torch-rechub 0.1.0__tar.gz → 0.3.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (313) hide show
  1. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/CHANGELOG.md +41 -0
  2. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/PKG-INFO +31 -18
  3. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/README.md +29 -16
  4. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/README_en.md +88 -73
  5. torch_rechub-0.3.0/docs/en/community/changelog.md +9 -0
  6. torch_rechub-0.3.0/docs/en/community/contributing.md +177 -0
  7. torch_rechub-0.3.0/docs/en/community/faq.md +82 -0
  8. torch_rechub-0.3.0/docs/en/core/data.md +159 -0
  9. torch_rechub-0.3.0/docs/en/guide/install.md +94 -0
  10. torch_rechub-0.3.0/docs/en/guide/intro.md +97 -0
  11. torch_rechub-0.3.0/docs/en/guide/quick_start.md +287 -0
  12. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/index.md +2 -2
  13. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/tutorials/matching.md +5 -5
  14. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/tutorials/multi-task.md +5 -5
  15. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/tutorials/ranking.md +3 -3
  16. torch_rechub-0.3.0/docs/en/models/generative.md +310 -0
  17. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/models/intro.md +4 -0
  18. torch_rechub-0.3.0/docs/en/models/matching.md +840 -0
  19. torch_rechub-0.3.0/docs/en/models/mtl.md +451 -0
  20. torch_rechub-0.3.0/docs/en/models/ranking.md +677 -0
  21. torch_rechub-0.3.0/docs/en/serving/demo.md +110 -0
  22. torch_rechub-0.3.0/docs/en/serving/intro.md +85 -0
  23. torch_rechub-0.3.0/docs/en/serving/onnx.md +84 -0
  24. torch_rechub-0.3.0/docs/en/serving/vector_index.md +475 -0
  25. torch_rechub-0.3.0/docs/en/tools/callbacks.md +155 -0
  26. torch_rechub-0.3.0/docs/en/tools/intro.md +144 -0
  27. torch_rechub-0.3.0/docs/en/tools/tracking.md +276 -0
  28. torch_rechub-0.3.0/docs/en/tools/visualization.md +228 -0
  29. torch_rechub-0.3.0/docs/en/tutorials/ctr.md +205 -0
  30. torch_rechub-0.3.0/docs/en/tutorials/intro.md +50 -0
  31. torch_rechub-0.3.0/docs/en/tutorials/pipeline.md +194 -0
  32. torch_rechub-0.3.0/docs/en/tutorials/retrieval.md +207 -0
  33. torch_rechub-0.3.0/docs/public/favicon.ico +0 -0
  34. torch_rechub-0.3.0/docs/public/img/logo.png +0 -0
  35. torch_rechub-0.3.0/docs/public/img/project_framework.png +0 -0
  36. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/core/data.md +76 -0
  37. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/guide/intro.md +1 -1
  38. torch_rechub-0.3.0/docs/zh/guide/quick_start.md +287 -0
  39. torch_rechub-0.3.0/docs/zh/serving/demo.md +111 -0
  40. torch_rechub-0.3.0/docs/zh/serving/intro.md +86 -0
  41. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/serving/onnx.md +10 -0
  42. torch_rechub-0.3.0/docs/zh/serving/vector_index.md +475 -0
  43. torch_rechub-0.3.0/docs/zh/tools/callbacks.md +155 -0
  44. torch_rechub-0.3.0/docs/zh/tools/intro.md +144 -0
  45. torch_rechub-0.3.0/docs/zh/tools/tracking.md +276 -0
  46. torch_rechub-0.3.0/docs/zh/tools/visualization.md +233 -0
  47. torch_rechub-0.3.0/docs/zh/tutorials/ctr.md +206 -0
  48. torch_rechub-0.3.0/docs/zh/tutorials/intro.md +51 -0
  49. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/tutorials/pipeline.md +5 -5
  50. torch_rechub-0.3.0/docs/zh/tutorials/retrieval.md +208 -0
  51. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/run_hllm_amazon_books.py +9 -1
  52. torch_rechub-0.3.0/examples/serving/benchmark_onnx_quantization.py +105 -0
  53. torch_rechub-0.3.0/examples/serving/quantize_onnx.py +42 -0
  54. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/pyproject.toml +2 -2
  55. torch_rechub-0.3.0/tests/test_inbatch_sampling.py +78 -0
  56. torch_rechub-0.3.0/tests/test_onnx_quantization.py +82 -0
  57. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/layers.py +15 -9
  58. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/loss_func.py +10 -4
  59. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/narm.py +43 -20
  60. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/sasrec.py +55 -5
  61. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/stamp.py +43 -15
  62. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/trainers/match_trainer.py +54 -6
  63. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/data.py +28 -12
  64. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/match.py +61 -1
  65. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/Matching.ipynb +96 -122
  66. torch_rechub-0.1.0/docs/en/community/changelog.md +0 -0
  67. torch_rechub-0.1.0/docs/en/community/contributing.md +0 -0
  68. torch_rechub-0.1.0/docs/en/community/faq.md +0 -0
  69. torch_rechub-0.1.0/docs/en/core/data.md +0 -86
  70. torch_rechub-0.1.0/docs/en/guide/install.md +0 -0
  71. torch_rechub-0.1.0/docs/en/guide/intro.md +0 -0
  72. torch_rechub-0.1.0/docs/en/guide/quick_start.md +0 -0
  73. torch_rechub-0.1.0/docs/en/introduction.md +0 -78
  74. torch_rechub-0.1.0/docs/en/models/generative.md +0 -128
  75. torch_rechub-0.1.0/docs/en/models/matching.md +0 -72
  76. torch_rechub-0.1.0/docs/en/models/mtl.md +0 -57
  77. torch_rechub-0.1.0/docs/en/models/ranking.md +0 -69
  78. torch_rechub-0.1.0/docs/en/serving/demo.md +0 -0
  79. torch_rechub-0.1.0/docs/en/serving/intro.md +0 -0
  80. torch_rechub-0.1.0/docs/en/serving/onnx.md +0 -0
  81. torch_rechub-0.1.0/docs/en/serving/vector_index.md +0 -0
  82. torch_rechub-0.1.0/docs/en/tools/callbacks.md +0 -0
  83. torch_rechub-0.1.0/docs/en/tools/intro.md +0 -0
  84. torch_rechub-0.1.0/docs/en/tools/tracking.md +0 -112
  85. torch_rechub-0.1.0/docs/en/tools/visualization.md +0 -0
  86. torch_rechub-0.1.0/docs/en/tutorials/ctr.md +0 -0
  87. torch_rechub-0.1.0/docs/en/tutorials/intro.md +0 -0
  88. torch_rechub-0.1.0/docs/en/tutorials/pipeline.md +0 -0
  89. torch_rechub-0.1.0/docs/en/tutorials/retrieval.md +0 -0
  90. torch_rechub-0.1.0/docs/public/favicon.ico +0 -0
  91. torch_rechub-0.1.0/docs/public/img/logo.png +0 -0
  92. torch_rechub-0.1.0/docs/zh/guide/quick_start.md +0 -71
  93. torch_rechub-0.1.0/docs/zh/serving/demo.md +0 -9
  94. torch_rechub-0.1.0/docs/zh/serving/intro.md +0 -9
  95. torch_rechub-0.1.0/docs/zh/serving/vector_index.md +0 -9
  96. torch_rechub-0.1.0/docs/zh/tools/callbacks.md +0 -9
  97. torch_rechub-0.1.0/docs/zh/tools/intro.md +0 -9
  98. torch_rechub-0.1.0/docs/zh/tools/tracking.md +0 -111
  99. torch_rechub-0.1.0/docs/zh/tools/visualization.md +0 -9
  100. torch_rechub-0.1.0/docs/zh/tutorials/ctr.md +0 -186
  101. torch_rechub-0.1.0/docs/zh/tutorials/intro.md +0 -9
  102. torch_rechub-0.1.0/docs/zh/tutorials/retrieval.md +0 -155
  103. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  104. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  105. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  106. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/ISSUE_TEMPLATE/help_wanted.md +0 -0
  107. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/dependabot.yml +0 -0
  108. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/pull_request_template.md +0 -0
  109. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/release.yml +0 -0
  110. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/workflows/ci.yml +0 -0
  111. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.github/workflows/deploy.yml +0 -0
  112. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.gitignore +0 -0
  113. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/.pre-commit-config.yaml +0 -0
  114. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/CODE_OF_CONDUCT.md +0 -0
  115. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/CONTRIBUTING.md +0 -0
  116. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/LICENSE +0 -0
  117. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/config/.flake8 +0 -0
  118. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/config/.pep8 +0 -0
  119. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/config/.pre-commit-config.yaml +0 -0
  120. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/config/CONFIG_GUIDE.md +0 -0
  121. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/config/fix_encoding.py +0 -0
  122. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/config/format_code.py +0 -0
