tradingview-mcp 26.3.0__tar.gz → 26.3.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/PKG-INFO +1 -1
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/pyproject.toml +1 -1
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/reference.py +13 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/screener.py +4 -4
- tradingview_mcp-26.3.2/src/tradingview_mcp/tools/search.py +417 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/technical.py +31 -8
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/utils.py +74 -6
- tradingview_mcp-26.3.0/src/tradingview_mcp/tools/search.py +0 -326
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/.gitignore +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/LICENSE +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/README.md +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/__init__.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/column.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/constants.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/__init__.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/column_display_names.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/__init__.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/ai_quick_reference.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/common_fields.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/fields_by_market.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/screener_code_examples.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/stock_screener_presets.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/markets.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/bond.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/bonds.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/cfd.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/coin.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/crypto.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/economics2.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/forex.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/futures.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/ireland.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/options.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/stocks.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/main_screeners.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/markets.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/stocks.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/stocks_failed.json +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/docs_data.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/models.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/query.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/resources.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/scanner.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/server.py +0 -0
- {tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/tools/__init__.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tradingview-mcp
|
|
3
|
-
Version: 26.3.
|
|
3
|
+
Version: 26.3.2
|
|
4
4
|
Summary: A comprehensive MCP server for TradingView market screening with integrated screener functionality
|
|
5
5
|
Project-URL: Homepage, https://github.com/k73a/tradingview-mcp
|
|
6
6
|
Project-URL: Documentation, https://github.com/k73a/tradingview-mcp#readme
|
|
@@ -49,8 +49,21 @@ def get_filter_example(type: str = "number") -> dict[str, Any]:
|
|
|
49
49
|
"""Get example filter format."""
|
|
50
50
|
return get_filter_format(type)
|
|
51
51
|
|
|
52
|
+
from tradingview_mcp.utils import sanitize_market
|
|
53
|
+
|
|
52
54
|
def check_market(market: str) -> dict[str, Any]:
|
|
53
55
|
"""Validate a market name."""
|
|
56
|
+
# Resolve alias first (e.g. 'tw' -> 'taiwan') for consistency with other tools
|
|
57
|
+
# We use strict=False because we want the default 'america' if fails? No, check_market should be explicit.
|
|
58
|
+
# sanitize_market returns default 'america' if invalid.
|
|
59
|
+
# We want to know if it's strictly valid or valid alias.
|
|
60
|
+
|
|
61
|
+
# Check if it's a known alias
|
|
62
|
+
clean = market.strip().lower()
|
|
63
|
+
from tradingview_mcp.utils import COUNTRY_ALIASES
|
|
64
|
+
if clean in COUNTRY_ALIASES:
|
|
65
|
+
return validate_market(COUNTRY_ALIASES[clean])
|
|
66
|
+
|
|
54
67
|
return validate_market(market)
|
|
55
68
|
|
|
56
69
|
def get_help() -> dict[str, Any]:
|
|
@@ -15,7 +15,7 @@ def screen_market(
|
|
|
15
15
|
filters: Optional[list[dict[str, Any]]] = None,
|
|
16
16
|
) -> dict[str, Any]:
|
|
17
17
|
"""Run a custom market screening query."""
|
|
18
|
-
market = sanitize_market(market)
|
|
18
|
+
market = sanitize_market(market, strict=True)
|
|
19
19
|
limit = max(1, min(limit, 500))
|
|
20
20
|
|
|
21
21
|
# Ensure description is always included
|
|
@@ -71,17 +71,17 @@ def screen_market(
|
|
|
71
71
|
|
|
72
72
|
def get_top_gainers(market: str = "america", limit: int = 25) -> dict[str, Any]:
|
|
73
73
|
"""Get top gainers for a market."""
|
|
74
|
-
market = sanitize_market(market)
|
|
74
|
+
market = sanitize_market(market, strict=True)
|
|
75
75
|
return screen_market(market, sort_by="change", ascending=False, limit=limit)
|
|
76
76
|
|
|
77
77
|
|
|
78
78
|
def get_top_losers(market: str = "america", limit: int = 25) -> dict[str, Any]:
|
|
79
79
|
"""Get top losers for a market."""
|
|
80
|
-
market = sanitize_market(market)
|
|
80
|
+
market = sanitize_market(market, strict=True)
|
|
81
81
|
return screen_market(market, sort_by="change", ascending=True, limit=limit)
|
|
82
82
|
|
|
83
83
|
|
|
84
84
|
def get_most_active(market: str = "america", limit: int = 25) -> dict[str, Any]:
|
|
85
85
|
"""Get most active symbols by volume."""
|
|
86
|
-
market = sanitize_market(market)
|
|
86
|
+
market = sanitize_market(market, strict=True)
|
|
87
87
|
return screen_market(market, sort_by="volume", ascending=False, limit=limit)
|
|
@@ -0,0 +1,417 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
from typing import Any
|
|
3
|
+
import concurrent.futures
|
|
4
|
+
|
|
5
|
+
from mcp.server.fastmcp import Context
|
|
6
|
+
|
|
7
|
+
from tradingview_mcp.column import Column
|
|
8
|
+
from tradingview_mcp.constants import EXCHANGE_SCREENER
|
|
9
|
+
from tradingview_mcp.docs_data import get_default_columns_for_market, STOCK_MARKETS
|
|
10
|
+
from tradingview_mcp.query import Query
|
|
11
|
+
from tradingview_mcp.utils import sanitize_market
|
|
12
|
+
|
|
13
|
+
# Common aliases for commodities/forex that don't match TV names
|
|
14
|
+
SYMBOL_ALIASES = {
|
|
15
|
+
# Precious Metals
|
|
16
|
+
"XAG": ["SILVER", "XAGUSD"],
|
|
17
|
+
"XAU": ["GOLD", "XAUUSD"],
|
|
18
|
+
"XPT": ["PLATINUM", "XPTUSD"],
|
|
19
|
+
"XPD": ["PALLADIUM", "XPDUSD"],
|
|
20
|
+
|
|
21
|
+
# Energy
|
|
22
|
+
"OIL": ["USOIL", "UKOIL", "WTI", "BRENT"],
|
|
23
|
+
"WTI": ["USOIL"],
|
|
24
|
+
"BRENT": ["UKOIL"],
|
|
25
|
+
"NATGAS": ["NG1!", "NATURALGAS"],
|
|
26
|
+
|
|
27
|
+
# Others
|
|
28
|
+
"COPPER": ["HG1!", "XCUUSD"],
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
def search_symbols(
|
|
32
|
+
query: str,
|
|
33
|
+
market: str = "america",
|
|
34
|
+
limit: int = 25,
|
|
35
|
+
) -> dict[str, Any]:
|
|
36
|
+
"""
|
|
37
|
+
Search symbols by name or ticker. Returns strict locator format for downstream tools.
