tradingview-mcp 26.3.0__tar.gz → 26.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/PKG-INFO +1 -1
  2. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/pyproject.toml +1 -1
  3. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/reference.py +13 -0
  4. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/screener.py +4 -4
  5. tradingview_mcp-26.3.2/src/tradingview_mcp/tools/search.py +417 -0
  6. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/technical.py +31 -8
  7. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/utils.py +74 -6
  8. tradingview_mcp-26.3.0/src/tradingview_mcp/tools/search.py +0 -326
  9. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/.gitignore +0 -0
  10. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/LICENSE +0 -0
  11. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/README.md +0 -0
  12. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/__init__.py +0 -0
  13. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/column.py +0 -0
  14. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/constants.py +0 -0
  15. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/__init__.py +0 -0
  16. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/column_display_names.json +0 -0
  17. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/__init__.py +0 -0
  18. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/ai_quick_reference.json +0 -0
  19. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/common_fields.json +0 -0
  20. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/fields_by_market.json +0 -0
  21. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/screener_code_examples.json +0 -0
  22. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/stock_screener_presets.json +0 -0
  23. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/markets.json +0 -0
  24. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/bond.json +0 -0
  25. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/bonds.json +0 -0
  26. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/cfd.json +0 -0
  27. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/coin.json +0 -0
  28. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/crypto.json +0 -0
  29. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/economics2.json +0 -0
  30. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/forex.json +0 -0
  31. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/futures.json +0 -0
  32. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/ireland.json +0 -0
  33. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/options.json +0 -0
  34. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/stocks.json +0 -0
  35. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/main_screeners.json +0 -0
  36. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/markets.json +0 -0
  37. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/stocks.json +0 -0
  38. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/stocks_failed.json +0 -0
  39. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/docs_data.py +0 -0
  40. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/models.py +0 -0
  41. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/query.py +0 -0
  42. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/resources.py +0 -0
  43. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/scanner.py +0 -0
  44. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/server.py +0 -0
  45. {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/__init__.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tradingview-mcp
3
- Version: 26.3.0
3
+ Version: 26.3.2
4
4
  Summary: A comprehensive MCP server for TradingView market screening with integrated screener functionality
5
5
  Project-URL: Homepage, https://github.com/k73a/tradingview-mcp
6
6
  Project-URL: Documentation, https://github.com/k73a/tradingview-mcp#readme
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "tradingview-mcp"
3
- version = "26.3.0"
3
+ version = "26.3.2"
4
4
  description = "A comprehensive MCP server for TradingView market screening with integrated screener functionality"
5
5
  readme = "README.md"
6
6
  license = { text = "MIT" }
@@ -49,8 +49,21 @@ def get_filter_example(type: str = "number") -> dict[str, Any]:
49
49
  """Get example filter format."""
50
50
  return get_filter_format(type)
51
51
 
52
+ from tradingview_mcp.utils import sanitize_market
53
+
52
54
  def check_market(market: str) -> dict[str, Any]:
53
55
  """Validate a market name."""
56
+ # Resolve alias first (e.g. 'tw' -> 'taiwan') for consistency with other tools
57
+ # We use strict=False because we want the default 'america' if fails? No, check_market should be explicit.
58
+ # sanitize_market returns default 'america' if invalid.
59
+ # We want to know if it's strictly valid or valid alias.
60
+
61
+ # Check if it's a known alias
62
+ clean = market.strip().lower()
63
+ from tradingview_mcp.utils import COUNTRY_ALIASES
64
+ if clean in COUNTRY_ALIASES:
65
+ return validate_market(COUNTRY_ALIASES[clean])
66
+
54
67
  return validate_market(market)
55
68
 
56
69
  def get_help() -> dict[str, Any]:
@@ -15,7 +15,7 @@ def screen_market(
15
15
  filters: Optional[list[dict[str, Any]]] = None,
16
16
  ) -> dict[str, Any]:
17
17
  """Run a custom market screening query."""
18
- market = sanitize_market(market)
18
+ market = sanitize_market(market, strict=True)
19
19
  limit = max(1, min(limit, 500))
20
20
 
21
21
  # Ensure description is always included
@@ -71,17 +71,17 @@ def screen_market(
71
71
 
72
72
  def get_top_gainers(market: str = "america", limit: int = 25) -> dict[str, Any]:
73
73
  """Get top gainers for a market."""
74
- market = sanitize_market(market)
74
+ market = sanitize_market(market, strict=True)
75
75
  return screen_market(market, sort_by="change", ascending=False, limit=limit)
76
76
 
77
77
 
78
78
  def get_top_losers(market: str = "america", limit: int = 25) -> dict[str, Any]:
79
79
  """Get top losers for a market."""
80
- market = sanitize_market(market)
80
+ market = sanitize_market(market, strict=True)
81
81
  return screen_market(market, sort_by="change", ascending=True, limit=limit)
82
82
 