  123. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/config/pytest.ini +0 -0
  124. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/.vitepress/config.mts +0 -0
  125. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/.vitepress/theme/custom.css +0 -0
  126. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/.vitepress/theme/index.ts +0 -0
  127. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/.vitepress/theme/style.css +0 -0
  128. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/api-basic.md +0 -0
  129. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/api-models.md +0 -0
  130. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/api-trainers.md +0 -0
  131. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/api-utils.md +0 -0
  132. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/hllm_reproduction.md +0 -0
  133. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/hstu_reproduction.md +0 -0
  134. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/match.md +0 -0
  135. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache/rank.md +0 -0
  136. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/cache//345/217/202/350/200/203/350/265/204/346/226/231.md" +0 -0
  137. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/api/api.md +0 -0
  138. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/blog/hllm_reproduction.md +0 -0
  139. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/blog/match.md +0 -0
  140. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/blog/rank.md +0 -0
  141. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/contributing.md +0 -0
  142. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/core/evaluation.md +0 -0
  143. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/core/features.md +0 -0
  144. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/core/intro.md +0 -0
  145. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/api-reference/basic.md +0 -0
  146. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/api-reference/models.md +0 -0
  147. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/api-reference/trainers.md +0 -0
  148. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/api-reference/utils.md +0 -0
  149. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/faq.md +0 -0
  150. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/getting-started.md +0 -0
  151. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/en/manual/installation.md +0 -0
  152. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/img/banner.png +0 -0
  153. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/img/logo_with_name.png +0 -0
  154. /torch_rechub-0.1.0/docs/public/img/project_framework.jpg → /torch_rechub-0.3.0/docs/public/img/project_framework_old.jpg +0 -0
  155. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/img/win_install_annoy_error.png +0 -0
  156. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1606.07792_l8JrVnuYXA.pdf +0 -0
  157. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1703.04247_sFSyE7q3U1.pdf +0 -0
  158. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1706.06978_0xZD_K10S2.pdf +0 -0
  159. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1708.05123_f3lKSqxIvw.pdf +0 -0
  160. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1711.00165_eosOSOmTfE.pdf +0 -0
  161. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1804.07931_ybf_jOAFRp.pdf +0 -0
  162. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1808.09781-3_bmRm284Rxd.pdf +0 -0
  163. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1808.09781v1.pdf +0 -0
  164. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/1905.06336_2oH3RMtROA.pdf +0 -0
  165. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/2006.11632_qiN67CrHNs.pdf +0 -0
  166. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/2020 (Tencent) (Recsys) [PLE] Progressive Layered .pdf +0 -0
  167. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/2102.09267_cdwBFKPCrj.pdf +0 -0
  168. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/2105.08489-2_XnVVGxN9GG.pdf +0 -0
  169. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/2203.06801v1-3_qUTY4TbvSL.pdf +0 -0
  170. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/2959100.2959190_jRzTU81Xmq.pdf +0 -0
  171. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/3219819.3219950_aTMFXHL3JB.pdf +0 -0
  172. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/3219819.3220007_zvaZg_CZ6z.pdf +0 -0
  173. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/4545-Article Text-7584-1-10-20190706.pdf +0 -0
  174. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566_1QYYhqJR8.pdf +0 -0
  175. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/Caruana1997_Article_MultitaskLearning_ySprcjzJ6v.pdf +0 -0
  176. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/DCN V2 Improved Deep & Cross Network and Practical.pdf +0 -0
  177. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/public/pdf/cikm2013_DSSM_fullversion_c9ZSdM19XJ.pdf +0 -0
  178. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/api/api.md +0 -0
  179. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/community/changelog.md +0 -0
  180. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/community/contributing.md +0 -0
  181. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/community/faq.md +0 -0
  182. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/core/evaluation.md +0 -0
  183. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/core/features.md +0 -0
  184. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/core/intro.md +0 -0
  185. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/guide/install.md +0 -0
  186. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/index.md +0 -0
  187. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/models/generative.md +0 -0
  188. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/models/intro.md +0 -0
  189. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/models/matching.md +0 -0
  190. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/models/mtl.md +0 -0
  191. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/docs/zh/models/ranking.md +0 -0
  192. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/data/amazon-books/README.md +0 -0
  193. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/data/amazon-books/preprocess_amazon_books.py +0 -0
  194. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/data/amazon-books/preprocess_amazon_books_hllm.py +0 -0
  195. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/data/ml-1m/README +0 -0
  196. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/data/ml-1m/preprocess_hllm_data.py +0 -0
  197. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/data/ml-1m/preprocess_ml_hstu.py +0 -0
  198. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/run_hllm_movielens.py +0 -0
  199. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/generative/run_hstu_movielens.py +0 -0
  200. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/README.md +0 -0
  201. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/data/million-song-dataset/process_msd.py +0 -0
  202. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/data/ml-1m/preprocess_ml.py +0 -0
  203. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/data/session_based/preprocess_session_based.py +0 -0
  204. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/data/yidian_news/preprocess.py +0 -0
  205. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/movielens_utils.py +0 -0
  206. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_comirec.py +0 -0
  207. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_dssm.py +0 -0
  208. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_facebook_dssm.py +0 -0
  209. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_gru4rec.py +0 -0
  210. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_mind.py +0 -0
  211. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_sine.py +0 -0
  212. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_youtube_dnn.py +0 -0
  213. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_ml_youtube_sbc.py +0 -0
  214. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/matching/run_sbr.py +0 -0
  215. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/README.md +0 -0