|
|
38
|
+
|
|
39
|
+
Output format includes 'locator': 'EXCHANGE:SYMBOL, market_name'.
|
|
40
|
+
Use this locator to call get_technical_analysis() or other tools precisely.
|
|
41
|
+
"""
|
|
42
|
+
market = sanitize_market(market)
|
|
43
|
+
limit = max(1, min(limit, 100))
|
|
44
|
+
|
|
45
|
+
# Use dynamic default columns for this market
|
|
46
|
+
cols = get_default_columns_for_market(market)
|
|
47
|
+
|
|
48
|
+
# Determine sort column
|
|
49
|
+
sort_col = "market_cap_basic" if "market_cap_basic" in cols else "name"
|
|
50
|
+
|
|
51
|
+
# Expand query with aliases if available
|
|
52
|
+
queries = [query]
|
|
53
|
+
if query.upper() in SYMBOL_ALIASES:
|
|
54
|
+
queries.extend(SYMBOL_ALIASES[query.upper()])
|
|
55
|
+
|
|
56
|
+
try:
|
|
57
|
+
# Standard search in requested market
|
|
58
|
+
# We start this async to allow parallel peeking
|
|
59
|
+
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
|
|
60
|
+
future_main = executor.submit(_execute_search, queries, market, limit, cols, sort_col)
|
|
61
|
+
|
|
62
|
+
# Smart Peek: Always check CFD/Forex/Crypto for EXACT matches or high relevance
|
|
63
|
+
# This solves the "Silver" problem: "Silver" exists in America (Stocks), but user might want "SILVER" (CFD)
|
|
64
|
+
# We don't want to wait for main search to fail (lazy fallback), we want to augment results.
|
|
65
|
+
peek_markets = ["cfd", "crypto", "forex"]
|
|
66
|
+
if market in peek_markets:
|
|
67
|
+
peek_markets.remove(market)
|
|
68
|
+
|
|
69
|
+
future_peeks = []
|
|
70
|
+
for pm in peek_markets:
|
|
71
|
+
# For peeking, we only care about high relevance, so limit is small
|
|
72
|
+
p_cols = get_default_columns_for_market(pm)
|
|
73
|
+
p_sort = "name" # Sort by name match
|
|
74
|
+
future_peeks.append(executor.submit(_execute_search, queries, pm, 5, p_cols, p_sort))
|
|
75
|
+
|
|
76
|
+
# Gather Main Results
|
|
77
|
+
results = future_main.result()
|
|
78
|
+
|
|
79
|
+
# Gather Peek Results
|
|
80
|
+
extra_matches = []
|
|
81
|
+
for f in future_peeks:
|
|
82
|
+
try:
|
|
83
|
+
res = f.result()
|
|
84
|
+
if res.get("results"):
|
|
85
|
+
extra_matches.extend(res["results"])
|
|
86
|
+
except:
|
|
87
|
+
pass
|
|
88
|
+
|
|
89
|
+
# Merge Logic
|
|
90
|
+
# 1. Start with Main Results
|
|
91
|
+
final_list = results.get("results", [])
|
|
92
|
+
|
|
93
|
+
# 2. Inject Exact Matches from Peeks at the TOP
|
|
94
|
+
# (e.g. if query="Silver" and we found "SILVER" in CFD, put it first)
|
|
95
|
+
high_priority = []
|
|
96
|
+
low_priority = []
|
|
97
|
+
|
|
98
|
+
query_upper = query.upper()
|
|
99
|
+
|
|
100
|
+
for m in extra_matches:
|
|
101
|
+
# Check for exact ticker/name match
|
|
102
|
+
n = m.get("name", "").upper()
|
|
103
|
+
tick = m.get("ticker", "").split(":")[-1].upper()
|
|
104
|
+
|
|
105
|
+
if n == query_upper or tick == query_upper or f"{query_upper}USD" in n:
|
|
106
|
+
high_priority.append(m)
|
|
107
|
+
else:
|
|
108
|
+
low_priority.append(m)
|
|
109
|
+
|
|
110
|
+
# specific uniqueness check
|
|
111
|
+
seen = {f"{r.get('exchange')}:{r.get('name')}" for r in final_list}
|
|
112
|
+
|
|
113
|
+
merged = []
|
|
114
|
+
# Add High Priority Peeks (if new)
|
|
115
|
+
for r in high_priority:
|
|
116
|
+
k = f"{r.get('exchange')}:{r.get('name')}"
|
|
117
|
+
if k not in seen:
|
|
118
|
+
merged.append(r)
|
|
119
|
+
seen.add(k)
|
|
120
|
+
|
|
121
|
+
# Add Main Results
|
|
122
|
+
merged.extend(final_list)
|
|
123
|
+
|
|
124
|
+
# Add Low Priority Peeks (only if we have space or main list is empty)
|
|
125
|
+
# Actually, let's append them if main list is small, or specialized matching
|
|
126
|
+
if not final_list:
|
|
127
|
+
for r in low_priority:
|
|
128
|
+
k = f"{r.get('exchange')}:{r.get('name')}"
|
|
129
|
+
if k not in seen:
|
|
130
|
+
merged.append(r)
|
|
131
|
+
seen.add(k)
|
|
132
|
+
|
|
133
|
+
# Update results
|
|
134
|
+
results["results"] = merged
|
|
135
|
+
results["total_found"] = len(merged)
|
|
136
|
+
results["returned"] = len(merged)
|
|
137
|
+
|
|
138
|
+
# Fallback Logic (Only if truly empty)
|
|
139
|
+
if not results["results"] and market == "america":
|
|
140
|
+
|
|
141
|
+
# 1. Asian Numeric Heuristic
|
|
142
|
+
if query.isdigit() and len(query) in [4, 5, 6]:
