complete workflow, examples, and reproducer |
|
|
103
|
+
| **[🌐 Web Interface](https://github.com/meta-pytorch/tritonparse/wiki/03.-Web-Interface-Guide)** | Master the visualization interface |
|
|
104
|
+
| **[🔧 Developer Guide](https://github.com/meta-pytorch/tritonparse/wiki/04.-Developer-Guide)** | Contributing and architecture overview |
|
|
105
|
+
| **[📝 Code Formatting](https://github.com/meta-pytorch/tritonparse/wiki/05.-Code-Formatting)** | Formatting standards and tools |
|
|
106
|
+
| **[❓ FAQ](https://github.com/meta-pytorch/tritonparse/wiki/06.-FAQ)** | Quick answers and troubleshooting |
|
|
103
107
|
|
|
104
108
|
## 📊 Understanding Triton Compilation
|
|
105
109
|
|
|
@@ -112,9 +116,10 @@ Each stage can be inspected and compared to understand optimization transformati
|
|
|
112
116
|
## 🤝 Contributing
|
|
113
117
|
|
|
114
118
|
We welcome contributions! Please see our **[Developer Guide](https://github.com/meta-pytorch/tritonparse/wiki/04.-Developer-Guide)** for:
|
|
115
|
-
- Development setup
|
|
116
|
-
- Code formatting standards
|
|
117
|
-
- Pull request process
|
|
119
|
+
- Development setup and prerequisites
|
|
120
|
+
- Code formatting standards (**[Formatting Guide](https://github.com/meta-pytorch/tritonparse/wiki/05.-Code-Formatting)**)
|
|
121
|
+
- Pull request and code review process
|
|
122
|
+
- Testing guidelines
|
|
118
123
|
- Architecture overview
|
|
119
124
|
|
|
120
125
|
## 📞 Support & Community
|
|
@@ -17,6 +17,8 @@ class TritonParseManager:
|
|
|
17
17
|
self,
|
|
18
18
|
enable_trace_launch=False,
|
|
19
19
|
split_inductor_compilations=True,
|
|
20
|
+
enable_tensor_blob_storage=False,
|
|
21
|
+
tensor_storage_quota=None,
|
|
20
22
|
**parse_kwargs,
|
|
21
23
|
):
|
|
22
24
|
"""
|
|
@@ -25,17 +27,28 @@ class TritonParseManager:
|
|
|
25
27
|
Args:
|
|
26
28
|
enable_trace_launch: Whether to enable trace launch
|
|
27
29
|
split_inductor_compilations: Whether to split inductor compilations in the output
|
|
30
|
+
enable_tensor_blob_storage: Whether to enable tensor blob storage
|
|
31
|
+
tensor_storage_quota: Storage quota in bytes for tensor blobs (default: 100GB)
|
|
28
32
|
**parse_kwargs: Additional keyword arguments to pass to unified_parse
|
|
29
33
|
"""
|
|
30
34
|
self.enable_trace_launch = enable_trace_launch
|
|
31
35
|
self.split_inductor_compilations = split_inductor_compilations
|
|
36
|
+
self.enable_tensor_blob_storage = enable_tensor_blob_storage
|
|
37
|
+
self.tensor_storage_quota = tensor_storage_quota
|
|
32
38
|
self.parse_kwargs = parse_kwargs
|
|
33
39
|
self.dir_path = None
|
|
34
40
|
self.output_link = None
|
|
35
41
|
|
|
36
42
|
def __enter__(self):
|
|
37
43
|
self.dir_path = createUniqueTempDirectory()
|
|
38
|
-
|
|
44
|
+
init_kwargs = {
|
|
45
|
+
"enable_trace_launch": self.enable_trace_launch,
|
|
46
|
+
"enable_tensor_blob_storage": self.enable_tensor_blob_storage,
|
|
47
|
+
}
|
|
48
|
+
if self.tensor_storage_quota is not None:
|
|
49
|
+
init_kwargs["tensor_storage_quota"] = self.tensor_storage_quota
|
|
50
|
+
|
|
51
|
+
init(self.dir_path, **init_kwargs)
|
|
39
52
|
return self
|
|
40
53
|
|
|
41
54
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
@@ -0,0 +1,387 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This file is automatically generated by TritonParse reproducer.