83
83
 
84
84
  def get_most_active(market: str = "america", limit: int = 25) -> dict[str, Any]:
85
85
  """Get most active symbols by volume."""
86
- market = sanitize_market(market)
86
+ market = sanitize_market(market, strict=True)
87
87
  return screen_market(market, sort_by="volume", ascending=False, limit=limit)
@@ -0,0 +1,417 @@
1
+ from __future__ import annotations
2
+ from typing import Any
3
+ import concurrent.futures
4
+
5
+ from mcp.server.fastmcp import Context
6
+
7
+ from tradingview_mcp.column import Column
8
+ from tradingview_mcp.constants import EXCHANGE_SCREENER
9
+ from tradingview_mcp.docs_data import get_default_columns_for_market, STOCK_MARKETS
10
+ from tradingview_mcp.query import Query
11
+ from tradingview_mcp.utils import sanitize_market
12
+
13
+ # Common aliases for commodities/forex that don't match TV names
14
+ SYMBOL_ALIASES = {
15
+ # Precious Metals
16
+ "XAG": ["SILVER", "XAGUSD"],
17
+ "XAU": ["GOLD", "XAUUSD"],
18
+ "XPT": ["PLATINUM", "XPTUSD"],
19
+ "XPD": ["PALLADIUM", "XPDUSD"],
20
+
21
+ # Energy
22
+ "OIL": ["USOIL", "UKOIL", "WTI", "BRENT"],
23
+ "WTI": ["USOIL"],
24
+ "BRENT": ["UKOIL"],
25
+ "NATGAS": ["NG1!", "NATURALGAS"],
26
+
27
+ # Others
28
+ "COPPER": ["HG1!", "XCUUSD"],
29
+ }
30
+
31
+ def search_symbols(
32
+ query: str,
33
+ market: str = "america",
34
+ limit: int = 25,
35
+ ) -> dict[str, Any]:
36
+ """
37
+ Search symbols by name or ticker. Returns strict locator format for downstream tools.
38
+
39
+ Output format includes 'locator': 'EXCHANGE:SYMBOL, market_name'.
40
+ Use this locator to call get_technical_analysis() or other tools precisely.
41
+ """
42
+ market = sanitize_market(market)
43
+ limit = max(1, min(limit, 100))
44
+
45
+ # Use dynamic default columns for this market
46
+ cols = get_default_columns_for_market(market)
47
+
48
+ # Determine sort column
49
+ sort_col = "market_cap_basic" if "market_cap_basic" in cols else "name"
50
+
51
+ # Expand query with aliases if available
52
+ queries = [query]
53
+ if query.upper() in SYMBOL_ALIASES:
54
+ queries.extend(SYMBOL_ALIASES[query.upper()])
55
+
56
+ try:
57
+ # Standard search in requested market
58
+ # We start this async to allow parallel peeking
59
+ with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
60
+ future_main = executor.submit(_execute_search, queries, market, limit, cols, sort_col)
61
+
62
+ # Smart Peek: Always check CFD/Forex/Crypto for EXACT matches or high relevance
63
+ # This solves the "Silver" problem: "Silver" exists in America (Stocks), but user might want "SILVER" (CFD)
64
+ # We don't want to wait for main search to fail (lazy fallback), we want to augment results.
65
+ peek_markets = ["cfd", "crypto", "forex"]
66
+ if market in peek_markets:
67
+ peek_markets.remove(market)
68
+
69
+ future_peeks = []
70
+ for pm in peek_markets:
71
+ # For peeking, we only care about high relevance, so limit is small
72
+ p_cols = get_default_columns_for_market(pm)
73
+ p_sort = "name" # Sort by name match
74
+ future_peeks.append(executor.submit(_execute_search, queries, pm, 5, p_cols, p_sort))
75
+
76
+ # Gather Main Results
77
+ results = future_main.result()
78
+
79
+ # Gather Peek Results
80
+ extra_matches = []
81
+ for f in future_peeks:
82
+ try:
83
+ res = f.result()
84
+ if res.get("results"):
85
+ extra_matches.extend(res["results"])
86
+ except:
87
+ pass
88
+
89
+ # Merge Logic
90
+ # 1. Start with Main Results
91
+ final_list = results.get("results", [])
92
+
93
+ # 2. Inject Exact Matches from Peeks at the TOP
94
+ # (e.g. if query="Silver" and we found "SILVER" in CFD, put it first)
95
+ high_priority = []
96
+ low_priority = []
97
+
98
+ query_upper = query.upper()
99
+
100
+ for m in extra_matches:
101
+ # Check for exact ticker/name match
102
+ n = m.get("name", "").upper()
103
+ tick = m.get("ticker", "").split(":")[-1].upper()
104
+
105
+ if n == query_upper or tick == query_upper or f"{query_upper}USD" in n:
106
+ high_priority.append(m)
107
+ else:
108
+ low_priority.append(m)
109
+
110
+ # specific uniqueness check
111
+ seen = {f"{r.get('exchange')}:{r.get('name')}" for r in final_list}
112
+
113
+ merged = []
114
+ # Add High Priority Peeks (if new)
115
+ for r in high_priority:
116
+ k = f"{r.get('exchange')}:{r.get('name')}"
117
+ if k not in seen:
118
+ merged.append(r)
119
+ seen.add(k)
120
+
121
+ # Add Main Results
122
+ merged.extend(final_list)
123
+
124
+ # Add Low Priority Peeks (only if we have space or main list is empty)
125
+ # Actually, let's append them if main list is small, or specialized matching
126
+ if not final_list:
127
+ for r in low_priority:
128
+ k = f"{r.get('exchange')}:{r.get('name')}"
129
+ if k not in seen:
130
+ merged.append(r)
131
+ seen.add(k)
132
+
133
+ # Update results
134
+ results["results"] = merged
135