|
|
143
|
+
# ... existing heuristic code ...
|
|
144
|
+
asian_markets = ["taiwan", "hongkong", "japan", "china", "korea"]
|
|
145
|
+
for asian_market in asian_markets:
|
|
146
|
+
asian_cols = get_default_columns_for_market(asian_market)
|
|
147
|
+
asian_sort = "volume"
|
|
148
|
+
asian_res = _execute_search(queries, asian_market, 5, asian_cols, asian_sort)
|
|
149
|
+
if asian_res["results"]:
|
|
150
|
+
return {**asian_res, "note": f"No results in 'america', using numeric heuristic for '{asian_market}'."}
|
|
151
|
+
|
|
152
|
+
# 2. True Global Search
|
|
153
|
+
try:
|
|
154
|
+
global_cols = ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]
|
|
155
|
+
q = (
|
|
156
|
+
Query()
|
|
157
|
+
.set_markets(*STOCK_MARKETS)
|
|
158
|
+
.select(*global_cols)
|
|
159
|
+
.where(Column("description").like(query))
|
|
160
|
+
.order_by("volume", ascending=False)
|
|
161
|
+
.limit(5)
|
|
162
|
+
)
|
|
163
|
+
_, df = q.get_scanner_data()
|
|
164
|
+
|
|
165
|
+
if df.empty:
|
|
166
|
+
q = (
|
|
167
|
+
Query()
|
|
168
|
+
.set_markets(*STOCK_MARKETS)
|
|
169
|
+
.select(*global_cols)
|
|
170
|
+
.where(Column("name").like(query))
|
|
171
|
+
.order_by("volume", ascending=False)
|
|
172
|
+
.limit(5)
|
|
173
|
+
)
|
|
174
|
+
_, df = q.get_scanner_data()
|
|
175
|
+
|
|
176
|
+
if not df.empty:
|
|
177
|
+
# Add locators for global results
|
|
178
|
+
records = df.to_dict("records")
|
|
179
|
+
for r in records:
|
|
180
|
+
_enrich_locator(r, "stock", query)
|
|
181
|
+
|
|
182
|
+
return {
|
|
183
|
+
"query": query,
|
|
184
|
+
"market": "global",
|
|
185
|
+
"total_found": len(df),
|
|
186
|
+
"returned": len(df),
|
|
187
|
+
"results": records,
|
|
188
|
+
"note": "Found matches in global stock markets."
|
|
189
|
+
}
|
|
190
|
+
except Exception:
|
|
191
|
+
pass
|
|
192
|
+
|
|
193
|
+
return results
|
|
194
|
+
|
|
195
|
+
except Exception as e:
|
|
196
|
+
return _search_symbols_fallback(query, market, limit, cols, str(e))
|
|
197
|
+
|
|
198
|
+
|
|
199
|
+
def _enrich_locator(record: dict, market: str, category: str = "stock"):
|
|
200
|
+
"""Add standard locator string to a record."""
|
|
201
|
+
ex = record.get("exchange", "UNKNOWN")
|
|
202
|
+
name = record.get("name", "UNKNOWN")
|
|
203
|
+
|
|
204
|
+
# Try to deduce market if 'stock' is generic
|
|
205
|
+
# (This is hard without a map of Exchange->Country, but we do our best)
|
|
206
|
+
|
|
207
|
+
# Construct Locator
|
|
208
|
+
# Format: EXCHANGE:SYMBOL, Market
|
|
209
|
+
record["locator"] = f"{ex}:{name}, {market}"
|
|
210
|
+
record["market"] = market
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def _execute_search(queries: list[str] | str, market: str, limit: int, cols: list[str], sort_col: str) -> dict[str, Any]:
|
|
214
|
+
"""Execute search, supporting multiple query terms (aliases)."""
|
|
215
|
+
if isinstance(queries, str):
|
|
216
|
+
queries = [queries]
|
|
217
|
+
|
|
218
|
+
all_results = []
|
|
219
|
+
|
|
220
|
+
# Try each query term until we get enough results
|
|
221
|
+
for q_term in queries:
|
|
222
|
+
if len(all_results) >= limit: break
|
|
223
|
+
|
|
224
|
+
try:
|
|
225
|
+
# 1. Search description
|
|
226
|
+
q = (
|
|
227
|
+
Query()
|
|
228
|
+
.set_markets(market)
|
|
229
|
+
.select(*cols)
|
|
230
|
+
.where(Column("description").like(q_term))
|
|
231
|
+
.order_by(sort_col, ascending=False)
|
|
232
|
+
.limit(limit)
|
|
233
|
+
)
|
|
234
|
+
_, df = q.get_scanner_data()
|
|
235
|
+
if not df.empty:
|
|
236
|
+
all_results.extend(df.to_dict("records"))
|
|
237
|
+
|
|
238
|
+
# 2. Search name
|
|
239
|
+
if len(all_results) < limit:
|
|
240
|
+
q2 = (
|
|
241
|
+
Query()
|
|
242
|
+
.set_markets(market)
|
|
243
|
+
.select(*cols)
|
|
244
|
+
.where(Column("name").like(q_term))
|
|
245
|
+
.order_by(sort_col, ascending=False)
|
|
246
|
+
.limit(limit)
|
|
247
|
+
)
|
|
248
|
+
_, df2 = q2.get_scanner_data()
|
|
249
|
+
if not df2.empty:
|
|
250
|
+
all_results.extend(df2.to_dict("records"))
|
|
251
|
+
except:
|
|
252
|
+
pass
|
|
253
|
+
|
|
254
|
+
# Dedup
|
|
255
|
+
unique = {r.get("name")+r.get("exchange"): r for r in all_results}
|
|
256
|
+
results = list(unique.values())[:limit]
|
|
257
|
+
|
|
258
|
+
# Enhance with locator
|
|
259
|
+
for r in results:
|
|
260
|
+
_enrich_locator(r, market)
|
|
261
|
+
|
|
262
|
+
return {
|
|
263
|
+
"query": queries[0],
|
|
264
|
+
"market": market,
|
|
265
|
+
"total_found": len(results),
|
|
266
|
+
"returned": len(results),
|
|
267
|
+
"results": results,
|
|
268
|
+
}
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
def _search_symbols_fallback(query: str, market: str, limit: int, cols: list[str], error: str) -> dict[str, Any]:
|
|
272
|
+
return {"error": f"Search failed: {str(e)}", "original_error": error}
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
def get_symbol_info(symbol: str, include_technical: bool = False) -> dict[str, Any]:
|
|
276
|
+
"""
|
|
277
|
+
Get detailed information for a symbol.
|
|
278
|
+
Returns matches with strict locators: 'EXCHANGE:SYMBOL, Market'.
|
|
279
|
+
"""
|
|
280
|
+
technical_cols = [
|
|
281
|
+
"RSI", "RSI7", "MACD.macd", "MACD.signal", "SMA20", "SMA50", "SMA200",
|
|
282
|
+
"EMA20", "EMA50", "EMA200", "BB.upper", "BB.lower", "ATR", "ADX",
|
|
283
|
+
"Recommend.All", "Recommend.MA", "Recommend.Other"
|
|
284
|
+
]
|
|
285
|
+
|
|
286
|
+
try:
|
|
287
|
+
# --- Strict Mode (Exchange Specified) ---
|
|
288
|
+
if ":" in symbol:
|
|
289
|
+
exchange, ticker = symbol.split(":", 1)
|
|
290
|
+
market = EXCHANGE_SCREENER.get(exchange.lower()) or "america"
