tpu-inference 0.11.1.dev202511180814__tar.gz → 0.11.1.dev202511270815__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- {tpu_inference-0.11.1.dev202511180814/tpu_inference.egg-info → tpu_inference-0.11.1.dev202511270815}/PKG-INFO +3 -2
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/requirements.txt +2 -1
- tpu_inference-0.11.1.dev202511270815/tests/kernels/fused_moe_v1_test.py +374 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/lora/test_layers.py +0 -6
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/lora/utils.py +0 -8
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/__init__.py +22 -3
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/core/disagg_utils.py +6 -8
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/distributed/tpu_connector.py +2 -3
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/distributed/utils.py +3 -2
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/envs.py +1 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/executors/ray_distributed_executor.py +4 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/fused_moe/v1/kernel.py +641 -110
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +77 -54
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +141 -107
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/common/attention_interface.py +7 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/common/sharding.py +2 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/fused_moe.py +74 -25
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/common.py +6 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/mxfp4.py +135 -61
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/unquantized.py +14 -8
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/sharding.py +2 -2
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/lora/torch_punica_tpu.py +1 -2
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/common/model_loader.py +41 -10
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/llama3.py +2 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/llama_eagle3.py +8 -5
- tpu_inference-0.11.1.dev202511270815/tpu_inference/models/jax/llama_guard_4.py +361 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/qwen2.py +2 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/qwen2_5_vl.py +163 -48
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/qwen3.py +2 -1
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/weight_utils.py +198 -143
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/vllm/vllm_model_wrapper.py +13 -6
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/platforms/tpu_platform.py +15 -2
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/compilation_manager.py +55 -32
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/kv_cache_manager.py +9 -3
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/structured_decoding_manager.py +2 -3
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/tpu_runner.py +203 -102
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/spec_decode/jax/eagle3.py +19 -2
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/tpu_info.py +4 -3
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/utils.py +5 -4
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/worker/tpu_worker.py +160 -23
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815/tpu_inference.egg-info}/PKG-INFO +3 -2
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference.egg-info/SOURCES.txt +1 -6
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference.egg-info/requires.txt +2 -1
- tpu_inference-0.11.1.dev202511180814/tests/kernels/fused_moe_v1_test.py +0 -105
- tpu_inference-0.11.1.dev202511180814/tpu_inference/mock/vllm_config_utils.py +0 -28
- tpu_inference-0.11.1.dev202511180814/tpu_inference/mock/vllm_envs.py +0 -1219
- tpu_inference-0.11.1.dev202511180814/tpu_inference/mock/vllm_logger.py +0 -212
- tpu_inference-0.11.1.dev202511180814/tpu_inference/mock/vllm_logging_utils.py +0 -15
- tpu_inference-0.11.1.dev202511180814/tpu_inference/models/jax/phi3.py +0 -376
- tpu_inference-0.11.1.dev202511180814/tpu_inference/worker/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/LICENSE +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/MANIFEST.in +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/README.md +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/pyproject.toml +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/setup.cfg +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/setup.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/core/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/core/test_core_tpu.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/core/test_disagg_executor.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/core/test_disagg_utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/core/test_dp_scheduler.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/core/test_init.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/kernels/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/kernels/mla_v1_test.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/kernels/quantized_matmul_kernel_test.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/kernels/ragged_kv_cache_update_v2_test.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/kernels/ragged_paged_attention_kernel_v2_test.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/kernels/ragged_paged_attention_kernel_v3_test.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/lora/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/lora/conftest.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/lora/test_bgmv.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/lora/test_lora.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/test_base.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/test_envs.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/test_quantization.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/test_tpu_info.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/test_utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/core/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/core/core_tpu.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/core/disagg_executor.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/core/sched/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/core/sched/dp_scheduler.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/distributed/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/distributed/jax_parallel_state.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/env_override.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/executors/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/experimental/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/experimental/llama3_jax_stashed.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/collectives/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/collectives/all_gather_matmul.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/collectives/util.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/flash_attention/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/flash_attention/kernel.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/fused_moe/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/mla/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/mla/v1/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/mla/v1/kernel.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/quantized_matmul/kernel.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/quantized_matmul/util.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/kernels/ragged_paged_attention/v3/util.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/common/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/common/attention_metadata.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/common/binary_search.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/common/quant_methods.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/attention/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/attention/attention.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/attention/deepseek_v3_attention.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/attention/gpt_oss_attention.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/attention/llama4_attention.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/base.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/constants.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/layers.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/misc.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/moe/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/moe/deepseek_v3_moe.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/moe/gpt_oss_moe.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/moe/moe.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/rope.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/rope_interface.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/sample/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/sample/rejection_sampler.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/sample/sampling.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/sample/sampling_metadata.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/jax/transformer_block.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/attention.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/linear_common.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/awq.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/logger.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/lora/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/lora/torch_lora_ops.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/mock → tpu_inference-0.11.1.dev202511270815/tpu_inference/models}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/models → tpu_inference-0.11.1.dev202511270815/tpu_inference/models/common}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/models/common → tpu_inference-0.11.1.dev202511270815/tpu_inference/models/jax}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/deepseek_v3.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/gpt_oss.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/jax_intermediate_tensor.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/llama4.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/models/jax → tpu_inference-0.11.1.dev202511270815/tpu_inference/models/jax/utils}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/file_utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/multi_modal_utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/models/jax/utils → tpu_inference-0.11.1.dev202511270815/tpu_inference/models/jax/utils/quantization}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/jax/utils/quantization/quantization_utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/models/jax/utils/quantization → tpu_inference-0.11.1.dev202511270815/tpu_inference/models/vllm}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/models/vllm/vllm_model_wrapper_context.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/platforms/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/models/vllm → tpu_inference-0.11.1.dev202511270815/tpu_inference/runner}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/block_table.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/input_batch.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/kv_cache.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/lora_utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/multimodal_manager.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/persistent_batch_manager.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/speculative_decoding_manager.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/runner/utils.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/runner → tpu_inference-0.11.1.dev202511270815/tpu_inference/spec_decode}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/spec_decode → tpu_inference-0.11.1.dev202511270815/tpu_inference/spec_decode/jax}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814/tpu_inference/spec_decode/jax → tpu_inference-0.11.1.dev202511270815/tpu_inference/worker}/__init__.py +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference.egg-info/dependency_links.txt +0 -0
- {tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tpu_inference
|
|
3
|
-
Version: 0.11.1.