  216. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/data/ali-ccp/preprocess_ali_ccp.py +0 -0
  217. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/data/amazon-beauty/preprocess_amazon_beauty.py +0 -0
  218. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/data/amazon-books/preprocess_amazon_books.py +0 -0
  219. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/data/amazon-electronics/preprocess_amazon_electronics.py +0 -0
  220. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/data/avazu/download_avazu.py +0 -0
  221. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/data/census-income/preprocess_census.py +0 -0
  222. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_ali_ccp_ctr_ranking.py +0 -0
  223. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_ali_ccp_multi_task.py +0 -0
  224. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_aliexpress.py +0 -0
  225. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_amazon_electronics.py +0 -0
  226. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_avazu.py +0 -0
  227. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_census.py +0 -0
  228. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_criteo.py +0 -0
  229. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_gradnorm.py +0 -0
  230. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/examples/ranking/run_metabalance.py +0 -0
  231. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/package-lock.json +0 -0
  232. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/package.json +0 -0
  233. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_e2e_matching.py +0 -0
  234. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_e2e_multitask.py +0 -0
  235. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_e2e_ranking.py +0 -0
  236. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_onnx_export.py +0 -0
  237. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_pa_array_to_tensor.py +0 -0
  238. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_parquet_dataset.py +0 -0
  239. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_regularization.py +0 -0
  240. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tests/test_serving.py +0 -0
  241. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/__init__.py +0 -0
  242. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/__init__.py +0 -0
  243. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/activation.py +0 -0
  244. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/callback.py +0 -0
  245. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/features.py +0 -0
  246. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/initializers.py +0 -0
  247. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/metaoptimizer.py +0 -0
  248. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/metric.py +0 -0
  249. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/basic/tracking.py +0 -0
  250. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/data/__init__.py +0 -0
  251. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/data/convert.py +0 -0
  252. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/data/dataset.py +0 -0
  253. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/__init__.py +0 -0
  254. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/generative/__init__.py +0 -0
  255. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/generative/hllm.py +0 -0
  256. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/generative/hstu.py +0 -0
  257. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/__init__.py +0 -0
  258. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/comirec.py +0 -0
  259. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/dssm.py +0 -0
  260. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/dssm_facebook.py +0 -0
  261. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/dssm_senet.py +0 -0
  262. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/gru4rec.py +0 -0
  263. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/mind.py +0 -0
  264. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/sine.py +0 -0
  265. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/youtube_dnn.py +0 -0
  266. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/matching/youtube_sbc.py +0 -0
  267. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/multi_task/__init__.py +0 -0
  268. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/multi_task/aitm.py +0 -0
  269. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/multi_task/esmm.py +0 -0
  270. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/multi_task/mmoe.py +0 -0
  271. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/multi_task/ple.py +0 -0
  272. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/multi_task/shared_bottom.py +0 -0
  273. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/__init__.py +0 -0
  274. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/afm.py +0 -0
  275. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/autoint.py +0 -0
  276. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/bst.py +0 -0
  277. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/dcn.py +0 -0
  278. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/dcn_v2.py +0 -0
  279. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/deepffm.py +0 -0
  280. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/deepfm.py +0 -0
  281. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/dien.py +0 -0
  282. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/din.py +0 -0
  283. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/edcn.py +0 -0
  284. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/fibinet.py +0 -0
  285. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/models/ranking/widedeep.py +0 -0
  286. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/serving/__init__.py +0 -0
  287. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/serving/annoy.py +0 -0
  288. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/serving/base.py +0 -0
  289. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/serving/faiss.py +0 -0
  290. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/serving/milvus.py +0 -0
  291. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/trainers/__init__.py +0 -0
  292. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/trainers/ctr_trainer.py +0 -0
  293. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/trainers/mtl_trainer.py +0 -0
  294. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/trainers/seq_trainer.py +0 -0
  295. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/types.py +0 -0
  296. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/__init__.py +0 -0
  297. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/hstu_utils.py +0 -0
  298. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/model_utils.py +0 -0
  299. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/mtl.py +0 -0
  300. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/onnx_export.py +0 -0
  301. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/quantization.py +0 -0
  302. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/torch_rechub/utils/visualization.py +0 -0
  303. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/00_QuickStart_CTR_DeepFM.ipynb +0 -0
  304. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/01_Ranking_DIN.ipynb +0 -0
  305. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/02_Matching_DSSM.ipynb +0 -0
  306. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/03_MultiTask_MMOE.ipynb +0 -0
  307. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/04_Experiment_Tracking_Light.ipynb +0 -0
  308. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/05_Model_Export_and_Serving.ipynb +0 -0
  309. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/DIN.ipynb +0 -0
  310. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/DeepFM.ipynb +0 -0
  311. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/Milvus.ipynb +0 -0
  312. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/tutorials/Multi_Task.ipynb +0 -0
  313. {torch_rechub-0.1.0 → torch_rechub-0.3.0}/uv.lock +0 -0
@@ -7,6 +7,47 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
7
7
 