|
|
3
|
+
It contains a smallest testing example for a Triton kernel.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import gzip
|
|
7
|
+
import hashlib
|
|
8
|
+
import importlib
|
|
9
|
+
import io
|
|
10
|
+
import json
|
|
11
|
+
import logging
|
|
12
|
+
import sys
|
|
13
|
+
from functools import lru_cache
|
|
14
|
+
from pathlib import Path
|
|
15
|
+
from typing import Union
|
|
16
|
+
|
|
17
|
+
import torch
|
|
18
|
+
|
|
19
|
+
# {{KERNEL_SYSPATH_PLACEHOLDER}}
|
|
20
|
+
|
|
21
|
+
# {{KERNEL_IMPORT_PLACEHOLDER}}
|
|
22
|
+
|
|
23
|
+
TRITON_KERNELS_CUSTOM_TYPES = (
|
|
24
|
+
importlib.util.find_spec("triton_kernels") is not None
|
|
25
|
+
and importlib.util.find_spec("triton_kernels.tensor") is not None
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@lru_cache(maxsize=1)
|
|
30
|
+
def _get_triton_tensor_types():
|
|
31
|
+
"""
|
|
32
|
+
Import and cache Triton custom tensor types.
|
|
33
|
+
|
|
34
|
+
Returns:
|
|
35
|
+
tuple: (Tensor, Storage, StridedLayout) classes from triton_kernels.tensor.
|
|
36
|
+
|
|
37
|
+
Raises:
|
|
38
|
+
ImportError: If the optional module 'triton_kernels.tensor' is not available.
|
|
39
|
+
"""
|
|
40
|
+
mod = importlib.import_module("triton_kernels.tensor")
|
|
41
|
+
return (
|
|
42
|
+
mod.Tensor,
|
|
43
|
+
mod.Storage,
|
|
44
|
+
mod.StridedLayout,
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def load_tensor(tensor_file_path: Union[str, Path], device: str = None) -> torch.Tensor:
|
|
49
|
+
"""
|
|
50
|
+
Load a tensor from its file path and verify its integrity using the hash in the filename.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
tensor_file_path (str | Path): Direct path to the tensor file. Supports both:
|
|
54
|
+
- .bin.gz: gzip-compressed tensor (hash is of uncompressed data)
|
|
55
|
+
- .bin: uncompressed tensor (for backward compatibility)
|
|
56
|
+
device (str, optional): Device to load the tensor to (e.g., 'cuda:0', 'cpu').
|
|
57
|
+
If None, keeps the tensor on its original device.
|
|
58
|
+
|
|
59
|
+
Returns:
|
|
60
|
+
torch.Tensor: The loaded tensor (moved to the specified device if provided)
|
|
61
|
+
|
|
62
|
+
Raises:
|
|
63
|
+
FileNotFoundError: If the tensor file doesn't exist
|
|
64
|
+
RuntimeError: If the tensor cannot be loaded
|
|
65
|
+
ValueError: If the computed hash doesn't match the filename hash
|
|
66
|
+
"""
|
|
67
|
+
blob_path = Path(tensor_file_path)
|
|
68
|
+
|
|
69
|
+
if not blob_path.exists():
|
|
70
|
+
raise FileNotFoundError(f"Tensor blob not found: {blob_path}")
|
|
71
|
+
|
|
72
|
+
# Detect compression by file extension
|
|
73
|
+
is_compressed = blob_path.name.endswith(".bin.gz")
|
|
74
|
+
|
|
75
|
+
# Read file contents (decompress if needed)
|
|
76
|
+
try:
|
|
77
|
+
with open(blob_path, "rb") as f:
|
|
78
|
+
file_obj = gzip.GzipFile(fileobj=f, mode="rb") if is_compressed else f