|
|
3
|
+
Version: 0.11.1.dev202511270815
|
|
4
4
|
Author: tpu_inference Contributors
|
|
5
5
|
Classifier: Development Status :: 3 - Alpha
|
|
6
6
|
Classifier: Intended Audience :: Developers
|
|
@@ -27,10 +27,11 @@ Requires-Dist: jaxtyping
|
|
|
27
27
|
Requires-Dist: flax==0.11.1
|
|
28
28
|
Requires-Dist: torchax==0.0.7
|
|
29
29
|
Requires-Dist: qwix==0.1.1
|
|
30
|
-
Requires-Dist: torchvision==0.
|
|
30
|
+
Requires-Dist: torchvision==0.24.0
|
|
31
31
|
Requires-Dist: pathwaysutils
|
|
32
32
|
Requires-Dist: parameterized
|
|
33
33
|
Requires-Dist: numba==0.62.1
|
|
34
|
+
Requires-Dist: runai-model-streamer[gcs,s3]==0.15.0
|
|
34
35
|
Dynamic: author
|
|
35
36
|
Dynamic: classifier
|
|
36
37
|
Dynamic: description
|
|
@@ -0,0 +1,374 @@
|
|
|
1
|
+
import jax
|
|
2
|
+
import jax.numpy as jnp
|
|
3
|
+
import numpy as np
|
|
4
|
+
from absl.testing import absltest, parameterized
|
|
5
|
+
from jax._src import test_util as jtu
|
|
6
|
+
from jax.sharding import Mesh
|
|
7
|
+
|
|
8
|
+
from tpu_inference.kernels.fused_moe.v1.kernel import fused_ep_moe, ref_moe
|
|
9
|
+
|
|
10
|
+
jax.config.parse_flags_with_absl()
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def cdiv(a, b):
|
|
14
|
+
assert b != 0
|
|
15
|
+
return (a + b - 1) // b
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def align_to(x, a):
|
|
19
|
+
return cdiv(x, a) * a
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def gen_moe_inputs(
|
|
23
|
+
dtype,
|
|
24
|
+
top_k,
|
|
25
|
+
num_experts,
|
|
26
|
+
hidden_size,
|
|
27
|
+
intermediate_size,
|
|
28
|
+
num_tokens,
|
|
29
|
+
*,
|
|
30
|
+
seed=1234,
|
|
31
|
+
has_bias=False,
|
|
32
|
+
):
|
|
33
|
+
key = jax.random.key(seed)
|
|
34
|
+
k0, k1, k2, k3, k4, k5, k6 = jax.random.split(key, 7)
|
|
35
|
+
|
|
36
|
+
a = jax.random.normal(k0, (num_tokens, hidden_size),
|
|
37
|
+
dtype=jnp.float32).astype(dtype) / 10
|
|
38
|
+
|
|
39
|
+
w1 = (jax.random.normal(
|
|
40
|
+
k1,
|
|
41
|
+
(num_experts, 2, hidden_size, intermediate_size),
|
|
42
|
+
dtype=jnp.float32,
|
|
43
|
+
) / 10).astype(dtype)
|
|
44
|
+
w2 = (jax.random.normal(k2, (num_experts, intermediate_size, hidden_size),
|
|
45
|
+
dtype=jnp.float32) / 10).astype(dtype)
|
|
46
|
+
|
|
47
|
+
if has_bias:
|
|
48
|
+
b1 = (jax.random.normal(k3, (num_experts, 2, intermediate_size),
|
|
49
|
+
dtype=jnp.float32) / 10).astype(dtype)
|
|
50
|
+
b2 = (jax.random.normal(k4, (num_experts, hidden_size),
|
|
51
|
+
dtype=jnp.float32) / 10).astype(dtype)
|
|
52
|
+
else:
|
|
53
|
+
b1 = b2 = None
|
|
54
|
+
|
|
55
|
+
gating_output = (
|
|
56
|
+
jax.random.normal(k5, (num_tokens, num_experts), dtype=jnp.float32) +
|
|
57
|
+
jnp.arange(num_tokens * num_experts, dtype=jnp.float32).reshape(
|
|
58
|
+
num_tokens, num_experts) / 100)