8
8
  ---
9
9
 
10
+ ## [0.3.0] - 2026-02-05
11
+
12
+ <!-- Release notes generated using configuration in .github/release.yml at main -->
13
+
14
+ ## What's Changed
15
+ ### ✨ 新特性 / Features
16
+ * Inbatchsample by @zerolovesea in https://github.com/datawhalechina/torch-rechub/pull/128
17
+ ### 📝 文档更新 / Documentation
18
+ * Enhance docs: ONNX, serving, tools, tutorials by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/165
19
+ * Expand docs: community, guides, models, data by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/166
20
+ ### 🔄 其他变更 / Other Changes
21
+ * Update favicon and logo images by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/164
22
+ * Update docs imports to torch_rechub by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/167
23
+
24
+
25
+ **Full Changelog**: https://github.com/datawhalechina/torch-rechub/compare/v0.2.0...v0.3.0
26
+
27
+ ---
28
+
29
+
30
+
31
+ ## [0.2.0] - 2026-01-11
32
+
33
+ <!-- Release notes generated using configuration in .github/release.yml at main -->
34
+
35
+ ## What's Changed
36
+ ### 🐛 Bug 修复 / Bug Fixes
37
+ * Update HSTULayer with L2 norm and SiLU attention by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/157
38
+ * Add ONNX quantization scripts and tests, improve dataloader split by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/161
39
+ ### 📝 文档更新 / Documentation
40
+ * Update docs and README with new architecture image by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/154
41
+ * Add comprehensive vector index docs (EN & ZH) by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/162
42
+ * Update quick start and tracking docs in EN and ZH by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/163
43
+
44
+
45
+ **Full Changelog**: https://github.com/datawhalechina/torch-rechub/compare/v0.1.0...v0.2.0
46
+
47
+ ---
48
+
49
+
50
+
10
51
  ## [0.1.0] - 2025-12-17
11
52
 
12
53
  <!-- Release notes generated using configuration in .github/release.yml at main -->
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: torch-rechub
3
- Version: 0.1.0
3
+ Version: 0.3.0
4
4
  Summary: A Pytorch Toolbox for Recommendation Models, Easy-to-use and Easy-to-extend.
5
5
  Project-URL: Homepage, https://github.com/datawhalechina/torch-rechub
6
6
  Project-URL: Documentation, https://www.torch-rechub.com
@@ -31,7 +31,7 @@ Requires-Dist: transformers>=4.46.3
31
31
  Provides-Extra: annoy
32
32
  Requires-Dist: annoy>=1.17.2; extra == 'annoy'
33
33
  Provides-Extra: bigdata
34
- Requires-Dist: pyarrow~=21.0; extra == 'bigdata'
34
+ Requires-Dist: pyarrow<23,>=21; extra == 'bigdata'
35
35
  Provides-Extra: dev
36
36
  Requires-Dist: bandit>=1.7.0; extra == 'dev'
37
37
  Requires-Dist: flake8>=3.8.0; extra == 'dev'
@@ -60,9 +60,13 @@ Requires-Dist: graphviz>=0.20; extra == 'visualization'
60
60
  Requires-Dist: torchview>=0.2.6; extra == 'visualization'
61
61
  Description-Content-Type: text/markdown
62
62
 
63
- # 🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架
63
+ <div align="center">
64
64
 
65
- > 🚀 **30+ 主流推荐模型** | 🎯 **开箱即用** | 📦 **一键部署 ONNX** | 🤖 **支持生成式推荐 (HSTU/HLLM)**
65
+ ![Torch-RecHub 横幅](docs/public/img/banner.png)
66
+
67
+ # Torch-RecHub: 轻量、高效、易用的 PyTorch 推荐系统框架
68
+
69
+ 【⚠️ Alpha内测版本警告:此为早期内部构建版本,尚不完整且可能存在错误,欢迎大家提Issue反馈问题或建议。】
66
70
 
67
71
  [![许可证](https://img.shields.io/badge/license-MIT-blue?style=for-the-badge)](LICENSE)
68
72
  ![GitHub Repo stars](https://img.shields.io/github/stars/datawhalechina/torch-rechub?style=for-the-badge)
@@ -75,27 +79,21 @@ Description-Content-Type: text/markdown
75
79
  [![numpy 版本](https://img.shields.io/badge/numpy-1.19%2B-orange?style=for-the-badge)](https://numpy.org/)
76
80
  [![scikit-learn 版本](https://img.shields.io/badge/scikit_learn-0.23%2B-orange?style=for-the-badge)](https://scikit-learn.org/)
77
81
  [![torch-rechub 版本](https://img.shields.io/badge/torch_rechub-0.0.3%2B-orange?style=for-the-badge)](https://pypi.org/project/torch-rechub/)
82
+ [![torchview](https://img.shields.io/badge/torchview-0.2%2B-green?style=for-the-badge)](https://github.com/mert-kurttutan/torchview)
78
83
 
79
84
  [English](README_en.md) | 简体中文
80
85
 
81
- **在线文档:** https://datawhalechina.github.io/torch-rechub/ (英文)| https://datawhalechina.github.io/torch-rechub/zh/ (简体中文)
86
+ ![架构图](docs/public/img/project_framework.png)
82
87
 
83
- **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
88
+ </div>
84
89
 
85
- ![Torch-RecHub 横幅](docs/public/img/banner.png)
86
-
87
- ## 🎯 为什么选择 Torch-RecHub?
90
+ **在线文档:** https://datawhalechina.github.io/torch-rechub/zh/
88
91
 
89
- | 特性 | Torch-RecHub | 其他框架 |
90
- | ------------- | --------------------------- | ---------- |
91
- | 代码行数 | **10行** 完成训练+评估+部署 | 100+ 行 |
92
- | 模型覆盖 | **30+** 主流模型 | 有限 |
93
- | 生成式推荐 | ✅ HSTU/HLLM (Meta 2024) | ❌ |
94
- | ONNX 一键导出 | ✅ 内置支持 | 需手动适配 |
95
- | 学习曲线 | 极低 | 陡峭 |
92
+ **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
96
93
 
97
94
  ## ✨ 特性
98
95
 
96
+ * **生成式推荐模型:** LLM时代下,可以复现部分生成式推荐模型
99
97
  * **模块化设计:** 易于添加新的模型、数据集和评估指标。
100
98
  * **基于 PyTorch:** 利用 PyTorch 的动态图和 GPU 加速能力。
101
99
  * **丰富的模型库:** 涵盖 **30+** 经典和前沿推荐算法(召回、排序、多任务、生成式推荐等)。
@@ -109,7 +107,6 @@ Description-Content-Type: text/markdown
109
107
  ## 📖 目录
110
108
 
111
109
  - [🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架](#-torch-rechub---轻量高效易用的-pytorch-推荐系统框架)
112
- - [🎯 为什么选择 Torch-RecHub?](#-为什么选择-torch-rechub)
113
110
  - [✨ 特性](#-特性)
114
111
  - [📖 目录](#-目录)
115
112
  - [🔧 安装](#-安装)
@@ -221,6 +218,8 @@ torch-rechub/ # 根目录
221
218
 