+ results["total_found"] = len(merged)
136
+ results["returned"] = len(merged)
137
+
138
+ # Fallback Logic (Only if truly empty)
139
+ if not results["results"] and market == "america":
140
+
141
+ # 1. Asian Numeric Heuristic
142
+ if query.isdigit() and len(query) in [4, 5, 6]:
143
+ # ... existing heuristic code ...
144
+ asian_markets = ["taiwan", "hongkong", "japan", "china", "korea"]
145
+ for asian_market in asian_markets:
146
+ asian_cols = get_default_columns_for_market(asian_market)
147
+ asian_sort = "volume"
148
+ asian_res = _execute_search(queries, asian_market, 5, asian_cols, asian_sort)
149
+ if asian_res["results"]:
150
+ return {**asian_res, "note": f"No results in 'america', using numeric heuristic for '{asian_market}'."}
151
+
152
+ # 2. True Global Search
153
+ try:
154
+ global_cols = ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]
155
+ q = (
156
+ Query()
157
+ .set_markets(*STOCK_MARKETS)
158
+ .select(*global_cols)
159
+ .where(Column("description").like(query))
160
+ .order_by("volume", ascending=False)
161
+ .limit(5)
162
+ )
163
+ _, df = q.get_scanner_data()
164
+
165
+ if df.empty:
166
+ q = (
167
+ Query()
168
+ .set_markets(*STOCK_MARKETS)
169
+ .select(*global_cols)
170
+ .where(Column("name").like(query))
171
+ .order_by("volume", ascending=False)
172
+ .limit(5)
173
+ )
174
+ _, df = q.get_scanner_data()
175
+
176
+ if not df.empty:
177
+ # Add locators for global results
178
+ records = df.to_dict("records")
179
+ for r in records:
180
+ _enrich_locator(r, "stock", query)
181
+
182
+ return {
183
+ "query": query,
184
+ "market": "global",
185
+ "total_found": len(df),
186
+ "returned": len(df),
187
+ "results": records,
188
+ "note": "Found matches in global stock markets."
189
+ }
190
+ except Exception:
191
+ pass
192
+
193
+ return results
194
+
195
+ except Exception as e:
196
+ return _search_symbols_fallback(query, market, limit, cols, str(e))
197
+
198
+
199
+ def _enrich_locator(record: dict, market: str, category: str = "stock"):
200
+ """Add standard locator string to a record."""
201
+ ex = record.get("exchange", "UNKNOWN")
202
+ name = record.get("name", "UNKNOWN")
203
+
204
+ # Try to deduce market if 'stock' is generic
205
+ # (This is hard without a map of Exchange->Country, but we do our best)
206
+
207
+ # Construct Locator
208
+ # Format: EXCHANGE:SYMBOL, Market
209
+ record["locator"] = f"{ex}:{name}, {market}"
210
+ record["market"] = market
211
+
212
+
213
+ def _execute_search(queries: list[str] | str, market: str, limit: int, cols: list[str], sort_col: str) -> dict[str, Any]:
214
+ """Execute search, supporting multiple query terms (aliases)."""
215
+ if isinstance(queries, str):
216
+ queries = [queries]
217
+
218
+ all_results = []
219
+
220
+ # Try each query term until we get enough results
221
+ for q_term in queries:
222
+ if len(all_results) >= limit: break
223
+
224
+ try:
225
+ # 1. Search description
226
+ q = (
227
+ Query()
228
+ .set_markets(market)
229
+ .select(*cols)
230
+ .where(Column("description").like(q_term))
231
+ .order_by(sort_col, ascending=False)
232
+ .limit(limit)
233
+ )
234
+ _, df = q.get_scanner_data()
235
+ if not df.empty:
236
+ all_results.extend(df.to_dict("records"))
237
+
238
+ # 2. Search name
239
+ if len(all_results) < limit:
240
+ q2 = (
241
+ Query()
242
+ .set_markets(market)
243
+ .select(*cols)
244
+ .where(Column("name").like(q_term))
245
+ .order_by(sort_col, ascending=False)
246
+ .limit(limit)
247
+ )
248
+ _, df2 = q2.get_scanner_data()
249
+ if not df2.empty:
250
+ all_results.extend(df2.to_dict("records"))
251
+ except:
252
+ pass
253
+
254
+ # Dedup
255
+ unique = {r.get("name")+r.get("exchange"): r for r in all_results}
256
+ results = list(unique.values())[:limit]
257
+
258
+ # Enhance with locator
259
+ for r in results:
260
+ _enrich_locator(r, market)
261
+
262
+ return {
263
+ "query": queries[0],
264
+ "market": market,
265
+ "total_found": len(results),
266
+ "returned": len(results),
267
+ "results": results,
268
+ }
269
+
270
+
271
+ def _search_symbols_fallback(query: str, market: str, limit: int, cols: list[str], error: str) -> dict[str, Any]:
272
+ return {"error": f"Search failed: {str(e)}", "original_error": error}
273
+
274
+
275
+ def get_symbol_info(symbol: str, include_technical: bool = False) -> dict[str, Any]:
276
+ """
277
+ Get detailed information for a symbol.
278
+ Returns matches with strict locators: 'EXCHANGE:SYMBOL, Market'.
279
+ """
280
+ technical_cols = [
281
+ "RSI", "RSI7", "MACD.macd", "MACD.signal", "SMA20", "SMA50", "SMA200",
282
+ "EMA20", "EMA50", "EMA200", "BB.upper", "BB.lower", "ATR", "ADX",
283
+ "Recommend.All", "Recommend.MA", "Recommend.Other"
284
+ ]
285
+
286
+ try:
287
+ # --- Strict Mode (Exchange Specified) ---
288
+ if ":" in symbol:
289