|
|
59
|
+
|
|
60
|
+
# To generate unique top-k!
|
|
61
|
+
top_k_indices = jax.random.randint(k6, (num_tokens, top_k),
|
|
62
|
+
minval=0,
|
|
63
|
+
maxval=num_experts - 1,
|
|
64
|
+
dtype=jnp.int32)
|
|
65
|
+
|
|
66
|
+
one_hot = (jnp.sum(
|
|
67
|
+
jax.nn.one_hot(top_k_indices, num_experts, dtype=jnp.float32),
|
|
68
|
+
axis=1,
|
|
69
|
+
) * 30)
|
|
70
|
+
|
|
71
|
+
gating_output = (gating_output + one_hot).astype(dtype)
|
|
72
|
+
|
|
73
|
+
return a, w1, w2, b1, b2, gating_output
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def sub_channel_quantize(x, quant_dtype, wsz=256):
|
|
77
|
+
"""Quantizes x with sub-channel quantization on the 2nd minor."""
|
|
78
|
+
if jnp.issubdtype(quant_dtype, jnp.floating):
|
|
79
|
+
dtype_info = jnp.finfo(quant_dtype)
|
|
80
|
+
else:
|
|
81
|
+
dtype_info = jnp.iinfo(quant_dtype)
|
|
82
|
+
dtype_max = float(dtype_info.max)
|
|
83
|
+
w_lst, scale_lst = [], []
|
|
84
|
+
assert len(x.shape) >= 2
|
|
85
|
+
assert x.shape[-2] % wsz == 0
|
|
86
|
+
for i in range(0, x.shape[-2], wsz):
|
|
87
|
+
y = x[..., i:i + wsz, :]
|
|
88
|
+
abs_max = jnp.abs(y).max(axis=-2, keepdims=True)
|
|
89
|
+
scale = (abs_max / dtype_max).astype(jnp.float32)
|
|
90
|
+
w = (y / scale).astype(quant_dtype)
|
|
91
|
+
w_lst.append(w)
|
|
92
|
+
scale_lst.append(scale)
|
|
93
|
+
return jnp.concat(w_lst, axis=-2), jnp.concat(scale_lst, axis=-2)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
97
|
+
class MoEKernelTest(jtu.JaxTestCase):
|
|
98
|
+
|
|
99
|
+
def setUp(self):
|
|
100
|
+
super().setUp()
|
|
101
|
+
self.mesh_devices = sorted(
|
|
102
|
+
jax.devices(),
|
|
103
|
+
key=lambda x: (
|
|
104
|
+
x.coords[0],
|
|
105
|
+
(-1 if x.coords[0] % 2 else 1) * x.coords[1],
|
|
106
|
+
),
|
|
107
|
+
)
|
|
108
|
+
self.mesh = Mesh(np.array(self.mesh_devices).reshape(1, -1),
|
|
109
|
+
axis_names=("data", "model"))
|
|
110
|
+
|
|
111
|
+
def _test_moe(
|
|
112
|
+
self,
|
|
113
|
+
dtype,
|
|
114
|
+
top_k,
|
|
115
|
+
num_experts,
|
|
116
|
+
hidden_size,
|
|
117
|
+
intermediate_size,
|
|
118
|
+
num_tokens,
|
|
119
|
+
seed,
|
|
120
|
+
renormalize_topk_logits,
|
|
121
|
+
bt,
|
|
122
|
+
bf,
|
|
123
|
+
bd1,
|
|
124
|
+
bd2,
|
|
125
|
+
btc,
|
|
126
|
+
bfc,
|
|
127
|
+
bd1c,
|
|
128
|
+
bd2c,
|
|
129
|
+
act_fn="silu",
|
|
130
|
+
w_dtype=None,
|
|
131
|
+
subc_quant_wsz=None,
|
|
132
|
+
has_bias=False,
|
|
133
|
+
atol=2e-1,
|
|
134
|
+
rtol=2e-1,
|
|
135
|
+
):
|
|
136
|
+
a, w1, w2, b1, b2, gating_output = gen_moe_inputs(
|
|
137
|
+
dtype,
|
|
138
|
+
top_k,
|
|
139
|
+
num_experts,
|
|
140
|
+
hidden_size,
|
|
141
|
+
intermediate_size,
|
|
142
|
+
num_tokens,
|
|
143
|
+
seed=seed,
|
|
144
|
+
has_bias=has_bias,
|
|
145
|
+
)
|
|
146
|
+
w1_scale = None
|
|
147
|
+
w2_scale = None
|
|
148
|
+
if w_dtype is not None:
|
|
149
|
+
if subc_quant_wsz is None:
|
|
150
|
+
subc_quant_wsz = 256
|
|
151
|
+
w1, w1_scale = sub_channel_quantize(w1, w_dtype, subc_quant_wsz)
|
|
152
|
+
w2, w2_scale = sub_channel_quantize(w2, w_dtype, subc_quant_wsz)
|
|
153
|
+
|
|
154
|
+
actual = fused_ep_moe(
