torch-rechub 0.1.0__tar.gz → 0.2.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (282) hide show
  1. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/CHANGELOG.md +20 -0
  2. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/PKG-INFO +27 -18
  3. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/README.md +25 -16
  4. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/README_en.md +87 -73
  5. torch_rechub-0.1.0/docs/en/introduction.md → torch_rechub-0.2.0/docs/en/guide/intro.md +1 -1
  6. torch_rechub-0.2.0/docs/en/guide/quick_start.md +287 -0
  7. torch_rechub-0.2.0/docs/en/serving/vector_index.md +475 -0
  8. torch_rechub-0.2.0/docs/en/tools/tracking.md +276 -0
  9. torch_rechub-0.2.0/docs/public/img/project_framework.png +0 -0
  10. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/guide/intro.md +1 -1
  11. torch_rechub-0.2.0/docs/zh/guide/quick_start.md +287 -0
  12. torch_rechub-0.2.0/docs/zh/serving/vector_index.md +475 -0
  13. torch_rechub-0.2.0/docs/zh/tools/tracking.md +276 -0
  14. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/run_hllm_amazon_books.py +9 -1
  15. torch_rechub-0.2.0/examples/serving/benchmark_onnx_quantization.py +105 -0
  16. torch_rechub-0.2.0/examples/serving/quantize_onnx.py +42 -0
  17. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/pyproject.toml +2 -2
  18. torch_rechub-0.2.0/tests/test_onnx_quantization.py +82 -0
  19. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/layers.py +15 -9
  20. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/data.py +28 -12
  21. torch_rechub-0.1.0/docs/en/guide/quick_start.md +0 -0
  22. torch_rechub-0.1.0/docs/en/serving/vector_index.md +0 -0
  23. torch_rechub-0.1.0/docs/en/tools/tracking.md +0 -112
  24. torch_rechub-0.1.0/docs/en/tutorials/intro.md +0 -0
  25. torch_rechub-0.1.0/docs/zh/guide/quick_start.md +0 -71
  26. torch_rechub-0.1.0/docs/zh/serving/vector_index.md +0 -9
  27. torch_rechub-0.1.0/docs/zh/tools/tracking.md +0 -111
  28. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  29. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  30. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  31. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/ISSUE_TEMPLATE/help_wanted.md +0 -0
  32. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/dependabot.yml +0 -0
  33. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/pull_request_template.md +0 -0
  34. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/release.yml +0 -0
  35. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/workflows/ci.yml +0 -0
  36. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.github/workflows/deploy.yml +0 -0
  37. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.gitignore +0 -0
  38. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/.pre-commit-config.yaml +0 -0
  39. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/CODE_OF_CONDUCT.md +0 -0
  40. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/CONTRIBUTING.md +0 -0
  41. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/LICENSE +0 -0
  42. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/config/.flake8 +0 -0
  43. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/config/.pep8 +0 -0
  44. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/config/.pre-commit-config.yaml +0 -0
  45. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/config/CONFIG_GUIDE.md +0 -0
  46. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/config/fix_encoding.py +0 -0
  47. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/config/format_code.py +0 -0
  48. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/config/pytest.ini +0 -0
  49. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/.vitepress/config.mts +0 -0
  50. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/.vitepress/theme/custom.css +0 -0
  51. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/.vitepress/theme/index.ts +0 -0
  52. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/.vitepress/theme/style.css +0 -0
  53. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/api-basic.md +0 -0
  54. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/api-models.md +0 -0
  55. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/api-trainers.md +0 -0
  56. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/api-utils.md +0 -0
  57. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/hllm_reproduction.md +0 -0
  58. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/hstu_reproduction.md +0 -0
  59. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/match.md +0 -0
  60. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache/rank.md +0 -0
  61. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/cache//345/217/202/350/200/203/350/265/204/346/226/231.md" +0 -0
  62. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/api/api.md +0 -0
  63. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/blog/hllm_reproduction.md +0 -0
  64. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/blog/match.md +0 -0
  65. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/blog/rank.md +0 -0
  66. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/community/changelog.md +0 -0
  67. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/community/contributing.md +0 -0
  68. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/community/faq.md +0 -0
  69. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/contributing.md +0 -0
  70. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/core/data.md +0 -0
  71. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/core/evaluation.md +0 -0
  72. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/core/features.md +0 -0
  73. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/core/intro.md +0 -0
  74. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/guide/install.md +0 -0
  75. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/index.md +0 -0