|
|
291
|
+
|
|
292
|
+
# Allow override via sanitized lookup? No, specific exchange implies specific market logic usually.
|
|
293
|
+
# But let's be safe.
|
|
294
|
+
|
|
295
|
+
cols = get_default_columns_for_market(market)
|
|
296
|
+
if include_technical: cols.extend(technical_cols)
|
|
297
|
+
cols = list(dict.fromkeys(cols))
|
|
298
|
+
|
|
299
|
+
q = (
|
|
300
|
+
Query()
|
|
301
|
+
.set_markets(market)
|
|
302
|
+
.select(*cols)
|
|
303
|
+
.where(Column("name").isin([symbol, ticker, symbol.upper(), ticker.upper()]))
|
|
304
|
+
.limit(5)
|
|
305
|
+
)
|
|
306
|
+
_, df = q.get_scanner_data()
|
|
307
|
+
results = df.to_dict("records")
|
|
308
|
+
|
|
309
|
+
if results:
|
|
310
|
+
# Add strict locators
|
|
311
|
+
for r in results:
|
|
312
|
+
_enrich_locator(r, market)
|
|
313
|
+
|
|
314
|
+
if len(results) == 1:
|
|
315
|
+
return {"symbol": symbol, "found": True, "market": market, "data": results[0]}
|
|
316
|
+
return {"symbol": symbol, "found": True, "market": market, "matches": results}
|
|
317
|
+
else:
|
|
318
|
+
return {"symbol": symbol, "found": False, "hint": f"Symbol not found in {market} ({exchange}). Check format."}
|
|
319
|
+
|
|
320
|
+
# --- Universal Mode (Implicit Market) ---
|
|
321
|
+
all_matches = []
|
|
322
|
+
|
|
323
|
+
# Targets
|
|
324
|
+
targets = [symbol, symbol.upper(), f"{symbol}USDT", f"{symbol}USD"]
|
|
325
|
+
if symbol.upper() in SYMBOL_ALIASES:
|
|
326
|
+
targets.extend(SYMBOL_ALIASES[symbol.upper()])
|
|
327
|
+
|
|
328
|
+
# Helper
|
|
329
|
+
def run_search(market, col_getter):
|
|
330
|
+
try:
|
|
331
|
+
cols = col_getter(market)
|
|
332
|
+
if include_technical: cols.extend(technical_cols)
|
|
333
|
+
cols = list(dict.fromkeys(cols))
|
|
334
|
+
|
|
335
|
+
# We need to set markets properly
|
|
336
|
+
q = Query()
|
|
337
|
+
if market == "global_stocks":
|
|
338
|
+
q.set_markets(*STOCK_MARKETS)
|
|
339
|
+
else:
|
|
340
|
+
q.set_markets(market)
|
|
341
|
+
|
|
342
|
+
q.select(*cols).where(Column("name").isin(targets))
|
|
343
|
+
|
|
344
|
+
if market == "global_stocks":
|
|
345
|
+
q.order_by("market_cap_basic", ascending=False).limit(10)
|
|
346
|
+
else:
|
|
347
|
+
q.limit(5)
|
|
348
|
+
|
|
349
|
+
_, df = q.get_scanner_data()
|
|
350
|
+
if not df.empty:
|
|
351
|
+
matches = df.to_dict("records")
|
|
352
|
+
cat = "stock" if market == "global_stocks" else market
|
|
353
|
+
|
|
354
|
+
# Fixup locator logic
|
|
355
|
+
for m in matches:
|
|
356
|
+
m["_category"] = cat
|
|
357
|
+
# If global stock, we don't know exact country easily without map.
|
|
358
|
+
# But for now we pass 'global_stocks' or try to guess?
|
|
359
|
+
# It's better to tell AI "taiwan" if possible.
|
|
360
|
+
# But we queried ALL markets.
|
|
361
|
+
# HACK: We should query 'taiwan' explicitly if heuristics match?
|
|
362
|
+
# No, just return EXCHANGE:SYMBOL and let AI use 'search_symbols' if it needs precise market.
|
|
363
|
+
# Actually user wants "TWSE:0050, taiwan".
|
|
364
|
+
# If we used set_markets(*ALL), we lose the origin market info in the response unless we select 'market' column?
|
|
365
|
+
# TradingView API doesn't usually return 'market' column. It returns 'exchange'.
|
|
366
|
+
# We can map Exchange -> Market via EXCHANGE_SCREENER?
|
|
367
|
+
rec_market = EXCHANGE_SCREENER.get(m.get("exchange", "").lower(), cat)
|
|
368
|
+
_enrich_locator(m, rec_market)
|
|
369
|
+
|
|
370
|
+
return matches
|
|
371
|
+
except:
|
|
372
|
+
pass
|
|
373
|
+
return []
|
|
374
|
+
|
|
375
|
+
# Execute in parallel
|
|
376
|
+
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
|
|
377
|
+
futures = [
|
|
378
|
+
executor.submit(run_search, "global_stocks", lambda m: ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]),
|
|
379
|
+
executor.submit(run_search, "crypto", get_default_columns_for_market),
|
|
380
|
+
executor.submit(run_search, "forex", get_default_columns_for_market),
|
|
381
|
+
executor.submit(run_search, "cfd", get_default_columns_for_market)
|
|
382
|
+
]
|
|
383
|
+
for future in concurrent.futures.as_completed(futures):
|
|
384
|
+
all_matches.extend(future.result())
|
|
385
|
+
|
|
386
|
+
# --- Aggregate Results ---
|
|
387
|
+
if not all_matches:
|
|
388
|
+
return search_symbols(symbol, "america", 5)
|
|
389
|
+
|
|
390
|
+
# Remove duplicates
|
|
391
|
+
unique_matches = {}
|
|
392
|
+
for m in all_matches:
|
|
393
|
+
key = m.get("ticker", m.get("name"))
|
|
394
|
+
if key not in unique_matches:
|
|
395
|
+
unique_matches[key] = m
|
|
396
|
+
|
|
397
|
+
final_matches = list(unique_matches.values())
|
|
398
|
+
|
|
399
|
+
if len(final_matches) == 1:
|
|
400
|
+
first = final_matches[0]
|
|
401
|
+
cat = first.pop("_category", "global")
|
|
402
|
+
return {"symbol": symbol, "found": True, "market": cat, "data": first}
|
|
403
|
+
|
|
404
|
+
return {
|
|
405
|
+
"symbol": symbol,
|
|
406
|
+
"found": True,
|
|
407
|
+
"market": "global",
|
|
408
|
+
"count": len(final_matches),
|
|
409
|
+
"matches": final_matches,
|
|
410
|
+
"note": "Multiple matches found across global markets."
|
|
411
|
+
}
|
|
412
|
+
|
|
413
|
+
except Exception as e:
|
|
414
|
+
return {
|
|
415
|
+
"error": f"Failed to get symbol info: {str(e)}",
|
|
416
|
+
"hint": "Try using search_symbols to find the correct symbol format",
|
|
417
|
+
}
|
|
@@ -6,9 +6,26 @@ from tradingview_mcp.constants import TECHNICAL_COLUMNS
|
|
|
6
6
|
from tradingview_mcp.query import Query
|
|
7
7
|
from tradingview_mcp.utils import sanitize_market
|
|
8
8
|
|
|
9
|
-
def get_technical_analysis(symbol: str, market: str
|
|
10
|
-
"""
|
|
11
|
-
|
|
9
|
+
def get_technical_analysis(symbol: str, market: str) -> dict[str, Any]:
|
|
10
|
+
"""
|
|
11
|
+
Get technical indicators for a symbol.