|
|
79
|
+
file_contents = file_obj.read()
|
|
80
|
+
except (OSError, gzip.BadGzipFile) as e:
|
|
81
|
+
if is_compressed:
|
|
82
|
+
raise RuntimeError(f"Failed to decompress gzip file {blob_path}: {str(e)}")
|
|
83
|
+
else:
|
|
84
|
+
raise RuntimeError(f"Failed to read file {blob_path}: {str(e)}")
|
|
85
|
+
|
|
86
|
+
# Extract expected hash from filename
|
|
87
|
+
# abc123.bin.gz -> abc123 or abc123.bin -> abc123
|
|
88
|
+
expected_hash = blob_path.name.removesuffix(".bin.gz" if is_compressed else ".bin")
|
|
89
|
+
|
|
90
|
+
# Compute hash of uncompressed data
|
|
91
|
+
computed_hash = hashlib.blake2b(file_contents).hexdigest()
|
|
92
|
+
|
|
93
|
+
# Verify hash matches filename
|
|
94
|
+
if computed_hash != expected_hash:
|
|
95
|
+
raise ValueError(
|
|
96
|
+
f"Hash verification failed: expected '{expected_hash}' but computed '{computed_hash}'"
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
try:
|
|
100
|
+
# Load the tensor from memory buffer
|
|
101
|
+
tensor = torch.load(io.BytesIO(file_contents), map_location=device)
|
|
102
|
+
return tensor
|
|
103
|
+
except Exception as e:
|
|
104
|
+
raise RuntimeError(f"Failed to load tensor from {blob_path}: {str(e)}")
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def create_args_from_json_file(json_path):
|
|
108
|
+
with open(json_path, "r") as f:
|
|
109
|
+
data = json.load(f)
|
|
110
|
+
return create_args_from_json(data)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def create_args_from_json(data):
|
|
114
|
+
"""
|
|
115
|
+
Parse a reproducer JSON and build kernel grid and argument dictionary.
|
|
116
|
+
|
|
117
|
+
Args:
|
|
118
|
+
json_path (str): Path to the JSON file describing the kernel launch.
|
|
119
|
+
|
|
120
|
+
Returns:
|
|
121
|
+
tuple[list, dict]: Grid specification list and map of argument name to value.
|
|
122
|
+
"""
|
|
123
|
+
# Handle data format validation and extraction
|
|
124
|
+
if isinstance(data, list):
|
|
125
|
+
if len(data) != 1:
|
|
126
|
+
print(
|
|
127
|
+
f"Error: Expected single element list, got list with {len(data)} elements"
|
|
128
|
+
)
|
|
129
|
+
sys.exit(1)
|
|
130
|
+
data = data[0]
|
|
131
|
+
elif not isinstance(data, dict):
|
|
132
|
+
print(f"Error: Expected list or dict, got {type(data)}")
|
|
133
|
+
sys.exit(1)
|
|
134
|
+
|
|
135
|
+
grid = data.get("grid", [])
|
|
136
|
+
args_dict = {}
|
|
137
|
+
extracted_args = data.get("extracted_args", {})
|
|
138
|
+
|
|
139
|
+
for arg_name, arg_info in extracted_args.items():
|
|
140
|
+
args_dict[arg_name] = _create_arg_from_info(arg_info)
|
|
141
|
+
|
|
142
|
+
return grid, args_dict
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def _apply_stride_and_offset(tensor, shape, stride, storage_offset):
|
|
146
|
+
"""
|
|
147
|
+
Apply custom stride and storage offset to a tensor if needed.