+ exchange, ticker = symbol.split(":", 1)
290
+ market = EXCHANGE_SCREENER.get(exchange.lower()) or "america"
291
+
292
+ # Allow override via sanitized lookup? No, specific exchange implies specific market logic usually.
293
+ # But let's be safe.
294
+
295
+ cols = get_default_columns_for_market(market)
296
+ if include_technical: cols.extend(technical_cols)
297
+ cols = list(dict.fromkeys(cols))
298
+
299
+ q = (
300
+ Query()
301
+ .set_markets(market)
302
+ .select(*cols)
303
+ .where(Column("name").isin([symbol, ticker, symbol.upper(), ticker.upper()]))
304
+ .limit(5)
305
+ )
306
+ _, df = q.get_scanner_data()
307
+ results = df.to_dict("records")
308
+
309
+ if results:
310
+ # Add strict locators
311
+ for r in results:
312
+ _enrich_locator(r, market)
313
+
314
+ if len(results) == 1:
315
+ return {"symbol": symbol, "found": True, "market": market, "data": results[0]}
316
+ return {"symbol": symbol, "found": True, "market": market, "matches": results}
317
+ else:
318
+ return {"symbol": symbol, "found": False, "hint": f"Symbol not found in {market} ({exchange}). Check format."}
319
+
320
+ # --- Universal Mode (Implicit Market) ---
321
+ all_matches = []
322
+
323
+ # Targets
324
+ targets = [symbol, symbol.upper(), f"{symbol}USDT", f"{symbol}USD"]
325
+ if symbol.upper() in SYMBOL_ALIASES:
326
+ targets.extend(SYMBOL_ALIASES[symbol.upper()])
327
+
328
+ # Helper
329
+ def run_search(market, col_getter):
330
+ try:
331
+ cols = col_getter(market)
332
+ if include_technical: cols.extend(technical_cols)
333
+ cols = list(dict.fromkeys(cols))
334
+
335
+ # We need to set markets properly
336
+ q = Query()
337
+ if market == "global_stocks":
338
+ q.set_markets(*STOCK_MARKETS)
339
+ else:
340
+ q.set_markets(market)
341
+
342
+ q.select(*cols).where(Column("name").isin(targets))
343
+
344
+ if market == "global_stocks":
345
+ q.order_by("market_cap_basic", ascending=False).limit(10)
346
+ else:
347
+ q.limit(5)
348
+
349
+ _, df = q.get_scanner_data()
350
+ if not df.empty:
351
+ matches = df.to_dict("records")
352
+ cat = "stock" if market == "global_stocks" else market
353
+
354
+ # Fixup locator logic
355
+ for m in matches:
356
+ m["_category"] = cat
357
+ # If global stock, we don't know exact country easily without map.
358
+ # But for now we pass 'global_stocks' or try to guess?
359
+ # It's better to tell AI "taiwan" if possible.
360
+ # But we queried ALL markets.
361
+ # HACK: We should query 'taiwan' explicitly if heuristics match?
362
+ # No, just return EXCHANGE:SYMBOL and let AI use 'search_symbols' if it needs precise market.
363
+ # Actually user wants "TWSE:0050, taiwan".
364
+ # If we used set_markets(*ALL), we lose the origin market info in the response unless we select 'market' column?
365
+ # TradingView API doesn't usually return 'market' column. It returns 'exchange'.
366
+ # We can map Exchange -> Market via EXCHANGE_SCREENER?
367
+ rec_market = EXCHANGE_SCREENER.get(m.get("exchange", "").lower(), cat)
368
+ _enrich_locator(m, rec_market)
369
+
370
+ return matches
371
+ except:
372
+ pass
373
+ return []
374
+
375
+ # Execute in parallel
376
+ with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
377
+ futures = [
378
+ executor.submit(run_search, "global_stocks", lambda m: ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]),
379
+ executor.submit(run_search, "crypto", get_default_columns_for_market),
380
+ executor.submit(run_search, "forex", get_default_columns_for_market),
381
+ executor.submit(run_search, "cfd", get_default_columns_for_market)
382
+ ]
383
+ for future in concurrent.futures.as_completed(futures):
384
+ all_matches.extend(future.result())
385
+
386
+ # --- Aggregate Results ---
387
+ if not all_matches:
388
+ return search_symbols(symbol, "america", 5)
389
+
390
+ # Remove duplicates
391
+ unique_matches = {}
392
+ for m in all_matches:
393
+ key = m.get("ticker", m.get("name"))
394
+ if key not in unique_matches:
395
+ unique_matches[key] = m
396
+
397
+ final_matches = list(unique_matches.values())
398
+
399
+ if len(final_matches) == 1:
400
+ first = final_matches[0]
401
+ cat = first.pop("_category", "global")
402
+ return {"symbol": symbol, "found": True, "market": cat, "data": first}
403
+
404
+ return {
405
+ "symbol": symbol,
406
+ "found": True,
407
+ "market": "global",
408
+ "count": len(final_matches),
409
+ "matches": final_matches,
410
+ "note": "Multiple matches found across global markets."
411
+ }
412
+
413
+ except Exception as e:
414
+ return {
415
+ "error": f"Failed to get symbol info: {str(e)}",
416
+ "hint": "Try using search_symbols to find the correct symbol format",
417
+ }
@@ -6,9 +6,26 @@ from tradingview_mcp.constants import TECHNICAL_COLUMNS
6
6
  from tradingview_mcp.query import Query
7
7
  from tradingview_mcp.utils import sanitize_market
8
8
 