|
|
155
|
+
mesh=self.mesh,
|
|
156
|
+
tokens=a,
|
|
157
|
+
w1=w1,
|
|
158
|
+
w2=w2,
|
|
159
|
+
gating_output=gating_output,
|
|
160
|
+
top_k=top_k,
|
|
161
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
162
|
+
act_fn=act_fn,
|
|
163
|
+
subc_quant_wsz=subc_quant_wsz,
|
|
164
|
+
w1_scale=w1_scale,
|
|
165
|
+
w2_scale=w2_scale,
|
|
166
|
+
b1=b1,
|
|
167
|
+
b2=b2,
|
|
168
|
+
bt=bt,
|
|
169
|
+
bf=bf,
|
|
170
|
+
bd1=bd1,
|
|
171
|
+
bd2=bd2,
|
|
172
|
+
btc=btc,
|
|
173
|
+
bfc=bfc,
|
|
174
|
+
bd1c=bd1c,
|
|
175
|
+
bd2c=bd2c,
|
|
176
|
+
)
|
|
177
|
+
expected = ref_moe(
|
|
178
|
+
a,
|
|
179
|
+
w1,
|
|
180
|
+
w2,
|
|
181
|
+
gating_output,
|
|
182
|
+
top_k,
|
|
183
|
+
b1=b1,
|
|
184
|
+
b2=b2,
|
|
185
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
186
|
+
activation=act_fn,
|
|
187
|
+
subc_quant_wsz=subc_quant_wsz,
|
|
188
|
+
w1_scale=w1_scale,
|
|
189
|
+
w2_scale=w2_scale,
|
|
190
|
+
)
|
|
191
|
+
self.assertAllClose(actual, expected, atol=atol, rtol=rtol)
|
|
192
|
+
|
|
193
|
+
@parameterized.product(renormalize_topk_logits=[True, False], )
|
|
194
|
+
def test_basic(self, renormalize_topk_logits):
|
|
195
|
+
dtype = jnp.bfloat16
|
|
196
|
+
top_k = 8
|
|
197
|
+
num_experts = 128
|
|
198
|
+
hidden_size = 1024
|
|
199
|
+
intermediate_size = 1024
|
|
200
|
+
num_tokens = 8 * 32
|
|
201
|
+
self._test_moe(
|
|
202
|
+
dtype=dtype,
|
|
203
|
+
top_k=top_k,
|
|
204
|
+
num_experts=num_experts,
|
|
205
|
+
hidden_size=hidden_size,
|
|
206
|
+
intermediate_size=intermediate_size,
|
|
207
|
+
num_tokens=num_tokens,
|
|
208
|
+
seed=1234,
|
|
209
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
210
|
+
bt=32,
|
|
211
|
+
bf=1024,
|
|
212
|
+
bd1=1024,
|
|
213
|
+
bd2=1024,
|
|
214
|
+
btc=32,
|
|
215
|
+
bfc=256,
|
|
216
|
+
bd1c=256,
|
|
217
|
+
bd2c=256,
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
@parameterized.product(act_fn=["silu", "gelu", "swigluoai"], )
|
|
221
|
+
def test_activation(self, act_fn):
|
|
222
|
+
dtype = jnp.bfloat16
|
|
223
|
+
top_k = 8
|
|
224
|
+
num_experts = 128
|
|
225
|
+
hidden_size = 1024
|
|
226
|
+
intermediate_size = 1024
|
|
227
|
+
num_tokens = 8 * 32
|
|
228
|
+
self._test_moe(
|
|
229
|
+
dtype=dtype,
|
|
230
|
+
top_k=top_k,
|
|
231
|
+
num_experts=num_experts,
|
|
232
|
+
hidden_size=hidden_size,
|
|
233
|
+
intermediate_size=intermediate_size,
|
|
234
|
+
num_tokens=num_tokens,
|
|
235
|
+
seed=1234,
|
|
236
|
+
renormalize_topk_logits=True,
|
|
237
|
+
act_fn=act_fn,
|
|
238
|
+
bt=32,
|
|
239
|
+
bf=512,
|
|
240
|
+
bd1=512,
|
|
241
|
+
bd2=512,
|
|
242
|
+
btc=32,
|
|
243
|
+
bfc=256,
|
|
244
|
+
bd1c=256,
|
|
245
|
+
bd2c=256,
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
def test_benchmark_qwen_235(self):
|
|
249
|
+
num_experts = 128
|
|
250
|
+
top_k = 8
|
|
251
|
+
hidden_size = 4096
|
|
252
|
+
intermediate_size = 1536
|
|
253
|
+
dtype = jnp.bfloat16
|
|
254
|
+
num_tokens = 8 * 64
|
|
255
|
+
seed = 54321
|
|
256
|
+
renormalize_topk_logits = True
|
|
257
|
+
self._test_moe(
|
|
258
|
+
dtype=dtype,
|
|
259
|
+