|
|
148
|
+
|
|
149
|
+
Args:
|
|
150
|
+
tensor: The base contiguous tensor
|
|
151
|
+
shape: The desired shape
|
|
152
|
+
stride: The desired stride (or None for contiguous)
|
|
153
|
+
storage_offset: The desired storage offset
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
torch.Tensor: The strided tensor view or original tensor if contiguous
|
|
157
|
+
"""
|
|
158
|
+
if stride is None:
|
|
159
|
+
return tensor
|
|
160
|
+
|
|
161
|
+
# Calculate expected contiguous stride
|
|
162
|
+
expected_contiguous_stride = []
|
|
163
|
+
s = 1
|
|
164
|
+
for dim_size in reversed(shape):
|
|
165
|
+
expected_contiguous_stride.insert(0, s)
|
|
166
|
+
s *= dim_size
|
|
167
|
+
|
|
168
|
+
# If stride matches contiguous stride and no storage offset, return as-is
|
|
169
|
+
if tuple(stride) == tuple(expected_contiguous_stride) and storage_offset == 0:
|
|
170
|
+
return tensor
|
|
171
|
+
|
|
172
|
+
# Calculate required storage size
|
|
173
|
+
if len(shape) > 0 and len(stride) > 0:
|
|
174
|
+
max_offset = storage_offset
|
|
175
|
+
for dim_stride, dim_size in zip(stride, shape):
|
|
176
|
+
if dim_size > 0:
|
|
177
|
+
max_offset += dim_stride * (dim_size - 1)
|
|
178
|
+
storage_size = max_offset + 1
|
|
179
|
+
else:
|
|
180
|
+
storage_size = storage_offset + 1
|
|
181
|
+
|
|
182
|
+
# Create larger storage tensor and create strided view
|
|
183
|
+
storage_tensor = torch.empty(storage_size, dtype=tensor.dtype, device=tensor.device)
|
|
184
|
+
|
|
185
|
+
# Create strided view
|
|
186
|
+
strided_view = storage_tensor.as_strided(
|
|
187
|
+
size=shape, stride=stride, storage_offset=storage_offset
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
# Copy data from the base tensor into the strided layout
|
|
191
|
+
strided_view.copy_(tensor.flatten()[: strided_view.numel()].view(shape))
|
|
192
|
+
|
|
193
|
+
return strided_view
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def _create_base_tensor(arg_info) -> torch.Tensor:
|
|
197
|
+
if arg_info.get("blob_path"):
|
|
198
|
+
return load_tensor(arg_info.get("blob_path"), arg_info.get("device"))
|
|
199
|
+
|
|
200
|
+
# Extract basic tensor properties
|
|
201
|
+
dtype_str = arg_info.get("dtype")
|
|
202
|
+
try:
|
|
203
|
+
torch_dtype = getattr(torch, dtype_str.split(".")[-1])
|
|
204
|
+
except AttributeError:
|
|
205
|
+
logging.error(f"Unsupported dtype: {dtype_str}. Defaulting to float32.")
|
|
206
|
+
torch_dtype = torch.float32
|
|
207
|
+
|
|
208
|
+
shape = arg_info.get("shape", [])
|
|
209
|
+
device = arg_info.get("device", "cpu")
|
|
210
|
+
|
|
211
|
+
# Extract statistical information if available
|
|
212
|
+
mean = arg_info.get("mean")
|
|
213
|
+
std = arg_info.get("std")
|
|
214
|
+
min_val = arg_info.get("min")
|
|
215
|
+
max_val = arg_info.get("max")
|
|
216
|
+
has_stats = (
|
|
217
|
+
mean is not None
|
|
218
|
+
and std is not None
|
|
219
|
+
and min_val is not None
|
|
220
|
+
and max_val is not None
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
if arg_info.get("tensor_capture_error", False):
|
|
224
|
+
logging.error(
|
|
225
|
+
f"Error: Tensor '{arg_info.get('name', '')}' had capture error. Generating random tensor instead."
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
# Use a dummy tensor to check properties of the dtype
|
|
229
|
+
tensor_props = torch.empty(0, dtype=torch_dtype)
|
|
230
|
+
|
|
231
|
+
# Case 1: Floating point types
|
|
232
|
+
if tensor_props.is_floating_point():
|
|
233
|
+
if has_stats:
|
|
234
|
+
# Generate tensor with statistical properties matching original data
|
|
235
|
+
if std == 0 or min_val == max_val:
|
|
236
|
+
# Constant tensor
|
|
237
|
+
return torch.full(shape, mean, dtype=torch_dtype, device=device)
|
|
238
|
+
# Generate normal distribution with mean and std, then clamp to [min, max]
|