222
219
  本框架目前支持 **30+** 主流推荐模型:
223
220
 
221
+ <details>
222
+
224
223
  ### 排序模型 (Ranking Models) - 13个
225
224
 
226
225
  | 模型 | 论文 | 简介 |
@@ -236,7 +235,11 @@ torch-rechub/ # 根目录
236
235
  | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | 自动特征交互学习 |
237
236
  | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | 特征重要性 + 双线性交互 |
238
237
  | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | 场感知因子分解机 |
239
- | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络 |
238
+ | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络
239
+ |
240
+ </details>
241
+
242
+ <details>
240
243
 
241
244
  ### 召回模型 (Matching Models) - 12个
242
245
 
@@ -253,6 +256,10 @@ torch-rechub/ # 根目录
253
256
  | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | 短期注意力记忆优先 |
254
257
  | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | 可控多兴趣推荐 |
255
258
 
259
+ </details>
260
+
261
+ <details>
262
+
256
263
  ### 多任务模型 (Multi-Task Models) - 5个
257
264
 
258
265
  | 模型 | 论文 | 简介 |
@@ -263,6 +270,10 @@ torch-rechub/ # 根目录
263
270
  | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | 自适应信息迁移 |
264
271
  | **SharedBottom** | - | 经典多任务共享底层 |
265
272
 
273
+ </details>
274
+
275
+ <details>
276
+
266
277
  ### 生成式推荐 (Generative Recommendation) - 2个
267
278
 
268
279
  | 模型 | 论文 | 简介 |
@@ -270,6 +281,8 @@ torch-rechub/ # 根目录
270
281
  | **HSTU** | [Meta 2024](https://arxiv.org/abs/2402.17152) | 层级序列转换单元,支撑 Meta 万亿参数推荐系统 |
271
282
  | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | 层级大语言模型推荐,融合 LLM 语义理解能力 |
272
283
 
284
+ </details>
285
+
273
286
  ## 📊 支持的数据集
274
287
 
275
288
  框架内置了对以下常见数据集格式的支持或提供了处理脚本:
@@ -1,6 +1,10 @@
1
- # 🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架
1
+ <div align="center">
2
2
 
3
- > 🚀 **30+ 主流推荐模型** | 🎯 **开箱即用** | 📦 **一键部署 ONNX** | 🤖 **支持生成式推荐 (HSTU/HLLM)**
3
+ ![Torch-RecHub 横幅](docs/public/img/banner.png)
4
+
5
+ # Torch-RecHub: 轻量、高效、易用的 PyTorch 推荐系统框架
6
+
7
+ 【⚠️ Alpha内测版本警告:此为早期内部构建版本,尚不完整且可能存在错误,欢迎大家提Issue反馈问题或建议。】
4
8
 
5
9
  [![许可证](https://img.shields.io/badge/license-MIT-blue?style=for-the-badge)](LICENSE)
6
10
  ![GitHub Repo stars](https://img.shields.io/github/stars/datawhalechina/torch-rechub?style=for-the-badge)
@@ -13,27 +17,21 @@
13
17
  [![numpy 版本](https://img.shields.io/badge/numpy-1.19%2B-orange?style=for-the-badge)](https://numpy.org/)
14
18
  [![scikit-learn 版本](https://img.shields.io/badge/scikit_learn-0.23%2B-orange?style=for-the-badge)](https://scikit-learn.org/)
15
19
  [![torch-rechub 版本](https://img.shields.io/badge/torch_rechub-0.0.3%2B-orange?style=for-the-badge)](https://pypi.org/project/torch-rechub/)
20
+ [![torchview](https://img.shields.io/badge/torchview-0.2%2B-green?style=for-the-badge)](https://github.com/mert-kurttutan/torchview)
16
21
 
17
22
  [English](README_en.md) | 简体中文
18
23
 
19
- **在线文档:** https://datawhalechina.github.io/torch-rechub/ (英文)| https://datawhalechina.github.io/torch-rechub/zh/ (简体中文)
24
+ ![架构图](docs/public/img/project_framework.png)
20
25
 
21
- **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
26
+ </div>
22
27
 
23
- ![Torch-RecHub 横幅](docs/public/img/banner.png)
24
-
25
- ## 🎯 为什么选择 Torch-RecHub?
28
+ **在线文档:** https://datawhalechina.github.io/torch-rechub/zh/
26
29
 
27
- | 特性 | Torch-RecHub | 其他框架 |
28
- | ------------- | --------------------------- | ---------- |
29
- | 代码行数 | **10行** 完成训练+评估+部署 | 100+ 行 |
30
- | 模型覆盖 | **30+** 主流模型 | 有限 |
31
- | 生成式推荐 | ✅ HSTU/HLLM (Meta 2024) | ❌ |
32
- | ONNX 一键导出 | ✅ 内置支持 | 需手动适配 |
33
- | 学习曲线 | 极低 | 陡峭 |
30
+ **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
34
31
 
35
32
  ## ✨ 特性
36
33
 
34
+ * **生成式推荐模型:** LLM时代下,可以复现部分生成式推荐模型
37
35
  * **模块化设计:** 易于添加新的模型、数据集和评估指标。
38
36
  * **基于 PyTorch:** 利用 PyTorch 的动态图和 GPU 加速能力。
39
37
  * **丰富的模型库:** 涵盖 **30+** 经典和前沿推荐算法(召回、排序、多任务、生成式推荐等)。
@@ -47,7 +45,6 @@
47
45
  ## 📖 目录
48
46
 
49
47
  - [🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架](#-torch-rechub---轻量高效易用的-pytorch-推荐系统框架)
50
- - [🎯 为什么选择 Torch-RecHub?](#-为什么选择-torch-rechub)
51
48
  - [✨ 特性](#-特性)
52
49
  - [📖 目录](#-目录)
53
50
  - [🔧 安装](#-安装)
@@ -159,6 +156,8 @@ torch-rechub/ # 根目录
159
156
 
160
157
  本框架目前支持 **30+** 主流推荐模型:
161
158
 
159
+ <details>
160
+
162
161
  ### 排序模型 (Ranking Models) - 13个
163
162
 
164
163
  | 模型 | 论文 | 简介 |
@@ -174,7 +173,11 @@ torch-rechub/ # 根目录
174
173
  | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | 自动特征交互学习 |
175
174
  | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | 特征重要性 + 双线性交互 |
176
175
  | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | 场感知因子分解机 |
177
- | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络 |
176
+ | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络
177
+ |
178
+ </details>
179
+
180
+ <details>
178
181
 
179
182
  ### 召回模型 (Matching Models) - 12个
180
183
 
@@ -191,6 +194,10 @@ torch-rechub/ # 根目录
191
194
  | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | 短期注意力记忆优先 |
192
195
  | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | 可控多兴趣推荐 |
193
196
 