top_k=top_k,
|
|
260
|
+
num_experts=num_experts,
|
|
261
|
+
hidden_size=hidden_size,
|
|
262
|
+
intermediate_size=intermediate_size,
|
|
263
|
+
num_tokens=num_tokens,
|
|
264
|
+
seed=seed,
|
|
265
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
266
|
+
bt=64,
|
|
267
|
+
bf=768,
|
|
268
|
+
bd1=2048,
|
|
269
|
+
bd2=2048,
|
|
270
|
+
btc=64,
|
|
271
|
+
bfc=768,
|
|
272
|
+
bd1c=2048,
|
|
273
|
+
bd2c=2048,
|
|
274
|
+
act_fn="silu",
|
|
275
|
+
atol=5e-2,
|
|
276
|
+
rtol=5e-2,
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
def test_benchmark_qwen_30b_a3b(self):
|
|
280
|
+
num_experts = 128
|
|
281
|
+
top_k = 8
|
|
282
|
+
hidden_size = 2048
|
|
283
|
+
intermediate_size = 768
|
|
284
|
+
dtype = jnp.bfloat16
|
|
285
|
+
num_tokens = 512
|
|
286
|
+
seed = 54321
|
|
287
|
+
renormalize_topk_logits = True
|
|
288
|
+
self._test_moe(
|
|
289
|
+
dtype=dtype,
|
|
290
|
+
top_k=top_k,
|
|
291
|
+
num_experts=num_experts,
|
|
292
|
+
hidden_size=hidden_size,
|
|
293
|
+
intermediate_size=intermediate_size,
|
|
294
|
+
num_tokens=num_tokens,
|
|
295
|
+
seed=seed,
|
|
296
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
297
|
+
bt=16,
|
|
298
|
+
bf=384,
|
|
299
|
+
bd1=512,
|
|
300
|
+
bd2=512,
|
|
301
|
+
btc=16,
|
|
302
|
+
bfc=384,
|
|
303
|
+
bd1c=256,
|
|
304
|
+
bd2c=256,
|
|
305
|
+
act_fn="silu",
|
|
306
|
+
atol=5e-2,
|
|
307
|
+
rtol=5e-2,
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
@parameterized.product(
|
|
311
|
+
w_dtype=[jnp.int8, jnp.float8_e5m2, jnp.float4_e2m1fn], )
|
|
312
|
+
def test_sub_channel_quantization(self, w_dtype):
|
|
313
|
+
if w_dtype in (
|
|
314
|
+
jnp.float8_e5m2,
|
|
315
|
+
jnp.float4_e2m1fn,
|
|
316
|
+
) and not jtu.is_device_tpu_at_least(version=7):
|
|
317
|
+
self.skipTest("Expect TPUv7+")
|
|
318
|
+
dtype = jnp.bfloat16
|
|
319
|
+
top_k = 8
|
|
320
|
+
num_experts = 128
|
|
321
|
+
hidden_size = 1024
|
|
322
|
+
intermediate_size = 1024
|
|
323
|
+
num_tokens = 8 * 32
|
|
324
|
+
self._test_moe(
|
|
325
|
+
dtype=dtype,
|
|
326
|
+
top_k=top_k,
|
|
327
|
+
num_experts=num_experts,
|
|
328
|
+
hidden_size=hidden_size,
|
|
329
|
+
intermediate_size=intermediate_size,
|
|
330
|
+
num_tokens=num_tokens,
|
|
331
|
+
seed=1234,
|
|
332
|
+
renormalize_topk_logits=False,
|
|
333
|
+
w_dtype=w_dtype,
|
|
334
|
+
subc_quant_wsz=256,
|
|
335
|
+
bt=32,
|
|
336
|
+
bf=1024,
|
|
337
|
+
bd1=1024,
|
|
338
|
+
bd2=1024,
|
|
339
|
+
btc=32,
|
|
340
|
+
bfc=256,
|
|
341
|
+
bd1c=256,
|
|
342
|
+
bd2c=256,
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
def test_bias(self):
|
|
346
|
+
dtype = jnp.bfloat16
|
|
347
|
+
top_k = 8
|
|
348
|
+
num_experts = 128
|
|
349
|
+
hidden_size = 1024
|
|
350
|
+
intermediate_size = 1024
|
|
351
|
+
num_tokens = 8 * 32
|
|
352
|
+
self._test_moe(
|
|
353
|
+
dtype=dtype,
|
|
354
|
+
top_k=top_k,
|
|
355
|
+
num_experts=num_experts,
|
|
356
|
+
hidden_size=hidden_size,
|
|
357
|
+
intermediate_size=intermediate_size,
|
|
358
|
+
num_tokens=num_tokens,
|
|
359
|
+
seed=1234,
|
|
360
|
+
renormalize_topk_logits=False,
|
|
361
|
+