|
239
|
+
tensor = torch.randn(shape, dtype=torch.float32, device=device) * std + mean
|
|
240
|
+
tensor = torch.clamp(tensor, min=min_val, max=max_val)
|
|
241
|
+
return tensor.to(torch_dtype)
|
|
242
|
+
else:
|
|
243
|
+
# Fallback to original random generation
|
|
244
|
+
if torch_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
|
245
|
+
tmp = torch.rand(shape, dtype=torch.float32, device=device)
|
|
246
|
+
return tmp.to(torch_dtype)
|
|
247
|
+
else:
|
|
248
|
+
return torch.empty(shape, dtype=torch_dtype, device=device).random_()
|
|
249
|
+
|
|
250
|
+
# Case 2: Integer types
|
|
251
|
+
elif torch_dtype in [
|
|
252
|
+
torch.int8,
|
|
253
|
+
torch.int16,
|
|
254
|
+
torch.int32,
|
|
255
|
+
torch.int64,
|
|
256
|
+
torch.uint8,
|
|
257
|
+
torch.bool,
|
|
258
|
+
]:
|
|
259
|
+
if has_stats and torch_dtype != torch.bool:
|
|
260
|
+
# Generate tensor with statistical properties, then round for integers
|
|
261
|
+
if std == 0 or min_val == max_val:
|
|
262
|
+
# Constant tensor
|
|
263
|
+
return torch.full(shape, int(mean), dtype=torch_dtype, device=device)
|
|
264
|
+
tensor = torch.randn(shape, dtype=torch.float32, device=device) * std + mean
|
|
265
|
+
tensor = torch.clamp(tensor, min=min_val, max=max_val)
|
|
266
|
+
return torch.round(tensor).to(torch_dtype)
|
|
267
|
+
else:
|
|
268
|
+
# Fallback to original random generation
|
|
269
|
+
return torch.empty(shape, dtype=torch_dtype, device=device).random_()
|
|
270
|
+
|
|
271
|
+
# Case 3: Complex numbers need special handling
|
|
272
|
+
elif tensor_props.is_complex():
|
|
273
|
+
# Complex types: fallback to original logic for now
|
|
274
|
+
# TODO: Could be improved to use statistical info if available
|
|
275
|
+
float_dtype = torch.float32 if torch_dtype == torch.complex64 else torch.float64
|
|
276
|
+
real_part = torch.rand(shape, dtype=float_dtype, device=device)
|
|
277
|
+
imag_part = torch.rand(shape, dtype=float_dtype, device=device)
|
|
278
|
+
return torch.complex(real_part, imag_part)
|
|
279
|
+
|
|
280
|
+
# Case 4: Handle other unsigned integers (like uint32) which fail with random_()
|
|
281
|
+
elif "uint" in str(torch_dtype):
|
|
282
|
+
if has_stats:
|
|
283
|
+
# Generate tensor with statistical properties for unsigned integers
|
|
284
|
+
if std == 0 or min_val == max_val:
|
|
285
|
+
return torch.full(shape, int(mean), dtype=torch_dtype, device=device)
|
|
286
|
+
tensor = torch.randn(shape, dtype=torch.float32, device=device) * std + mean
|
|
287
|
+
tensor = torch.clamp(tensor, min=min_val, max=max_val)
|
|
288
|
+
return torch.round(tensor).to(torch_dtype)
|
|
289
|
+
else:
|
|
290
|
+
# Fallback to original random generation
|
|
291
|
+
return torch.randint(0, 1000, shape, dtype=torch_dtype, device=device)
|
|
292
|
+
|
|
293
|
+
# Case 5: If we don't know how to handle the type, raise an error
|
|
294
|
+
else:
|
|
295
|
+
raise NotImplementedError(
|
|
296
|
+
f"Random data generation not implemented for dtype: {torch_dtype}"
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
|
|
300
|
+
def _create_tensor(arg_info) -> torch.Tensor:
|
|
301
|
+
tensor = _create_base_tensor(arg_info)
|
|
302
|
+
|
|
303
|
+
# Apply stride and storage offset if needed
|
|
304
|
+
shape = arg_info.get("shape", [])
|
|
305
|
+
stride = arg_info.get("stride")
|
|
306
|
+
storage_offset = arg_info.get("storage_offset", 0)
|
|
307
|
+
return _apply_stride_and_offset(tensor, shape, stride, storage_offset)
|
|
308
|
+
|
|
309
|
+
|
|
310
|
+
def _create_arg_from_info(arg_info):
|
|
311
|
+
"""
|
|
312
|
+
Recursively construct a kernel argument from its JSON schema.
|
|
313
|
+
|
|
314
|
+
Args:
|
|
315
|
+
arg_info (dict): JSON object describing a single argument, including
|
|
316
|
+
fields like 'type', 'value', 'dtype', 'shape', 'device', etc.