9
- def get_technical_analysis(symbol: str, market: str = "america") -> dict[str, Any]:
10
- """Get technical indicators for a symbol."""
11
- market = sanitize_market(market)
9
+ def get_technical_analysis(symbol: str, market: str) -> dict[str, Any]:
10
+ """
11
+ Get technical indicators for a symbol.
12
+
13
+ IMPORTANT: You must use a strictly formatted symbol and market.
14
+ 1. Call `get_symbol_info(symbol)` first.
15
+ 2. Use the `locator` field from the response (e.g. "EXCHANGE:SYMBOL") and the exact `market`.
16
+ 3. Do NOT guess the market.
17
+ """
18
+ # Strict validation
19
+ if ":" not in symbol:
20
+ return {
21
+ "error": "Ambiguous symbol format. Missing exchange prefix.",
22
+ "hint": f"Please run get_symbol_info('{symbol}') first to find the correct 'EXCHANGE:{symbol}' locator and 'market'."
23
+ }
24
+
25
+ # Parse strictly formatted symbol
26
+ exchange, ticker = symbol.split(":", 1)
27
+
28
+ market = sanitize_market(market, strict=True)
12
29
 
13
30
  # Use standard technical columns
14
31
  cols = list(TECHNICAL_COLUMNS)
@@ -18,13 +35,19 @@ def get_technical_analysis(symbol: str, market: str = "america") -> dict[str, An
18
35
  Query()
19
36
  .set_markets(market)
20
37
  .select(*cols)
21
- .where(Column("name").isin([symbol, symbol.upper()]))
38
+ .where(Column("name").isin([ticker, ticker.upper()])) # Use ticker part for name lookup
22
39
  .limit(1)
23
40
  )
41
+
24
42
  _, df = q.get_scanner_data()
25
43
 
26
44
  if df.empty:
27
- return {"error": f"Symbol {symbol} not found in {market}"}
45
+ # Check if user maybe used wrong market?
46
+ # But we want to be strict.
47
+ return {
48
+ "error": f"Symbol '{symbol}' not found in market '{market}'.",
49
+ "hint": "Ensure you are using the correct market from get_symbol_info()."
50
+ }
28
51
 
29
52
  data = df.iloc[0].to_dict()
30
53
  return {
@@ -37,7 +60,7 @@ def get_technical_analysis(symbol: str, market: str = "america") -> dict[str, An
37
60
 
38
61
  def scan_rsi_extremes(market: str = "america", limit: int = 25) -> dict[str, Any]:
39
62
  """Find symbols with extreme RSI values (<30 or >70)."""
40
- market = sanitize_market(market)
63
+ market = sanitize_market(market, strict=True)
41
64
 
42
65
  q = (
43
66
  Query()
@@ -77,7 +100,7 @@ def scan_rsi_extremes(market: str = "america", limit: int = 25) -> dict[str, Any
77
100
 
78
101
  def scan_bollinger_bands(market: str = "america", limit: int = 25) -> dict[str, Any]:
79
102
  """Find symbols trading outside Bollinger Bands."""
80
- market = sanitize_market(market)
103
+ market = sanitize_market(market, strict=True)
81
104
  # This is complex to do with simple filters.
82
105
  # We'll just return basic BB values for top volume stocks.
83
106
 
@@ -97,7 +120,7 @@ def scan_bollinger_bands(market: str = "america", limit: int = 25) -> dict[str,
97
120
 
98
121
  def scan_macd_crossover(market: str = "america", limit: int = 25) -> dict[str, Any]:
99
122
  """scan for MACD crossovers."""
100
- market = sanitize_market(market)
123
+ market = sanitize_market(market, strict=True)
101
124
  q = (
102
125
  Query()
103
126
  .set_markets(market)
@@ -54,21 +54,89 @@ def sanitize_exchange(ex: str | None, default: str = "america") -> str:
54
54
  return default
55
55
 