  76. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/api-reference/basic.md +0 -0
  77. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/api-reference/models.md +0 -0
  78. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/api-reference/trainers.md +0 -0
  79. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/api-reference/utils.md +0 -0
  80. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/faq.md +0 -0
  81. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/getting-started.md +0 -0
  82. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/installation.md +0 -0
  83. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/tutorials/matching.md +0 -0
  84. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/tutorials/multi-task.md +0 -0
  85. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/manual/tutorials/ranking.md +0 -0
  86. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/models/generative.md +0 -0
  87. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/models/intro.md +0 -0
  88. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/models/matching.md +0 -0
  89. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/models/mtl.md +0 -0
  90. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/models/ranking.md +0 -0
  91. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/serving/demo.md +0 -0
  92. {torch_rechub-0.1.0/docs/en/guide → torch_rechub-0.2.0/docs/en/serving}/intro.md +0 -0
  93. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/serving/onnx.md +0 -0
  94. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/tools/callbacks.md +0 -0
  95. {torch_rechub-0.1.0/docs/en/serving → torch_rechub-0.2.0/docs/en/tools}/intro.md +0 -0
  96. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/tools/visualization.md +0 -0
  97. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/tutorials/ctr.md +0 -0
  98. {torch_rechub-0.1.0/docs/en/tools → torch_rechub-0.2.0/docs/en/tutorials}/intro.md +0 -0
  99. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/tutorials/pipeline.md +0 -0
  100. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/en/tutorials/retrieval.md +0 -0
  101. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/favicon.ico +0 -0
  102. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/img/banner.png +0 -0
  103. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/img/logo.png +0 -0
  104. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/img/logo_with_name.png +0 -0
  105. /torch_rechub-0.1.0/docs/public/img/project_framework.jpg → /torch_rechub-0.2.0/docs/public/img/project_framework_old.jpg +0 -0
  106. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/img/win_install_annoy_error.png +0 -0
  107. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1606.07792_l8JrVnuYXA.pdf +0 -0
  108. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1703.04247_sFSyE7q3U1.pdf +0 -0
  109. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1706.06978_0xZD_K10S2.pdf +0 -0
  110. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1708.05123_f3lKSqxIvw.pdf +0 -0
  111. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1711.00165_eosOSOmTfE.pdf +0 -0
  112. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1804.07931_ybf_jOAFRp.pdf +0 -0
  113. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1808.09781-3_bmRm284Rxd.pdf +0 -0
  114. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1808.09781v1.pdf +0 -0
  115. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/1905.06336_2oH3RMtROA.pdf +0 -0
  116. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/2006.11632_qiN67CrHNs.pdf +0 -0
  117. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/2020 (Tencent) (Recsys) [PLE] Progressive Layered .pdf +0 -0
  118. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/2102.09267_cdwBFKPCrj.pdf +0 -0
  119. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/2105.08489-2_XnVVGxN9GG.pdf +0 -0
  120. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/2203.06801v1-3_qUTY4TbvSL.pdf +0 -0
  121. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/2959100.2959190_jRzTU81Xmq.pdf +0 -0
  122. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/3219819.3219950_aTMFXHL3JB.pdf +0 -0
  123. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/3219819.3220007_zvaZg_CZ6z.pdf +0 -0
  124. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/4545-Article Text-7584-1-10-20190706.pdf +0 -0
  125. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566_1QYYhqJR8.pdf +0 -0
  126. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/Caruana1997_Article_MultitaskLearning_ySprcjzJ6v.pdf +0 -0
  127. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/DCN V2 Improved Deep & Cross Network and Practical.pdf +0 -0
  128. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/public/pdf/cikm2013_DSSM_fullversion_c9ZSdM19XJ.pdf +0 -0
  129. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/api/api.md +0 -0
  130. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/community/changelog.md +0 -0
  131. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/community/contributing.md +0 -0
  132. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/community/faq.md +0 -0
  133. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/core/data.md +0 -0
  134. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/core/evaluation.md +0 -0
  135. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/core/features.md +0 -0
  136. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/core/intro.md +0 -0
  137. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/guide/install.md +0 -0
  138. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/index.md +0 -0
  139. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/models/generative.md +0 -0
  140. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/models/intro.md +0 -0
  141. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/models/matching.md +0 -0