197
+ </details>
198
+
199
+ <details>
200
+
194
201
  ### 多任务模型 (Multi-Task Models) - 5个
195
202
 
196
203
  | 模型 | 论文 | 简介 |
@@ -201,6 +208,10 @@ torch-rechub/ # 根目录
201
208
  | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | 自适应信息迁移 |
202
209
  | **SharedBottom** | - | 经典多任务共享底层 |
203
210
 
211
+ </details>
212
+
213
+ <details>
214
+
204
215
  ### 生成式推荐 (Generative Recommendation) - 2个
205
216
 
206
217
  | 模型 | 论文 | 简介 |
@@ -208,6 +219,8 @@ torch-rechub/ # 根目录
208
219
  | **HSTU** | [Meta 2024](https://arxiv.org/abs/2402.17152) | 层级序列转换单元,支撑 Meta 万亿参数推荐系统 |
209
220
  | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | 层级大语言模型推荐,融合 LLM 语义理解能力 |
210
221
 
222
+ </details>
223
+
211
224
  ## 📊 支持的数据集
212
225
 
213
226
  框架内置了对以下常见数据集格式的支持或提供了处理脚本:
@@ -1,6 +1,8 @@
1
- # 🔥 Torch-RecHub - Lightweight, Efficient & Easy-to-use PyTorch Recommender Framework
1
+ <div align="center">
2
2
 
3
- > 🚀 **30+ Mainstream Models** | 🎯 **Out-of-the-box** | 📦 **One-click ONNX Export** | 🤖 **Generative RecSys (HSTU/HLLM)**
3
+ ![Torch-RecHub Banner](docs/public/img/banner.png)
4
+
5
+ # Torch-RecHub: A Lightweight, Efficient, and Easy-to-use PyTorch Recommender Framework
4
6
 
5
7
  [![License](https://img.shields.io/badge/license-MIT-blue?style=for-the-badge)](LICENSE)
6
8
  ![GitHub Repo stars](https://img.shields.io/github/stars/datawhalechina/torch-rechub?style=for-the-badge)
@@ -13,42 +15,33 @@
13
15
  [![numpy Version](https://img.shields.io/badge/numpy-1.19%2B-orange?style=for-the-badge)](https://numpy.org/)
14
16
  [![scikit-learn Version](https://img.shields.io/badge/scikit_learn-0.23%2B-orange?style=for-the-badge)](https://scikit-learn.org/)
15
17
  [![torch-rechub Version](https://img.shields.io/badge/torch_rechub-0.0.3%2B-orange?style=for-the-badge)](https://pypi.org/project/torch-rechub/)
18
+ [![torchview](https://img.shields.io/badge/torchview-0.2%2B-green?style=for-the-badge)](https://github.com/mert-kurttutan/torchview)
16
19
 
17
20
  English | [简体中文](README.md)
18
21
 
19
- **Online Documentation:** https://datawhalechina.github.io/torch-rechub/ (English) | https://datawhalechina.github.io/torch-rechub/zh/ (简体中文)
22
+ ![Project Framework](docs/public/img/project_framework.png)
20
23
 
21
- **Torch-RecHub** — **Build production-grade recommender systems in 10 lines of code**. 30+ mainstream models out-of-the-box, one-click ONNX deployment, letting you focus on business instead of engineering.
24
+ </div>
22
25
 
23
- ![Torch-RecHub Banner](docs/public/img/banner.png)
26
+ **Online Documentation:** https://datawhalechina.github.io/torch-rechub/
24
27
 
25
- ## 🎯 Why Torch-RecHub?
26
-
27
- | Feature | Torch-RecHub | Other Frameworks |
28
- |---------|-------------|------------------|
29
- | Lines of Code | **10 lines** for train+eval+deploy | 100+ lines |
30
- | Model Coverage | **30+** mainstream models | Limited |
31
- | Generative RecSys | ✅ HSTU/HLLM (Meta 2024) | ❌ |
32
- | ONNX Export | ✅ Built-in support | Manual adaptation |
33
- | Learning Curve | Very Low | Steep |
28
+ **Torch-RecHub** —— **Build production-grade recommender systems in 10 lines of code**. 30+ mainstream models out-of-the-box, one-click ONNX deployment, letting you focus on business instead of engineering.
34
29
 
35
30
  ## ✨ Features
36
31
 
37
32
  * **Modular Design:** Easy to add new models, datasets, and evaluation metrics.
38
- * **PyTorch-based:** Leverages PyTorch's dynamic graph and GPU acceleration capabilities.
39
- * **Rich Model Library:** Covers **30+** classic and cutting-edge recommendation algorithms (matching, ranking, multi-task, generative).
33
+ * **Based on PyTorch:** Leverages PyTorch's dynamic graph and GPU acceleration capabilities.
34
+ * **Rich Model Library:** Covers **30+** classic and cutting-edge recommendation algorithms (Matching, Ranking, Multi-task, Generative Recommendation, etc.).
40
35
  * **Standardized Pipeline:** Provides unified data loading, training, and evaluation workflows.
41
36
  * **Easy Configuration:** Adjust experiment settings via config files or command-line arguments.
42
37
  * **Reproducibility:** Designed to ensure reproducible experimental results.
43
- * **ONNX Export:** Export trained models to ONNX format for production deployment.
44
- * **Cross-engine data processing:** PySpark-based data processing and conversion supported for large-scale pipelines.
45
- * **Experiment visualization & tracking:** Unified integration of WandB, SwanLab, and TensorBoardX.
46
- * **Additional Features:** Negative sampling, multi-task learning, etc.
38
+ * **ONNX Export:** Export trained models to ONNX format for seamless production deployment.
39
+ * **Cross-engine Data Processing:** Support for PySpark-based data processing and transformation, facilitating deployment in big data pipelines.
40
+ * **Experiment Visualization & Tracking:** Built-in unified integration for WandB, SwanLab, and TensorBoardX.
47
41
 