|
|
12
|
+
|
|
13
|
+
IMPORTANT: You must use a strictly formatted symbol and market.
|
|
14
|
+
1. Call `get_symbol_info(symbol)` first.
|
|
15
|
+
2. Use the `locator` field from the response (e.g. "EXCHANGE:SYMBOL") and the exact `market`.
|
|
16
|
+
3. Do NOT guess the market.
|
|
17
|
+
"""
|
|
18
|
+
# Strict validation
|
|
19
|
+
if ":" not in symbol:
|
|
20
|
+
return {
|
|
21
|
+
"error": "Ambiguous symbol format. Missing exchange prefix.",
|
|
22
|
+
"hint": f"Please run get_symbol_info('{symbol}') first to find the correct 'EXCHANGE:{symbol}' locator and 'market'."
|
|
23
|
+
}
|
|
24
|
+
|
|
25
|
+
# Parse strictly formatted symbol
|
|
26
|
+
exchange, ticker = symbol.split(":", 1)
|
|
27
|
+
|
|
28
|
+
market = sanitize_market(market, strict=True)
|
|
12
29
|
|
|
13
30
|
# Use standard technical columns
|
|
14
31
|
cols = list(TECHNICAL_COLUMNS)
|
|
@@ -18,13 +35,19 @@ def get_technical_analysis(symbol: str, market: str = "america") -> dict[str, An
|
|
|
18
35
|
Query()
|
|
19
36
|
.set_markets(market)
|
|
20
37
|
.select(*cols)
|
|
21
|
-
.where(Column("name").isin([
|
|
38
|
+
.where(Column("name").isin([ticker, ticker.upper()])) # Use ticker part for name lookup
|
|
22
39
|
.limit(1)
|
|
23
40
|
)
|
|
41
|
+
|
|
24
42
|
_, df = q.get_scanner_data()
|
|
25
43
|
|
|
26
44
|
if df.empty:
|
|
27
|
-
|
|
45
|
+
# Check if user maybe used wrong market?
|
|
46
|
+
# But we want to be strict.
|
|
47
|
+
return {
|
|
48
|
+
"error": f"Symbol '{symbol}' not found in market '{market}'.",
|
|
49
|
+
"hint": "Ensure you are using the correct market from get_symbol_info()."
|
|
50
|
+
}
|
|
28
51
|
|
|
29
52
|
data = df.iloc[0].to_dict()
|
|
30
53
|
return {
|
|
@@ -37,7 +60,7 @@ def get_technical_analysis(symbol: str, market: str = "america") -> dict[str, An
|
|
|
37
60
|
|
|
38
61
|
def scan_rsi_extremes(market: str = "america", limit: int = 25) -> dict[str, Any]:
|
|
39
62
|
"""Find symbols with extreme RSI values (<30 or >70)."""
|
|
40
|
-
market = sanitize_market(market)
|
|
63
|
+
market = sanitize_market(market, strict=True)
|
|
41
64
|
|
|
42
65
|
q = (
|
|
43
66
|
Query()
|
|
@@ -77,7 +100,7 @@ def scan_rsi_extremes(market: str = "america", limit: int = 25) -> dict[str, Any
|
|
|
77
100
|
|
|
78
101
|
def scan_bollinger_bands(market: str = "america", limit: int = 25) -> dict[str, Any]:
|
|
79
102
|
"""Find symbols trading outside Bollinger Bands."""
|
|
80
|
-
market = sanitize_market(market)
|
|
103
|
+
market = sanitize_market(market, strict=True)
|
|
81
104
|
# This is complex to do with simple filters.
|
|
82
105
|
# We'll just return basic BB values for top volume stocks.
|
|
83
106
|
|
|
@@ -97,7 +120,7 @@ def scan_bollinger_bands(market: str = "america", limit: int = 25) -> dict[str,
|
|
|
97
120
|
|
|
98
121
|
def scan_macd_crossover(market: str = "america", limit: int = 25) -> dict[str, Any]:
|
|
99
122
|
"""scan for MACD crossovers."""
|
|
100
|
-
market = sanitize_market(market)
|
|
123
|
+
market = sanitize_market(market, strict=True)
|
|
101
124
|
q = (
|
|
102
125
|
Query()
|
|
103
126
|
.set_markets(market)
|
|
@@ -54,21 +54,89 @@ def sanitize_exchange(ex: str | None, default: str = "america") -> str:
|
|
|
54
54
|
return default
|
|
55
55
|
|
|
56
56
|
|
|
57
|
-
|
|
57
|
+
# Country Code mappings
|
|
58
|
+
COUNTRY_ALIASES = {
|
|
59
|
+
"us": "america",
|
|
60
|
+
"usa": "america",
|
|
61
|
+
"uk": "uk",
|
|
62
|
+
"gb": "uk",
|
|
63
|
+
"de": "germany",
|
|
64
|
+
"fr": "france",
|
|
65
|
+
"it": "italy",
|
|
66
|
+
"es": "spain",
|
|
67
|
+
"pt": "portugal",
|
|
68
|
+
"ch": "switzerland",
|
|
69
|
+
"se": "sweden",
|
|
70
|
+
"no": "norway",
|
|
71
|
+
"fi": "finland",
|
|
72
|
+
"nl": "netherlands",
|
|
73
|
+
"be": "belgium",
|
|
74
|
+
"at": "austria",
|
|
75
|
+
"ie": "ireland",
|
|
76
|
+
"ru": "russia",
|
|
77
|
+
"cn": "china",
|
|
78
|
+
"jp": "japan",
|
|
79
|
+
"kr": "korea",
|
|
80
|
+
"in": "india",
|
|
81
|
+
"id": "indonesia",
|
|
82
|
+
"my": "malaysia",
|
|
83
|
+
"th": "thailand",
|
|
84
|
+
"vn": "vietnam",
|
|
85
|
+
"tw": "taiwan",
|
|
86
|
+
"sg": "singapore",
|
|
87
|
+
"hk": "hongkong",
|
|
88
|
+
"au": "australia",
|
|
89
|
+
"nz": "newzealand",
|
|
90
|
+
"ca": "canada",
|
|
91
|
+
"br": "brazil",
|
|
92
|
+
"mx": "mexico",
|
|
93
|
+
"ar": "argentina",
|
|
94
|
+
"cl": "chile",
|
|
95
|
+
"co": "colombia",
|
|
96
|
+
"pe": "peru",
|
|
97
|
+
"eg": "egypt",
|
|
98
|
+
"tr": "turkey",
|
|
99
|
+
"za": "rsa", # South Africa
|
|
100
|
+
}
|
|
101
|
+
|
|
102
|
+
def sanitize_market(market: str | None, default: str = "america", strict: bool = False) -> str:
|
|
58
103
|
"""
|
|
59
104
|
Validate and sanitize a market name.