56
56
 
57
- def sanitize_market(market: str | None, default: str = "america") -> str:
57
+ # Country Code mappings
58
+ COUNTRY_ALIASES = {
59
+ "us": "america",
60
+ "usa": "america",
61
+ "uk": "uk",
62
+ "gb": "uk",
63
+ "de": "germany",
64
+ "fr": "france",
65
+ "it": "italy",
66
+ "es": "spain",
67
+ "pt": "portugal",
68
+ "ch": "switzerland",
69
+ "se": "sweden",
70
+ "no": "norway",
71
+ "fi": "finland",
72
+ "nl": "netherlands",
73
+ "be": "belgium",
74
+ "at": "austria",
75
+ "ie": "ireland",
76
+ "ru": "russia",
77
+ "cn": "china",
78
+ "jp": "japan",
79
+ "kr": "korea",
80
+ "in": "india",
81
+ "id": "indonesia",
82
+ "my": "malaysia",
83
+ "th": "thailand",
84
+ "vn": "vietnam",
85
+ "tw": "taiwan",
86
+ "sg": "singapore",
87
+ "hk": "hongkong",
88
+ "au": "australia",
89
+ "nz": "newzealand",
90
+ "ca": "canada",
91
+ "br": "brazil",
92
+ "mx": "mexico",
93
+ "ar": "argentina",
94
+ "cl": "chile",
95
+ "co": "colombia",
96
+ "pe": "peru",
97
+ "eg": "egypt",
98
+ "tr": "turkey",
99
+ "za": "rsa", # South Africa
100
+ }
101
+
102
+ def sanitize_market(market: str | None, default: str = "america", strict: bool = False) -> str:
58
103
  """
59
104
  Validate and sanitize a market name.
60
-
105
+
61
106
  Args:
62
- market: Market to validate
63
- default: Default value if invalid
107
+ market: Market to validate (e.g. 'america', 'tw', 'crypto')
108
+ default: Default value if invalid (only used if strict=False)
109
+ strict: If True, raise ValueError for invalid markets instead of returning default.
64
110
 
65
111
  Returns:
66
112
  Valid market string
113
+
114
+ Raises:
115
+ ValueError: If strict=True and market is invalid.
67
116
  """
68
117
  if not market:
118
+ if strict:
119
+ raise ValueError("Market parameter is required (e.g. 'america', 'taiwan').")
69
120
  return default
70
- market = market.strip().lower()
71
- return market if market in MARKETS else default
121
+
122
+ market_clean = market.strip().lower()
123
+
124
+ # Check exact match
125
+ if market_clean in MARKETS:
126
+ return market_clean
127
+
128
+ # Check alias match
129
+ if market_clean in COUNTRY_ALIASES:
130
+ return COUNTRY_ALIASES[market_clean]
131
+
132
+ # Check if user passed exchange (e.g. 'nasdaq') by mistake
133
+ if market_clean in EXCHANGE_SCREENER:
134
+ return EXCHANGE_SCREENER[market_clean]
135
+
136
+ if strict:
137
+ raise ValueError(f"Invalid market '{market}'. Please use a valid country code or name (e.g. 'america', 'taiwan', 'crypto').")
138
+
139
+ return default
72
140
 