has_bias=True,
|
|
362
|
+
bt=32,
|
|
363
|
+
bf=512,
|
|
364
|
+
bd1=512,
|
|
365
|
+
bd2=512,
|
|
366
|
+
btc=32,
|
|
367
|
+
bfc=256,
|
|
368
|
+
bd1c=256,
|
|
369
|
+
bd2c=256,
|
|
370
|
+
)
|
|
371
|
+
|
|
372
|
+
|
|
373
|
+
if __name__ == "__main__":
|
|
374
|
+
absltest.main(testLoader=jtu.JaxTestLoader())
|
|
@@ -91,7 +91,6 @@ def populate_loras(
|
|
|
91
91
|
index_to_id: list[Optional[int]],
|
|
92
92
|
lora_layer: BaseLayerWithLoRA,
|
|
93
93
|
baselayer_weights: torch.Tensor,
|
|
94
|
-
generate_embeddings_tensor: int = 0,
|
|
95
94
|
repeats: int = 1,
|
|
96
95
|
) -> tuple[dict[int, LoRALayerWeights], dict[int, list[LoRALayerWeights]]]:
|
|
97
96
|
"""This method populates the lora weights (lora_a and lora_b) in the lora layers (BaseLayerWithLoRA).
|
|
@@ -103,8 +102,6 @@ def populate_loras(
|
|
|
103
102
|
lora_layer: the LoRAlayer to populate.
|
|
104
103
|
baselayer_weights: the PyTorch tensor containing the layer's
|
|
105
104
|
weights.
|
|
106
|
-
generate_embeddings_tensor: whether to generate an
|
|
107
|
-
embeddings tensor for each LoRA.
|
|
108
105
|
repeats: must only be set for column parallel packed
|
|
109
106
|
layers. Indicates the number of loras to compose
|
|
110
107
|
together to create a single lora layer.
|
|
@@ -131,7 +128,6 @@ def populate_loras(
|
|
|
131
128
|
baselayer_weights.device).init_random_lora(
|
|
132
129
|
module_name=f"fake_{i}",
|
|
133
130
|
weight=baselayer_weights,
|
|
134
|
-
generate_embeddings_tensor=generate_embeddings_tensor,
|
|
135
131
|
)
|
|
136
132
|
sublora.lora_b = sublora.lora_b[(sublora_len *
|
|
137
133
|
i):(sublora_len * (i + 1)), :]
|
|
@@ -147,7 +143,6 @@ def populate_loras(
|
|
|
147
143
|
slot_idx,
|
|
148
144
|
lora_a=lora.lora_a,
|
|
149
145
|
lora_b=lora.lora_b,
|
|
150
|
-
embeddings_tensor=lora.embeddings_tensor,
|
|
151
146
|
)
|
|
152
147
|
|
|
153
148
|
lora_dict[lora_id] = lora
|
|
@@ -546,7 +541,6 @@ def _update_punica_wrapper_metadata(punica_wrapper, index_mapping,
|
|
|
546
541
|
index_to_id,
|
|
547
542
|
lora_config.max_loras,
|
|
548
543
|
vocab_size=512,
|
|
549
|
-
extra_vocab_size=lora_config.lora_extra_vocab_size,
|
|
550
544
|
)
|
|
551
545
|
assert jax_view(punica_wrapper._lora_indices_per_batch).platform(
|
|
552
546
|
) == 'tpu', 'punica_wrapper._lora_indices_per_batch should have been moved to TPU.'
|
{tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tests/lora/utils.py
RENAMED
|
@@ -24,7 +24,6 @@ class DummyLoRAManager:
|
|
|
24
24
|
module_name: str,
|
|
25
25
|
weight: torch.Tensor,
|
|
26
26
|
rank: int = 8,
|
|
27
|
-
generate_embeddings_tensor: int = 0,
|
|
28
27
|
):
|
|
29
28
|
lora = LoRALayerWeights(
|
|
30
29
|
module_name,
|
|
@@ -37,13 +36,6 @@ class DummyLoRAManager:
|
|
|
37
36
|
dtype=weight.dtype,
|
|
38
37
|
device=self._device),
|
|
39
38
|
)
|
|
40
|
-
if generate_embeddings_tensor:
|
|
41
|
-
lora.embeddings_tensor = torch.rand(
|
|
42
|
-
5,
|
|
43
|
-
generate_embeddings_tensor,
|
|
44
|
-
dtype=weight.dtype,
|
|
45
|
-
device=self._device,
|
|
46
|
-
)
|
|
47
39
|
self.set_module_lora(module_name, lora)