48
42
  ## 📖 Table of Contents
49
43
 
50
- - [🔥 Torch-RecHub - Lightweight, Efficient \& Easy-to-use PyTorch Recommender Framework](#-torch-rechub---lightweight-efficient--easy-to-use-pytorch-recommender-framework)
51
- - [🎯 Why Torch-RecHub?](#-why-torch-rechub)
44
+ - [🔥 Torch-RecHub - A Lightweight, Efficient, and Easy-to-use PyTorch Recommender Framework](#-torch-rechub---a-lightweight-efficient-and-easy-to-use-pytorch-recommender-framework)
52
45
  - [✨ Features](#-features)
53
46
  - [📖 Table of Contents](#-table-of-contents)
54
47
  - [🔧 Installation](#-installation)
@@ -61,7 +54,8 @@ English | [简体中文](README.md)
61
54
  - [🧪 Examples](#-examples)
62
55
  - [Ranking (CTR Prediction)](#ranking-ctr-prediction)
63
56
  - [Multi-Task Ranking](#multi-task-ranking)
64
- - [Matching Model](#matching-model)
57
+ - [Matching Models](#matching-models)
58
+ - [Model Visualization](#model-visualization)
65
59
  - [👨‍💻‍ Contributors](#-contributors)
66
60
  - [🤝 Contributing](#-contributing)
67
61
  - [📜 License](#-license)
@@ -82,7 +76,7 @@ English | [简体中文](README.md)
82
76
 
83
77
  ### Installation Steps
84
78
 
85
- **Stable Version (Recommended for Users):**
79
+ **Stable Version (Recommended):**
86
80
  ```bash
87
81
  pip install torch-rechub
88
82
  ```
@@ -147,7 +141,7 @@ torch-rechub/ # Root directory
147
141
  │ ├── matching/ # Matching task examples
148
142
  │ ├── ranking/ # Ranking task examples
149
143
  │ └── generative/ # Generative recommendation examples (HSTU, HLLM, etc.)
150
- ├── docs/ # Documentation (VitePress: multi-language, English & Chinese)
144
+ ├── docs/ # Documentation (VitePress, multi-language)
151
145
  ├── tutorials/ # Jupyter tutorials
152
146
  ├── tests/ # Unit tests
153
147
  ├── config/ # Configuration files
@@ -158,54 +152,70 @@ torch-rechub/ # Root directory
158
152
 
159
153
  The framework currently supports **30+** mainstream recommendation models:
160
154
 
155
+ <details>
156
+
161
157
  ### Ranking Models - 13
162
158
 
163
- | Model | Paper | Description |
164
- |-------|-------|-------------|
165
- | **DeepFM** | [IJCAI 2017](https://arxiv.org/abs/1703.04247) | FM + Deep joint training |
166
- | **Wide&Deep** | [DLRS 2016](https://arxiv.org/abs/1606.07792) | Memorization + Generalization |
167
- | **DCN** | [KDD 2017](https://arxiv.org/abs/1708.05123) | Explicit feature crossing |
168
- | **DCN-v2** | [WWW 2021](https://arxiv.org/abs/2008.13535) | Enhanced cross network |
169
- | **DIN** | [KDD 2018](https://arxiv.org/abs/1706.06978) | Attention for user interest |
170
- | **DIEN** | [AAAI 2019](https://arxiv.org/abs/1809.03672) | Interest evolution modeling |
171
- | **BST** | [DLP-KDD 2019](https://arxiv.org/abs/1905.06874) | Transformer for sequences |
172
- | **AFM** | [IJCAI 2017](https://arxiv.org/abs/1708.04617) | Attentional FM |
173
- | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | Auto feature interaction |
174
- | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | Feature importance + Bilinear |
175
- | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | Field-aware FM |
176
- | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | Enhanced DCN |
159
+ | Model | Paper | Description |
160
+ | -------------- | ------------------------------------------------- | ------------------------------- |
161
+ | **DeepFM** | [IJCAI 2017](https://arxiv.org/abs/1703.04247) | FM + Deep joint training |
162
+ | **Wide&Deep** | [DLRS 2016](https://arxiv.org/abs/1606.07792) | Memorization + Generalization |
163
+ | **DCN** | [KDD 2017](https://arxiv.org/abs/1708.05123) | Explicit feature crossing |
164
+ | **DCN-v2** | [WWW 2021](https://arxiv.org/abs/2008.13535) | Enhanced cross network |
165
+ | **DIN** | [KDD 2018](https://arxiv.org/abs/1706.06978) | Attention for user interest |
166
+ | **DIEN** | [AAAI 2019](https://arxiv.org/abs/1809.03672) | Interest evolution modeling |
167
+ | **BST** | [DLP-KDD 2019](https://arxiv.org/abs/1905.06874) | Transformer for sequences |
168
+ | **AFM** | [IJCAI 2017](https://arxiv.org/abs/1708.04617) | Attentional FM |
169
+ | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | Auto feature interaction learning |
170
+ | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | Feature importance + Bilinear |
171
+ | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | Field-aware FM |
172
+ | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | Enhanced DCN |
173
+
174
+ </details>
175
+
176
+ <details>
177
177
 
178
178
  ### Matching Models - 12
179
179
 
180
- | Model | Paper | Description |
181
- |-------|-------|-------------|
182
- | **DSSM** | [CIKM 2013](https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf) | Classic two-tower model |
183
- | **YoutubeDNN** | [RecSys 2016](https://dl.acm.org/doi/10.1145/2959100.2959190) | YouTube deep retrieval |
184
- | **YoutubeSBC** | [RecSys 2019](https://dl.acm.org/doi/10.1145/3298689.3346997) | Sampling bias correction |
185
- | **MIND** | [CIKM 2019](https://arxiv.org/abs/1904.08030) | Multi-interest dynamic routing |
186
- | **SINE** | [WSDM 2021](https://arxiv.org/abs/2103.06920) | Sparse interest network |
187
- | **GRU4Rec** | [ICLR 2016](https://arxiv.org/abs/1511.06939) | GRU for sequences |
188
- | **SASRec** | [ICDM 2018](https://arxiv.org/abs/1808.09781) | Self-attentive sequential |
189
- | **NARM** | [CIKM 2017](https://arxiv.org/abs/1711.04725) | Neural attentive session |
190
- | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | Short-term attention memory |
191
- | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | Controllable multi-interest |
180
+ | Model | Paper | Description |
181
+ | --------------- | ------------------------------------------------------------------------------- | ------------------------- |
182
+ | **DSSM** | [CIKM 2013](https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf) | Classic two-tower model |
183
+ | **YoutubeDNN** | [RecSys 2016](https://dl.acm.org/doi/10.1145/2959100.2959190) | YouTube deep retrieval |
184
+ | **YoutubeSBC** | [RecSys 2019](https://dl.acm.org/doi/10.1145/3298689.3346997) | Sampling bias correction |
185
+ | **MIND** | [CIKM 2019](https://arxiv.org/abs/1904.08030) | Multi-interest dynamic routing |
186
+ | **SINE** | [WSDM 2021](https://arxiv.org/abs/2103.06920) | Sparse interest network |
187
+ | **GRU4Rec** | [ICLR 2016](https://arxiv.org/abs/1511.06939) | GRU for sequences |
188
+ | **SASRec** | [ICDM 2018](https://arxiv.org/abs/1808.09781) | Self-attentive sequential |
189
+ | **NARM** | [CIKM 2017](https://arxiv.org/abs/1711.04725) | Neural attentive session |
190
+ | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | Short-term attention memory priority |
191
+ | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | Controllable multi-interest |
192
+
193
+ </details>
194
+
195
+ <details>
192
196
 