|
|
60
|
-
|
|
105
|
+
|
|
61
106
|
Args:
|
|
62
|
-
market: Market to validate
|
|
63
|
-
default: Default value if invalid
|
|
107
|
+
market: Market to validate (e.g. 'america', 'tw', 'crypto')
|
|
108
|
+
default: Default value if invalid (only used if strict=False)
|
|
109
|
+
strict: If True, raise ValueError for invalid markets instead of returning default.
|
|
64
110
|
|
|
65
111
|
Returns:
|
|
66
112
|
Valid market string
|
|
113
|
+
|
|
114
|
+
Raises:
|
|
115
|
+
ValueError: If strict=True and market is invalid.
|
|
67
116
|
"""
|
|
68
117
|
if not market:
|
|
118
|
+
if strict:
|
|
119
|
+
raise ValueError("Market parameter is required (e.g. 'america', 'taiwan').")
|
|
69
120
|
return default
|
|
70
|
-
|
|
71
|
-
|
|
121
|
+
|
|
122
|
+
market_clean = market.strip().lower()
|
|
123
|
+
|
|
124
|
+
# Check exact match
|
|
125
|
+
if market_clean in MARKETS:
|
|
126
|
+
return market_clean
|
|
127
|
+
|
|
128
|
+
# Check alias match
|
|
129
|
+
if market_clean in COUNTRY_ALIASES:
|
|
130
|
+
return COUNTRY_ALIASES[market_clean]
|
|
131
|
+
|
|
132
|
+
# Check if user passed exchange (e.g. 'nasdaq') by mistake
|
|
133
|
+
if market_clean in EXCHANGE_SCREENER:
|
|
134
|
+
return EXCHANGE_SCREENER[market_clean]
|
|
135
|
+
|
|
136
|
+
if strict:
|
|
137
|
+
raise ValueError(f"Invalid market '{market}'. Please use a valid country code or name (e.g. 'america', 'taiwan', 'crypto').")
|
|
138
|
+
|
|
139
|
+
return default
|
|
72
140
|
|
|
73
141
|
|
|
74
142
|
def timeframe_to_resolution(tf: str) -> str:
|
|
@@ -1,326 +0,0 @@
|
|
|
1
|
-
from __future__ import annotations
|
|
2
|
-
from typing import Any
|
|
3
|
-
import concurrent.futures
|
|
4
|
-
|
|
5
|
-
from mcp.server.fastmcp import Context
|
|
6
|
-
|
|
7
|
-
from tradingview_mcp.column import Column
|
|
8
|
-
from tradingview_mcp.constants import EXCHANGE_SCREENER
|
|
9
|
-
from tradingview_mcp.docs_data import get_default_columns_for_market, STOCK_MARKETS
|
|
10
|
-
from tradingview_mcp.query import Query
|
|
11
|
-
from tradingview_mcp.utils import sanitize_market
|
|
12
|
-
|
|
13
|
-
def search_symbols(
|
|
14
|
-
query: str,
|
|
15
|
-
market: str = "america",
|
|
16
|
-
limit: int = 25,
|
|
17
|
-
) -> dict[str, Any]:
|
|
18
|
-
"""
|
|
19
|
-
Search symbols by name or ticker.
|
|
20
|
-
If default market returns no results, automatically searches crypto and forex.
|
|
21
|
-
"""
|
|
22
|
-
market = sanitize_market(market)
|
|
23
|
-
limit = max(1, min(limit, 100))
|
|
24
|
-
|
|
25
|
-
# Use dynamic default columns for this market
|
|
26
|
-
cols = get_default_columns_for_market(market)
|
|
27
|
-
|
|
28
|
-
# Determine sort column
|
|
29
|
-
sort_col = "market_cap_basic" if "market_cap_basic" in cols else "name"
|
|
30
|
-
|
|
31
|
-
try:
|
|
32
|
-
# Standard search in requested market
|
|
33
|
-
results = _execute_search(query, market, limit, cols, sort_col)
|
|
34
|
-
|
|
35
|
-
# Smart Fallback: If default market ('america') yielded no results, try others
|
|
36
|
-
if not results["results"] and market == "america":
|
|
37
|
-
|
|
38
|
-
# 1. Asian Numeric Heuristic (Prioritized for speed/accuracy)
|
|
39
|
-
if query.isdigit() and len(query) in [4, 5, 6]:
|
|
40
|
-
asian_markets = ["taiwan", "hongkong", "japan", "china", "korea"]
|
|
41
|
-
for asian_market in asian_markets:
|
|
42
|
-
asian_cols = get_default_columns_for_market(asian_market)
|
|
43
|
-
asian_sort = "volume" # Volume is good for general Asian scanners
|
|
44
|
-
asian_res = _execute_search(query, asian_market, 5, asian_cols, asian_sort)
|
|
45
|
-
if asian_res["results"]:
|
|
46
|
-
return {**asian_res, "note": f"No results in 'america', found matches in '{asian_market}' (numeric heuristic)"}
|
|
47
|
-
|
|
48
|
-
# 2. True Global Search (Check ALL 68+ Stock Markets)
|
|
49
|
-
try:
|
|
50
|
-
# Use standard global columns safe for all
|
|
51
|
-
global_cols = ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]
|
|
52
|
-
|
|
53
|
-
# Check Description First (often better for "Maybank")
|
|
54
|
-
q = (
|
|
55
|
-
Query()
|
|
56
|
-
.set_markets(*STOCK_MARKETS)
|
|
57
|
-
.select(*global_cols)
|
|
58
|
-
.where(Column("description").like(query))
|
|
59
|
-
.order_by("volume", ascending=False)
|
|
60
|
-
.limit(5)
|
|
61
|
-
)
|
|
62
|
-
_, df = q.get_scanner_data()
|
|
63
|
-
|
|
64
|
-
if df.empty:
|
|
65
|
-
# Check Name (Ticker)
|
|
66
|
-
q = (
|
|
67
|
-
Query()
|
|
68
|
-
.set_markets(*STOCK_MARKETS)
|
|
69
|
-
.select(*global_cols)
|
|
70
|
-
.where(Column("name").like(query))
|
|
71
|
-
.order_by("volume", ascending=False)
|
|
72
|
-
.limit(5)
|
|
73
|
-
)
|
|
74
|
-
_, df = q.get_scanner_data()
|
|
75
|
-
|
|
76
|
-
if not df.empty:
|
|
77
|
-
# Basic Global Result
|
|
78
|
-
total = len(df) # Roughly
|
|
79
|
-
return {
|
|
80
|
-
"query": query,
|
|
81
|
-
"market": "global",
|
|
82
|
-
"total_found": total,
|
|
83
|
-
"returned": len(df),
|
|
84
|
-
"results": df.to_dict("records"),
|
|
85
|
-
"note": "No results in 'america', found matches in global stock markets."