  142. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/models/mtl.md +0 -0
  143. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/models/ranking.md +0 -0
  144. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/serving/demo.md +0 -0
  145. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/serving/intro.md +0 -0
  146. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/serving/onnx.md +0 -0
  147. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/tools/callbacks.md +0 -0
  148. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/tools/intro.md +0 -0
  149. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/tools/visualization.md +0 -0
  150. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/tutorials/ctr.md +0 -0
  151. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/tutorials/intro.md +0 -0
  152. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/tutorials/pipeline.md +0 -0
  153. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/docs/zh/tutorials/retrieval.md +0 -0
  154. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/data/amazon-books/README.md +0 -0
  155. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/data/amazon-books/preprocess_amazon_books.py +0 -0
  156. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/data/amazon-books/preprocess_amazon_books_hllm.py +0 -0
  157. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/data/ml-1m/README +0 -0
  158. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/data/ml-1m/preprocess_hllm_data.py +0 -0
  159. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/data/ml-1m/preprocess_ml_hstu.py +0 -0
  160. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/run_hllm_movielens.py +0 -0
  161. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/generative/run_hstu_movielens.py +0 -0
  162. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/README.md +0 -0
  163. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/data/million-song-dataset/process_msd.py +0 -0
  164. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/data/ml-1m/preprocess_ml.py +0 -0
  165. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/data/session_based/preprocess_session_based.py +0 -0
  166. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/data/yidian_news/preprocess.py +0 -0
  167. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/movielens_utils.py +0 -0
  168. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_comirec.py +0 -0
  169. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_dssm.py +0 -0
  170. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_facebook_dssm.py +0 -0
  171. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_gru4rec.py +0 -0
  172. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_mind.py +0 -0
  173. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_sine.py +0 -0
  174. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_youtube_dnn.py +0 -0
  175. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_ml_youtube_sbc.py +0 -0
  176. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/matching/run_sbr.py +0 -0
  177. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/README.md +0 -0
  178. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/data/ali-ccp/preprocess_ali_ccp.py +0 -0
  179. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/data/amazon-beauty/preprocess_amazon_beauty.py +0 -0
  180. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/data/amazon-books/preprocess_amazon_books.py +0 -0
  181. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/data/amazon-electronics/preprocess_amazon_electronics.py +0 -0
  182. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/data/avazu/download_avazu.py +0 -0
  183. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/data/census-income/preprocess_census.py +0 -0
  184. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_ali_ccp_ctr_ranking.py +0 -0
  185. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_ali_ccp_multi_task.py +0 -0
  186. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_aliexpress.py +0 -0
  187. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_amazon_electronics.py +0 -0
  188. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_avazu.py +0 -0
  189. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_census.py +0 -0
  190. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_criteo.py +0 -0
  191. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_gradnorm.py +0 -0
  192. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/examples/ranking/run_metabalance.py +0 -0
  193. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/package-lock.json +0 -0
  194. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/package.json +0 -0
  195. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_e2e_matching.py +0 -0
  196. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_e2e_multitask.py +0 -0
  197. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_e2e_ranking.py +0 -0
  198. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_onnx_export.py +0 -0
  199. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_pa_array_to_tensor.py +0 -0
  200. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_parquet_dataset.py +0 -0
  201. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_regularization.py +0 -0
  202. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tests/test_serving.py +0 -0
  203. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/__init__.py +0 -0
  204. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/__init__.py +0 -0
  205. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/activation.py +0 -0
  206. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/callback.py +0 -0
  207. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/features.py +0 -0
  208. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/initializers.py +0 -0
  209. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/loss_func.py +0 -0