|
|
48
40
|
|
|
49
41
|
return lora
|
|
@@ -1,21 +1,40 @@
|
|
|
1
|
-
import os
|
|
2
|
-
|
|
3
1
|
# The environment variables override should be imported before any other
|
|
4
2
|
# modules to ensure that the environment variables are set before any
|
|
5
3
|
# other modules are imported.
|
|
6
4
|
import tpu_inference.env_override # noqa: F401
|
|
5
|
+
from tpu_inference import envs
|
|
7
6
|
from tpu_inference import tpu_info as ti
|
|
8
7
|
from tpu_inference.logger import init_logger
|
|
9
8
|
|
|
10
9
|
logger = init_logger(__name__)
|
|
11
10
|
|
|
12
|
-
if "proxy" in
|
|
11
|
+
if "proxy" in envs.JAX_PLATFORMS:
|
|
13
12
|
logger.info("Running vLLM on TPU via Pathways proxy.")
|
|
14
13
|
# Must run pathwaysutils.initialize() before any JAX operations
|
|
15
14
|
try:
|
|
15
|
+
import traceback
|
|
16
|
+
|
|
16
17
|
import pathwaysutils
|
|
18
|
+
import vllm
|
|
19
|
+
from vllm.platforms import (resolve_current_platform_cls_qualname,
|
|
20
|
+
resolve_obj_by_qualname)
|
|
17
21
|
pathwaysutils.initialize()
|
|
18
22
|
logger.info("Module pathwaysutils is imported.")
|
|
23
|
+
|
|
24
|
+
# Pathways requires eager resolution of vllm.current_platform instead of
|
|
25
|
+
# lazy resolution in the normal code path. Since this part involves
|
|
26
|
+
# global topology discovery across multiple hosts, the platform
|
|
27
|
+
# resolution must happen before other components are loaded.
|
|
28
|
+
logger.info("Eagerly resolving vLLM current_platform for Pathways.")
|
|
29
|
+
platform_cls_qualname = resolve_current_platform_cls_qualname()
|
|
30
|
+
resolved_platform_instance = resolve_obj_by_qualname(
|
|
31
|
+
platform_cls_qualname)()
|
|
32
|
+
vllm.platforms._current_platform = resolved_platform_instance
|
|
33
|
+
vllm.platforms._init_trace = "".join(traceback.format_stack())
|
|
34
|
+
logger.info(
|
|
35
|
+
f"vLLM platform resolved to: {resolved_platform_instance.__class__.__name__}"
|
|
36
|
+
)
|
|
37
|
+
|
|
19
38
|
except Exception as e:
|
|
20
39
|
logger.error(
|
|
21
40
|
f"Error occurred while importing pathwaysutils or logging TPU info: {e}"
|
|
@@ -1,17 +1,15 @@
|
|
|
1
1
|
# SPDX-License-Identifier: Apache-2.0
|
|
2
2
|
|
|
3
|
-
import os
|
|
4
3
|
from typing import Tuple
|
|
5
4
|
|
|
6
|
-
|
|
7
|
-
DECODE_SLICES = 'DECODE_SLICES'
|
|
5
|
+
from tpu_inference import envs
|
|
8
6
|
|
|
9
7
|
|
|
10
8
|
def is_disagg_enabled() -> bool:
|
|
11
9
|
# We triggrer our code path as long as prefill slices are set. This
|
|
12
10
|
# allows us to test interleave mode effectively with the code path
|
|
13
11
|
# for comparison purposes.
|
|
14
|
-
return PREFILL_SLICES
|
|
12
|
+
return bool(envs.PREFILL_SLICES)
|
|
15
13
|
|
|
16
14
|
|
|
17
15
|
def _parse_slices(slices_str: str) -> Tuple[int, ...]:
|
|
@@ -40,12 +38,12 @@ def _parse_slices(slices_str: str) -> Tuple[int, ...]:
|
|
|
40
38
|
|
|
41
39
|
|
|
42
40
|
def get_prefill_slices() -> Tuple[int, ...]:
|
|
43
|
-
if
|
|
41
|
+
if not envs.PREFILL_SLICES:
|
|
44
42
|
return ()
|
|
45
|
-
return _parse_slices(
|
|
43
|
+
return _parse_slices(envs.PREFILL_SLICES)
|
|
46
44
|
|
|
47
45
|
|
|
48
46
|
def get_decode_slices() -> Tuple[int, ...]:
|
|
49
|
-
if
|
|
47
|
+
if not envs.DECODE_SLICES:
|
|
50
48
|
return ()
|
|
51
|
-
return _parse_slices(
|
|
49
|
+
return _parse_slices(envs.DECODE_SLICES)
|
|
@@ -60,7 +60,6 @@ D workflow:
|
|
|
60
60
|
|
|
61
61
|
import copy
|
|
62
62
|
import functools
|
|
63
|
-
import os
|
|
64
63
|
import threading
|
|
65
64
|
import time
|
|
66
65
|
from concurrent.futures import Future, ThreadPoolExecutor
|
|
@@ -86,6 +85,7 @@ if TYPE_CHECKING:
|
|
|
86
85
|
from vllm.v1.core.kv_cache_manager import KVCacheBlocks
|
|
87
86
|
from vllm.v1.request import Request
|
|
88
87
|
|
|
88
|
+
from tpu_inference import envs
|
|
89
89
|
from tpu_inference.distributed.utils import (get_host_ip, get_kv_ips,
|
|
90
90
|
get_kv_ports,
|
|
91
91
|
get_kv_transfer_port, get_node_id,
|
|
@@ -441,8 +441,7 @@ class TPUConnectorWorker:
|
|
|
441
441
|
|
|
442
442
|
self.runner: TPUModelRunner = None
|
|
443
443
|
self.mesh: Mesh = None
|
|
444
|
-
self.multi_host =
|
|
445
|
-
"").lower() == "ray"
|
|
444
|
+
self.multi_host = envs.TPU_MULTIHOST_BACKEND == "ray"