|
|
317
|
+
|
|
318
|
+
Returns:
|
|
319
|
+
Any: The constructed Python object suitable for kernel invocation.
|
|
320
|
+
|
|
321
|
+
Raises:
|
|
322
|
+
RuntimeError: When required optional dependencies are missing.
|
|
323
|
+
NotImplementedError: When a dtype or type is not supported yet.
|
|
324
|
+
"""
|
|
325
|
+
arg_type = arg_info.get("type")
|
|
326
|
+
|
|
327
|
+
if arg_type == "NoneType":
|
|
328
|
+
return None
|
|
329
|
+
|
|
330
|
+
if arg_type in ["int", "bool", "str", "float"]:
|
|
331
|
+
return arg_info.get("value")
|
|
332
|
+
|
|
333
|
+
elif arg_type == "tensor":
|
|
334
|
+
return _create_tensor(arg_info)
|
|
335
|
+
|
|
336
|
+
elif arg_type == "triton_kernels.tensor.Tensor":
|
|
337
|
+
if not TRITON_KERNELS_CUSTOM_TYPES:
|
|
338
|
+
raise RuntimeError(
|
|
339
|
+
"Optional dependency 'triton_kernels.tensor' is not installed; cannot construct Tensor."
|
|
340
|
+
)
|
|
341
|
+
Tensor, Storage, StridedLayout = _get_triton_tensor_types()
|
|
342
|
+
storage = _create_arg_from_info(arg_info.get("storage"))
|
|
343
|
+
dtype_str = arg_info.get("dtype")
|
|
344
|
+
torch_dtype = getattr(torch, dtype_str.split(".")[-1])
|
|
345
|
+
return Tensor(
|
|
346
|
+
storage=storage,
|
|
347
|
+
shape=arg_info.get("shape"),
|
|
348
|
+
shape_max=arg_info.get("shape_max"),
|
|
349
|
+
dtype=torch_dtype,
|
|
350
|
+
)
|
|
351
|
+
|
|
352
|
+
elif arg_type == "triton_kernels.tensor.Storage":
|
|
353
|
+
if not TRITON_KERNELS_CUSTOM_TYPES:
|
|
354
|
+
raise RuntimeError(
|
|
355
|
+
"Optional dependency 'triton_kernels.tensor' is not installed; cannot construct Storage."
|
|
356
|
+
)
|
|
357
|
+
Tensor, Storage, StridedLayout = _get_triton_tensor_types()
|
|
358
|
+
data = _create_arg_from_info(arg_info.get("data"))
|
|
359
|
+
layout = _create_arg_from_info(arg_info.get("layout"))
|
|
360
|
+
return Storage(data=data, layout=layout)
|
|
361
|
+
|
|
362
|
+
elif arg_type == "StridedLayout":
|
|
363
|
+
if not TRITON_KERNELS_CUSTOM_TYPES:
|
|
364
|
+
raise RuntimeError(
|
|
365
|
+
"Optional dependency 'triton_kernels.tensor' is not installed; cannot construct StridedLayout."
|
|
366
|
+
)
|
|
367
|
+
Tensor, Storage, StridedLayout = _get_triton_tensor_types()
|
|
368
|
+
return StridedLayout(shape=arg_info.get("initial_shape"))
|
|
369
|
+
else:
|
|
370
|
+
print(f"Warning: Unhandled argument type '{arg_type}'. Returning None.")
|
|
371
|
+
return None
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
if __name__ == "__main__":
|
|
375
|
+
script_dir = Path(__file__).resolve().parent
|
|
376
|
+
json_file = script_dir / "{{JSON_FILE_NAME_PLACEHOLDER}}"
|
|
377
|
+
grid, args_dict = create_args_from_json_file(str(json_file))
|
|
378
|
+
|
|
379
|
+
print("Generated kernel arguments dictionary:")
|
|
380
|
+
for name, arg in args_dict.items():
|
|
381
|
+
print(f" {name}: {arg}")
|
|
382
|
+
print(f"Grid: {grid}")
|
|
383
|
+
|
|
384
|
+
# {{KERNEL_INVOCATION_PLACEHOLDER}}
|
|
385
|
+
|
|
386
|
+
torch.cuda.synchronize()
|
|
387
|
+
print("Kernel execution finished.")
|