73
141
 
74
142
  def timeframe_to_resolution(tf: str) -> str:
@@ -1,326 +0,0 @@
1
- from __future__ import annotations
2
- from typing import Any
3
- import concurrent.futures
4
-
5
- from mcp.server.fastmcp import Context
6
-
7
- from tradingview_mcp.column import Column
8
- from tradingview_mcp.constants import EXCHANGE_SCREENER
9
- from tradingview_mcp.docs_data import get_default_columns_for_market, STOCK_MARKETS
10
- from tradingview_mcp.query import Query
11
- from tradingview_mcp.utils import sanitize_market
12
-
13
- def search_symbols(
14
- query: str,
15
- market: str = "america",
16
- limit: int = 25,
17
- ) -> dict[str, Any]:
18
- """
19
- Search symbols by name or ticker.
20
- If default market returns no results, automatically searches crypto and forex.
21
- """
22
- market = sanitize_market(market)
23
- limit = max(1, min(limit, 100))
24
-
25
- # Use dynamic default columns for this market
26
- cols = get_default_columns_for_market(market)
27
-
28
- # Determine sort column
29
- sort_col = "market_cap_basic" if "market_cap_basic" in cols else "name"
30
-
31
- try:
32
- # Standard search in requested market
33
- results = _execute_search(query, market, limit, cols, sort_col)
34
-
35
- # Smart Fallback: If default market ('america') yielded no results, try others
36
- if not results["results"] and market == "america":
37
-
38
- # 1. Asian Numeric Heuristic (Prioritized for speed/accuracy)
39
- if query.isdigit() and len(query) in [4, 5, 6]:
40
- asian_markets = ["taiwan", "hongkong", "japan", "china", "korea"]
41
- for asian_market in asian_markets:
42
- asian_cols = get_default_columns_for_market(asian_market)
43
- asian_sort = "volume" # Volume is good for general Asian scanners
44
- asian_res = _execute_search(query, asian_market, 5, asian_cols, asian_sort)
45
- if asian_res["results"]:
46
- return {**asian_res, "note": f"No results in 'america', found matches in '{asian_market}' (numeric heuristic)"}
47
-
48
- # 2. True Global Search (Check ALL 68+ Stock Markets)
49
- try:
50
- # Use standard global columns safe for all
51
- global_cols = ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]
52
-
53
- # Check Description First (often better for "Maybank")
54
- q = (
55
- Query()
56
- .set_markets(*STOCK_MARKETS)
57
- .select(*global_cols)
58
- .where(Column("description").like(query))
59
- .order_by("volume", ascending=False)
60
- .limit(5)
61
- )
62
- _, df = q.get_scanner_data()
63
-
64
- if df.empty:
65
- # Check Name (Ticker)
66
- q = (
67
- Query()
68
- .set_markets(*STOCK_MARKETS)
69
- .select(*global_cols)
70
- .where(Column("name").like(query))
71
- .order_by("volume", ascending=False)
72
- .limit(5)
73
- )
74
- _, df = q.get_scanner_data()
75
-
76
- if not df.empty:
77
- # Basic Global Result
78
- total = len(df) # Roughly
79
- return {
80
- "query": query,
81
- "market": "global",
82
- "total_found": total,
83
- "returned": len(df),
84
- "results": df.to_dict("records"),
85
- "note": "No results in 'america', found matches in global stock markets."
86
- }
87
-
88
- except Exception:
89
- pass # Continue to other fallbacks
90
-
91
- # 3. Check Crypto/Forex
92
- for other in ["crypto", "forex"]:
93
- if other == market: continue
94
-
95
- cols = get_default_columns_for_market(other)
96
- sort = "market_cap_basic" if "market_cap_basic" in cols else "name"
97
- if other == "forex": sort = "name"
98
-
99
- res = _execute_search(query, other, 5, cols, sort)
100
- if res["results"]:
101
- return {**res, "note": f"No results in stocks, found matches in '{other}'"}
102
-
103
- return results
104
-
105
- except Exception as e:
106
- return _search_symbols_fallback(query, market, limit, cols, str(e))
107
-
108
-
109
- def _execute_search(query: str, market: str, limit: int, cols: list[str], sort_col: str) -> dict[str, Any]:
110
- """Execute a single search query against a market."""
111
- try:
112
- # 1. Search description (company name)
113
- query_obj = (
114
- Query()
115
- .set_markets(market)
116
- .select(*cols)
117
- .where(Column("description").like(query))
118
- .order_by(sort_col, ascending=False)
119
- .limit(limit)
120
- )
121
- total, df = query_obj.get_scanner_data()
122
- results = df.to_dict("records")
123
-
124
- # 2. If nothing found, search name (ticker)
125
- if not results:
126
- query_obj2 = (
127
- Query()
128
- .set_markets(market)
129
- .select(*cols)
130
- .where(Column("name").like(query))
131
- .order_by(sort_col, ascending=False)
132
- .limit(limit)
133
- )
134
- total, df = query_obj2.get_scanner_data()
135
- results = df.to_dict("records")
136
-
137
- return {
138
- "query": query,
139
- "market": market,
140
- "total_found": total if results else 0,
141
- "returned": len(results),
142
- "results": results,
143
- "hint": "Use 'name' field as symbol for other tools" if results else "No matches found.",
144
- }
145
- except Exception:
146
- return {"results": [], "market": market}
147
-
148
-
149
- def _search_symbols_fallback(query: str, market: str, limit: int, cols: list[str], error: str) -> dict[str, Any]:
150
- """Fallback search when API operations fail."""
151
- try:
152
- q = Query().set_markets(market).select(*cols).limit(100)
153
- _, df = q.get_scanner_data()
154
- q_lower = query.lower()
155
- mask = df["name"].str.lower().str.contains(q_lower) | df["description"].str.lower().str.contains(q_lower)
156
- df_filtered = df[mask].head(limit)
157
- return {
158
- "query": query,
159
- "market": market,
160
- "returned": len(df_filtered),
161