|
|
446
445
|
# NOTE(xiang): This can not be the worker rank set in RayDistributedExecutor.
|
|
447
446
|
# The worker rank is assigned with vLLM's sorting logic, which does not work
|
|
448
447
|
# for TPU host topology.
|
|
@@ -2,6 +2,7 @@ import os
|
|
|
2
2
|
|
|
3
3
|
from vllm.utils.network_utils import get_ip
|
|
4
4
|
|
|
5
|
+
from tpu_inference import envs
|
|
5
6
|
from tpu_inference.logger import init_logger
|
|
6
7
|
|
|
7
8
|
logger = init_logger(__name__)
|
|
@@ -17,7 +18,7 @@ def set_node_kv_ip_port(ip_port: tuple[int, str, int]):
|
|
|
17
18
|
|
|
18
19
|
|
|
19
20
|
def get_kv_ips() -> str:
|
|
20
|
-
if
|
|
21
|
+
if envs.TPU_MULTIHOST_BACKEND == "ray":
|
|
21
22
|
num_nodes = len(_NODES_KV_IP_PORT)
|
|
22
23
|
ips = []
|
|
23
24
|
for node_id in range(num_nodes):
|
|
@@ -28,7 +29,7 @@ def get_kv_ips() -> str:
|
|
|
28
29
|
|
|
29
30
|
|
|
30
31
|
def get_kv_ports() -> str:
|
|
31
|
-
if
|
|
32
|
+
if envs.TPU_MULTIHOST_BACKEND == "ray":
|
|
32
33
|
num_nodes = len(_NODES_KV_IP_PORT)
|
|
33
34
|
ports = []
|
|
34
35
|
for node_id in range(num_nodes):
|
{tpu_inference-0.11.1.dev202511180814 → tpu_inference-0.11.1.dev202511270815}/tpu_inference/envs.py
RENAMED
|
@@ -26,7 +26,7 @@ if TYPE_CHECKING:
|
|
|
26
26
|
environment_variables: dict[str, Callable[[], Any]] = {
|
|
27
27
|
# JAX platform selection (e.g., "tpu", "cpu", "proxy")
|
|
28
28
|
"JAX_PLATFORMS":
|
|
29
|
-
lambda: os.getenv("JAX_PLATFORMS", ""),
|
|
29
|
+
lambda: os.getenv("JAX_PLATFORMS", "").lower(),
|
|
30
30
|
# TPU accelerator type (e.g., "v5litepod-16", "v4-8")
|
|
31
31
|
"TPU_ACCELERATOR_TYPE":
|
|
32
32
|
lambda: os.getenv("TPU_ACCELERATOR_TYPE", None),
|
|
@@ -108,6 +108,9 @@ class RayDistributedExecutor(RayDistributedExecutorV1):
|
|
|
108
108
|
ip_port = self.collective_rpc("get_node_kv_ip_port")
|
|
109
109
|
for item in ip_port:
|
|
110
110
|
set_node_kv_ip_port(item)
|
|
111
|
+
self.uses_sampler = self.vllm_config.model_config.runner_type != "pooling" and (
|
|
112
|
+
self.vllm_config.ec_transfer_config is None
|
|
113
|
+
or not self.vllm_config.ec_transfer_config.is_ec_producer)
|
|
111
114
|
|
|
112
115
|
def _initialize_ray_cluster(self) -> None:
|
|
113
116
|
"""Initialize the distributed cluster with Ray.
|
|
@@ -352,7 +355,7 @@ class RayDistributedExecutor(RayDistributedExecutorV1):
|
|
|
352
355
|
self.collective_rpc("init_worker", args=(all_kwargs, ))
|
|
353
356
|
self.collective_rpc("init_device")
|
|
354
357
|
if self.parallel_config.pipeline_parallel_size > 1:
|
|
355
|
-
self.
|
|
358
|
+
self.collective_rpc("initialize_pp_transfer_connect")
|
|
356
359
|
self.collective_rpc("load_model")
|
|
357
360
|
|
|
358
361
|
if self.use_ray_spmd_worker:
|