193
197
  ### Multi-Task Models - 5
194
198
 
195
- | Model | Paper | Description |
196
- |-------|-------|-------------|
197
- | **ESMM** | [SIGIR 2018](https://arxiv.org/abs/1804.07931) | Entire space multi-task |
198
- | **MMoE** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3220007) | Multi-gate mixture-of-experts |
199
- | **PLE** | [RecSys 2020](https://dl.acm.org/doi/10.1145/3383313.3412236) | Progressive layered extraction |
200
- | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | Adaptive information transfer |
201
- | **SharedBottom** | - | Classic shared bottom |
199
+ | Model | Paper | Description |
200
+ | ----------------- | -------------------------------------------------------------- | ------------------------- |
201
+ | **ESMM** | [SIGIR 2018](https://arxiv.org/abs/1804.07931) | Entire space multi-task |
202
+ | **MMoE** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3220007) | Multi-gate Mixture-of-Experts |
203
+ | **PLE** | [RecSys 2020](https://dl.acm.org/doi/10.1145/3383313.3412236) | Progressive Layered Extraction |
204
+ | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | Adaptive Information Transfer |
205
+ | **SharedBottom** | - | Classic shared bottom |
206
+
207
+ </details>
208
+
209
+ <details>
202
210
 
203
211
  ### Generative Recommendation - 2
204
212
 
205
- | Model | Paper | Description |
206
- |-------|-------|-------------|
213
+ | Model | Paper | Description |
214
+ | --------- | ---------------------------------------------- | -------------------------------------------------------- |
207
215
  | **HSTU** | [Meta 2024](https://arxiv.org/abs/2402.17152) | Hierarchical Sequential Transduction Units, powering Meta's trillion-parameter RecSys |
208
- | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | Hierarchical LLM for recommendation, combining LLM semantic understanding |
216
+ | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | Hierarchical LLM for recommendation, combining LLM semantic understanding |
217
+
218
+ </details>
209
219
 
210
220
  ## 📊 Supported Datasets
211
221
 
@@ -219,7 +229,7 @@ The framework provides built-in support or preprocessing scripts for the followi
219
229
  * **BookCrossing**
220
230
  * **Ali-ccp**
221
231
  * **Yidian**
222
- * ...
232
+ * ...
223
233
 
224
234
  The expected data format is typically an interaction file containing:
225
235
  - User ID
@@ -231,7 +241,6 @@ For specific format requirements, please refer to the example code in the `tutor
231
241
 
232
242
  You can easily integrate your own datasets by ensuring they conform to the framework's data format requirements or by writing custom data loaders.
233
243
 
234
-
235
244
  ## 🧪 Examples
236
245
 
237
246
  All model usage examples can be found in `/examples`
@@ -260,7 +269,7 @@ ctr_trainer.export_onnx("deepfm.onnx")
260
269
  from torch_rechub.models.multi_task import SharedBottom, ESMM, MMOE, PLE, AITM
261
270
  from torch_rechub.trainers import MTLTrainer
262
271
 
263
- task_types = ["classification", "classification"]
272
+ task_types = ["classification", "classification"]
264
273
  model = MMOE(features, task_types, 8, expert_params={"dims": [32,16]}, tower_params_list=[{"dims": [32, 16]}, {"dims": [32, 16]}])
265
274
 
266
275
  mtl_trainer = MTLTrainer(model)
@@ -269,7 +278,7 @@ auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
269
278
  mtl_trainer.export_onnx("mmoe.onnx")
270
279
  ```
271
280
 
272
- ### Matching Model
281
+ ### Matching Models
273
282
 
274
283
  ```python
275
284
  from torch_rechub.models.matching import DSSM
@@ -282,19 +291,27 @@ train_dl, test_dl, item_dl = dg.generate_dataloader(test_user, all_item, batch_s
282
291
  model = DSSM(user_features, item_features, temperature=0.02,
283
292
  user_params={
284
293
  "dims": [256, 128, 64],
285
- "activation": 'prelu',
294
+ "activation": 'prelu',
286
295
  },
287
296
  item_params={
288
297
  "dims": [256, 128, 64],
289
- "activation": 'prelu',
298
+ "activation": 'prelu',
290
299
  })
291
300
 
292
301
  match_trainer = MatchTrainer(model)
293
302
  match_trainer.fit(train_dl)
294
303
  match_trainer.export_onnx("dssm.onnx")
295
- # For two-tower models, you can also export user and item towers separately:
296
- # match_trainer.export_onnx("dssm_user.onnx", tower="user")
297
- # match_trainer.export_onnx("dssm_item.onnx", tower="item")
304
+ # For two-tower models, you can export user and item towers separately:
305
+ # match_trainer.export_onnx("user_tower.onnx", mode="user")
306
+ # match_trainer.export_onnx("item_tower.onnx", mode="item")
307
+ ```
308
+
309
+ ### Model Visualization
310
+
311
+ ```python
312
+ # Visualize model architecture (Requires: pip install torch-rechub[visualization])
313
+ graph = ctr_trainer.visualization(depth=4) # Generate computation graph
314
+ ctr_trainer.visualization(save_path="model.pdf", dpi=300) # Save as high-resolution PDF
298
315
  ```
299
316
 
300
317
  ## 👨‍💻‍ Contributors
@@ -333,11 +350,9 @@ If you use this framework in your research or work, please consider citing:
333
350
 
334
351
  ## 📫 Contact
335
352
 
336
- * **Project Lead:** [1985312383](https://github.com/1985312383)
353
+ * **Project Lead:** [1985312383](https://github.com/1985312383)
337
354
  * [**GitHub Discussions**](https://github.com/datawhalechina/torch-rechub/discussions)
338
355
 
339
-
340
-
341
356
  ## ⭐️ Star History
342
357
 
343
358
  [![Star History Chart](https://api.star-history.com/svg?repos=datawhalechina/torch-rechub&type=Date)](https://www.star-history.com/#datawhalechina/torch-rechub&Date)
@@ -0,0 +1,9 @@
1
+ ---
2
+ title: Changelog
3
+ description: Torch-RecHub version update history
4
+ ---
5
+
6
+ # Changelog
7
+
8
+ This page is under construction.
9
+