- "results": df_filtered.to_dict("records"),
162
- "note": "Used fallback local search.",
163
- "original_error": error,
164
- }
165
- except Exception as e:
166
- return {"error": f"Search failed: {str(e)}", "original_error": error}
167
-
168
-
169
- def get_symbol_info(symbol: str, include_technical: bool = False) -> dict[str, Any]:
170
- """
171
- Get detailed information for a symbol.
172
-
173
- Modes:
174
- 1. Strict: 'EXCHANGE:SYMBOL' (e.g. 'NASDAQ:AAPL') - searches only that exchange/market.
175
- 2. Universal: 'SYMBOL' (e.g. 'AAA') - searches ALL global markets, Crypto, and Forex.
176
- Returns ALL matches found to verify ambiguity.
177
- """
178
- technical_cols = [
179
- "RSI", "RSI7", "MACD.macd", "MACD.signal", "SMA20", "SMA50", "SMA200",
180
- "EMA20", "EMA50", "EMA200", "BB.upper", "BB.lower", "ATR", "ADX",
181
- "Recommend.All", "Recommend.MA", "Recommend.Other"
182
- ]
183
-
184
- try:
185
- # --- Strict Mode (Exchange Specified) ---
186
- if ":" in symbol:
187
- exchange, ticker = symbol.split(":", 1)
188
- market = EXCHANGE_SCREENER.get(exchange.lower()) or "america"
189
-
190
- # Setup Columns
191
- cols = get_default_columns_for_market(market)
192
- if include_technical: cols.extend(technical_cols)
193
- cols = list(dict.fromkeys(cols))
194
-
195
- # Query
196
- q = (
197
- Query()
198
- .set_markets(market)
199
- .select(*cols)
200
- .where(Column("name").isin([symbol, ticker, symbol.upper(), ticker.upper()]))
201
- .limit(5)
202
- )
203
- _, df = q.get_scanner_data()
204
- results = df.to_dict("records")
205
-
206
- if results:
207
- if len(results) == 1:
208
- return {"symbol": symbol, "found": True, "market": market, "data": results[0]}
209
- return {"symbol": symbol, "found": True, "market": market, "matches": results}
210
- else:
211
- return {"symbol": symbol, "found": False, "hint": f"Symbol not found in {market} ({exchange}). Check format."}
212
-
213
- # --- Universal Mode (Implicit Market) ---
214
- # We search Stocks (Global), Crypto, vs Forex in parallel using ThreadPoolExecutor
215
- all_matches = []
216
-
217
- def check_global_stocks():
218
- try:
219
- stock_cols = ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]
220
- if include_technical: stock_cols.extend(technical_cols)
221
- stock_cols = list(dict.fromkeys(stock_cols))
222
-
223
- q_stocks = (
224
- Query()
225
- .set_markets(*STOCK_MARKETS)
226
- .select(*stock_cols)
227
- .where(Column("name").isin([symbol, symbol.upper()]))
228
- .order_by("market_cap_basic", ascending=False)
229
- .limit(10)
230
- )
231
- _, df_stocks = q_stocks.get_scanner_data()
232
- if not df_stocks.empty:
233
- matches = df_stocks.to_dict("records")
234
- for m in matches: m["_category"] = "stock"
235
- return matches
236
- except Exception:
237
- pass
238
- return []
239
-
240
- def check_crypto():
241
- try:
242
- crypto_cols = get_default_columns_for_market("crypto")
243
- if include_technical: crypto_cols.extend(technical_cols)
244
- crypto_cols = list(dict.fromkeys(crypto_cols))
245
-
246
- q_crypto = (
247
- Query()
248
- .set_markets("crypto")
249
- .select(*crypto_cols)
250
- .where(Column("name").isin([symbol, symbol.upper(), f"{symbol}USDT", f"{symbol}USD"]))
251
- .limit(5)
252
- )
253
- _, df_crypto = q_crypto.get_scanner_data()
254
- if not df_crypto.empty:
255
- matches = df_crypto.to_dict("records")
256
- for m in matches: m["_category"] = "crypto"
257
- return matches
258
- except Exception:
259
- pass
260
- return []
261
-
262
- def check_forex():
263
- try:
264
- forex_cols = get_default_columns_for_market("forex")
265
- if include_technical: forex_cols.extend(technical_cols)
266
- forex_cols = list(dict.fromkeys(forex_cols))
267
-
268
- q_forex = (
269
- Query()
270
- .set_markets("forex")
271
- .select(*forex_cols)
272
- .where(Column("name").isin([symbol, symbol.upper()]))
273
- .limit(5)
274
- )
275
- _, df_forex = q_forex.get_scanner_data()
276
- if not df_forex.empty:
277
- matches = df_forex.to_dict("records")
278
- for m in matches: m["_category"] = "forex"
279
- return matches
280
- except Exception:
281
- pass
282
- return []
283
-
284
- # Execute in parallel
285
- with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
286
- futures = [
287
- executor.submit(check_global_stocks),
288
- executor.submit(check_crypto),
289
- executor.submit(check_forex)
290
- ]
291
- for future in concurrent.futures.as_completed(futures):
292
- all_matches.extend(future.result())
293
-
294
- # --- Aggregate Results ---
295
- if not all_matches:
296
- # Try search_symbols as last resort (fuzzy search)
297
- return search_symbols(symbol, "america", 5)
298
-
299
- # Remove duplicates based on ticker
300
- unique_matches = {}
301
- for m in all_matches:
302
- key = m.get("ticker", m.get("name"))
303
- if key not in unique_matches:
304
- unique_matches[key] = m
305
-
306
- final_matches = list(unique_matches.values())
307
-
308
- if len(final_matches) == 1:
309
- first = final_matches[0]
310
- cat = first.pop("_category", "global")
311
- return {"symbol": symbol, "found": True, "market": cat, "data": first}
312
-
313
- return {
314
- "symbol": symbol,
315
- "found": True,
316
- "market": "global",
317
- "count": len(final_matches),
318
- "matches": final_matches,
319
- "note": "Multiple matches found across global markets."
320
- }
321
-
322
- except Exception as e:
323
- return {
324
- "error": f"Failed to get symbol info: {str(e)}",
325
- "hint": "Try using search_symbols to find the correct symbol format",
326
- }