|
|
86
|
-
}
|
|
87
|
-
|
|
88
|
-
except Exception:
|
|
89
|
-
pass # Continue to other fallbacks
|
|
90
|
-
|
|
91
|
-
# 3. Check Crypto/Forex
|
|
92
|
-
for other in ["crypto", "forex"]:
|
|
93
|
-
if other == market: continue
|
|
94
|
-
|
|
95
|
-
cols = get_default_columns_for_market(other)
|
|
96
|
-
sort = "market_cap_basic" if "market_cap_basic" in cols else "name"
|
|
97
|
-
if other == "forex": sort = "name"
|
|
98
|
-
|
|
99
|
-
res = _execute_search(query, other, 5, cols, sort)
|
|
100
|
-
if res["results"]:
|
|
101
|
-
return {**res, "note": f"No results in stocks, found matches in '{other}'"}
|
|
102
|
-
|
|
103
|
-
return results
|
|
104
|
-
|
|
105
|
-
except Exception as e:
|
|
106
|
-
return _search_symbols_fallback(query, market, limit, cols, str(e))
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
def _execute_search(query: str, market: str, limit: int, cols: list[str], sort_col: str) -> dict[str, Any]:
|
|
110
|
-
"""Execute a single search query against a market."""
|
|
111
|
-
try:
|
|
112
|
-
# 1. Search description (company name)
|
|
113
|
-
query_obj = (
|
|
114
|
-
Query()
|
|
115
|
-
.set_markets(market)
|
|
116
|
-
.select(*cols)
|
|
117
|
-
.where(Column("description").like(query))
|
|
118
|
-
.order_by(sort_col, ascending=False)
|
|
119
|
-
.limit(limit)
|
|
120
|
-
)
|
|
121
|
-
total, df = query_obj.get_scanner_data()
|
|
122
|
-
results = df.to_dict("records")
|
|
123
|
-
|
|
124
|
-
# 2. If nothing found, search name (ticker)
|
|
125
|
-
if not results:
|
|
126
|
-
query_obj2 = (
|
|
127
|
-
Query()
|
|
128
|
-
.set_markets(market)
|
|
129
|
-
.select(*cols)
|
|
130
|
-
.where(Column("name").like(query))
|
|
131
|
-
.order_by(sort_col, ascending=False)
|
|
132
|
-
.limit(limit)
|
|
133
|
-
)
|
|
134
|
-
total, df = query_obj2.get_scanner_data()
|
|
135
|
-
results = df.to_dict("records")
|
|
136
|
-
|
|
137
|
-
return {
|
|
138
|
-
"query": query,
|
|
139
|
-
"market": market,
|
|
140
|
-
"total_found": total if results else 0,
|
|
141
|
-
"returned": len(results),
|
|
142
|
-
"results": results,
|
|
143
|
-
"hint": "Use 'name' field as symbol for other tools" if results else "No matches found.",
|
|
144
|
-
}
|
|
145
|
-
except Exception:
|
|
146
|
-
return {"results": [], "market": market}
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
def _search_symbols_fallback(query: str, market: str, limit: int, cols: list[str], error: str) -> dict[str, Any]:
|
|
150
|
-
"""Fallback search when API operations fail."""
|
|
151
|
-
try:
|
|
152
|
-
q = Query().set_markets(market).select(*cols).limit(100)
|
|
153
|
-
_, df = q.get_scanner_data()
|
|
154
|
-
q_lower = query.lower()
|
|
155
|
-
mask = df["name"].str.lower().str.contains(q_lower) | df["description"].str.lower().str.contains(q_lower)
|
|
156
|
-
df_filtered = df[mask].head(limit)
|
|
157
|
-
return {
|
|
158
|
-
"query": query,
|
|
159
|
-
"market": market,
|
|
160
|
-
"returned": len(df_filtered),
|
|
161
|
-
"results": df_filtered.to_dict("records"),
|
|
162
|
-
"note": "Used fallback local search.",
|
|
163
|
-
"original_error": error,
|
|
164
|
-
}
|
|
165
|
-
except Exception as e:
|
|
166
|
-
return {"error": f"Search failed: {str(e)}", "original_error": error}
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
def get_symbol_info(symbol: str, include_technical: bool = False) -> dict[str, Any]:
|
|
170
|
-
"""
|
|
171
|
-
Get detailed information for a symbol.
|
|
172
|
-
|
|
173
|
-
Modes:
|
|
174
|
-
1. Strict: 'EXCHANGE:SYMBOL' (e.g. 'NASDAQ:AAPL') - searches only that exchange/market.
|
|
175
|
-
2. Universal: 'SYMBOL' (e.g. 'AAA') - searches ALL global markets, Crypto, and Forex.
|
|
176
|
-
Returns ALL matches found to verify ambiguity.
|
|
177
|
-
"""
|
|
178
|
-
technical_cols = [
|
|
179
|
-
"RSI", "RSI7", "MACD.macd", "MACD.signal", "SMA20", "SMA50", "SMA200",
|
|
180
|
-
"EMA20", "EMA50", "EMA200", "BB.upper", "BB.lower", "ATR", "ADX",
|
|
181
|
-
"Recommend.All", "Recommend.MA", "Recommend.Other"
|
|
182
|
-
]
|
|
183
|
-
|
|
184
|
-
try:
|
|
185
|
-
# --- Strict Mode (Exchange Specified) ---
|
|
186
|
-
if ":" in symbol:
|
|
187
|
-
exchange, ticker = symbol.split(":", 1)
|
|
188
|
-
market = EXCHANGE_SCREENER.get(exchange.lower()) or "america"
|
|
189
|
-
|
|
190
|
-
# Setup Columns
|
|
191
|
-
cols = get_default_columns_for_market(market)
|
|
192
|
-
if include_technical: cols.extend(technical_cols)
|
|
193
|
-
cols = list(dict.fromkeys(cols))
|
|
194
|
-
|
|
195
|
-
# Query
|
|
196
|
-
q = (
|
|
197
|
-
Query()
|
|
198
|
-
.set_markets(market)
|
|
199
|
-
.select(*cols)
|
|
200
|
-
.where(Column("name").isin([symbol, ticker, symbol.upper(), ticker.upper()]))
|
|
201
|
-
.limit(5)
|
|
202
|
-
)
|
|
203
|
-
_, df = q.get_scanner_data()
|
|
204
|
-
results = df.to_dict("records")
|
|
205
|
-
|
|
206
|
-
if results:
|
|
207
|
-
if len(results) == 1:
|
|
208
|
-
return {"symbol": symbol, "found": True, "market": market, "data": results[0]}
|
|
209
|
-
return {"symbol": symbol, "found": True, "market": market, "matches": results}
|
|
210
|
-
else:
|
|
211
|
-
return {"symbol": symbol, "found": False, "hint": f"Symbol not found in {market} ({exchange}). Check format."}
|
|
212
|
-
|
|
213
|
-
# --- Universal Mode (Implicit Market) ---
|
|
214
|
-
# We search Stocks (Global), Crypto, vs Forex in parallel using ThreadPoolExecutor
|
|
215
|
-
all_matches = []
|
|
216
|
-
|
|
217
|
-
def check_global_stocks():
|
|
218
|
-
try:
|
|
219
|
-
stock_cols = ["name", "description", "close", "change", "volume", "market_cap_basic", "exchange", "type"]
|
|
220
|
-
if include_technical: stock_cols.extend(technical_cols)
|
|
221
|
-
stock_cols = list(dict.fromkeys(stock_cols))
|
|
222
|
-
|
|
223
|
-
q_stocks = (
|
|
224
|
-
Query()
|
|
225
|
-
.set_markets(*STOCK_MARKETS)
|
|
226
|
-
.select(*stock_cols)
|
|
227
|
-
.where(Column("name").isin([symbol, symbol.upper()]))
|
|
228
|
-
.order_by("market_cap_basic", ascending=False)
|
|
229
|
-
.limit(10)
|
|
230
|
-
)
|
|
231
|
-
_, df_stocks = q_stocks.get_scanner_data()
|
|
232
|
-
if not df_stocks.empty:
|
|
233
|
-
matches = df_stocks.to_dict("records")
|
|
234
|
-
for m in matches: m["_category"] = "stock"
|
|
235
|
-
return matches
|
|
236
|
-
except Exception:
|
|
237
|
-
pass
|
|
238
|
-
return []
|
|
239
|
-
|
|
240
|
-
def check_crypto():
|
|
241
|
-
try:
|
|
242
|
-
crypto_cols = get_default_columns_for_market("crypto")
|
|
243
|
-
if include_technical: crypto_cols.extend(technical_cols)
|
|
244
|
-
crypto_cols = list(dict.fromkeys(crypto_cols))
|
|
245
|
-
|
|
246
|
-
q_crypto = (
|
|
247
|
-
Query()
|
|
248
|
-
.set_markets("crypto")
|
|
249
|
-
.select(*crypto_cols)
|
|
250
|
-
.where(Column("name").isin([symbol, symbol.upper(), f"{symbol}USDT", f"{symbol}USD"]))
|
|
251
|
-
.limit(5)
|
|
252
|
-
)
|
|
253
|
-
_, df_crypto = q_crypto.get_scanner_data()
|
|
254
|
-
if not df_crypto.empty:
|
|
255
|
-
matches = df_crypto.to_dict("records")
|
|
256
|
-
for m in matches: m["_category"] = "crypto"
|
|
257
|
-
return matches
|
|
258
|
-
except Exception:
|
|
259
|
-
pass
|
|
260
|
-
return []
|
|
261
|
-
|
|
262
|
-
def check_forex():
|
|
263
|
-
try:
|
|
264
|
-
forex_cols = get_default_columns_for_market("forex")
|
|
265
|
-
if include_technical: forex_cols.extend(technical_cols)
|
|
266
|
-
forex_cols = list(dict.fromkeys(forex_cols))
|
|
267
|
-
|
|
268
|
-
q_forex = (
|
|
269
|
-
Query()
|
|
270
|
-
.set_markets("forex")
|
|
271
|
-
.select(*forex_cols)
|
|
272
|
-
.where(Column("name").isin([symbol, symbol.upper()]))
|
|
273
|
-
.limit(5)
|
|
274
|
-
)
|
|
275
|
-
_, df_forex = q_forex.get_scanner_data()
|
|
276
|
-
if not df_forex.empty:
|
|
277
|
-
matches = df_forex.to_dict("records")
|
|
278
|
-
for m in matches: m["_category"] = "forex"
|
|
279
|
-
return matches
|
|
280
|
-
except Exception:
|
|
281
|
-
pass
|
|
282
|
-
return []
|
|
283
|
-
|
|
284
|
-
# Execute in parallel
|
|
285
|
-
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
|
|
286
|
-
futures = [
|
|
287
|
-
executor.submit(check_global_stocks),
|
|
288
|
-
executor.submit(check_crypto),
|
|
289
|
-
executor.submit(check_forex)
|
|
290
|
-
]
|
|
291
|
-
for future in concurrent.futures.as_completed(futures):
|
|
292
|
-
all_matches.extend(future.result())
|
|
293
|
-
|
|
294
|
-
# --- Aggregate Results ---
|
|
295
|
-
if not all_matches:
|
|
296
|
-
# Try search_symbols as last resort (fuzzy search)
|
|
297
|
-
return search_symbols(symbol, "america", 5)
|
|
298
|
-
|
|
299
|
-
# Remove duplicates based on ticker
|
|
300
|
-
unique_matches = {}
|
|
301
|
-
for m in all_matches:
|
|
302
|
-
key = m.get("ticker", m.get("name"))
|
|
303
|
-
if key not in unique_matches:
|
|
304
|
-
unique_matches[key] = m
|
|
305
|
-
|
|
306
|
-
final_matches = list(unique_matches.values())
|
|
307
|
-
|
|
308
|
-
if len(final_matches) == 1:
|
|
309
|
-
first = final_matches[0]
|
|
310
|
-
cat = first.pop("_category", "global")
|
|
311
|
-
return {"symbol": symbol, "found": True, "market": cat, "data": first}
|
|
312
|
-
|
|
313
|
-
return {
|
|
314
|
-
"symbol": symbol,
|
|
315
|
-
"found": True,
|
|
316
|
-
"market": "global",
|
|
317
|
-
"count": len(final_matches),
|
|
318
|
-
"matches": final_matches,
|
|
319
|
-
"note": "Multiple matches found across global markets."
|
|
320
|
-
}
|
|
321
|
-
|
|
322
|
-
except Exception as e:
|
|
323
|
-
return {
|
|
324
|
-
"error": f"Failed to get symbol info: {str(e)}",
|
|
325
|
-
"hint": "Try using search_symbols to find the correct symbol format",
|
|
326
|
-
}
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/column_display_names.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/extracted/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/bond.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/bonds.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/cfd.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/coin.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/crypto.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/economics2.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/forex.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/futures.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/ireland.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/options.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/metainfo/stocks.json
RENAMED
|
File without changes
|
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/markets.json
RENAMED
|
File without changes
|
{tradingview_mcp-26.3.0 → tradingview_mcp-26.3.2}/src/tradingview_mcp/data/screeners/stocks.json
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|