  210. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/metaoptimizer.py +0 -0
  211. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/metric.py +0 -0
  212. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/basic/tracking.py +0 -0
  213. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/data/__init__.py +0 -0
  214. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/data/convert.py +0 -0
  215. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/data/dataset.py +0 -0
  216. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/__init__.py +0 -0
  217. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/generative/__init__.py +0 -0
  218. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/generative/hllm.py +0 -0
  219. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/generative/hstu.py +0 -0
  220. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/__init__.py +0 -0
  221. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/comirec.py +0 -0
  222. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/dssm.py +0 -0
  223. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/dssm_facebook.py +0 -0
  224. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/dssm_senet.py +0 -0
  225. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/gru4rec.py +0 -0
  226. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/mind.py +0 -0
  227. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/narm.py +0 -0
  228. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/sasrec.py +0 -0
  229. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/sine.py +0 -0
  230. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/stamp.py +0 -0
  231. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/youtube_dnn.py +0 -0
  232. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/matching/youtube_sbc.py +0 -0
  233. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/multi_task/__init__.py +0 -0
  234. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/multi_task/aitm.py +0 -0
  235. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/multi_task/esmm.py +0 -0
  236. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/multi_task/mmoe.py +0 -0
  237. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/multi_task/ple.py +0 -0
  238. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/multi_task/shared_bottom.py +0 -0
  239. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/__init__.py +0 -0
  240. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/afm.py +0 -0
  241. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/autoint.py +0 -0
  242. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/bst.py +0 -0
  243. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/dcn.py +0 -0
  244. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/dcn_v2.py +0 -0
  245. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/deepffm.py +0 -0
  246. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/deepfm.py +0 -0
  247. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/dien.py +0 -0
  248. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/din.py +0 -0
  249. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/edcn.py +0 -0
  250. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/fibinet.py +0 -0
  251. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/models/ranking/widedeep.py +0 -0
  252. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/serving/__init__.py +0 -0
  253. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/serving/annoy.py +0 -0
  254. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/serving/base.py +0 -0
  255. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/serving/faiss.py +0 -0
  256. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/serving/milvus.py +0 -0
  257. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/trainers/__init__.py +0 -0
  258. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/trainers/ctr_trainer.py +0 -0
  259. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/trainers/match_trainer.py +0 -0
  260. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/trainers/mtl_trainer.py +0 -0
  261. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/trainers/seq_trainer.py +0 -0
  262. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/types.py +0 -0
  263. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/__init__.py +0 -0
  264. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/hstu_utils.py +0 -0
  265. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/match.py +0 -0
  266. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/model_utils.py +0 -0
  267. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/mtl.py +0 -0
  268. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/onnx_export.py +0 -0
  269. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/quantization.py +0 -0
  270. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/torch_rechub/utils/visualization.py +0 -0
  271. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/00_QuickStart_CTR_DeepFM.ipynb +0 -0
  272. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/01_Ranking_DIN.ipynb +0 -0
  273. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/02_Matching_DSSM.ipynb +0 -0
  274. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/03_MultiTask_MMOE.ipynb +0 -0
  275. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/04_Experiment_Tracking_Light.ipynb +0 -0
  276. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/05_Model_Export_and_Serving.ipynb +0 -0
  277. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/DIN.ipynb +0 -0
  278. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/DeepFM.ipynb +0 -0
  279. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/Matching.ipynb +0 -0
  280. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/Milvus.ipynb +0 -0
  281. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/tutorials/Multi_Task.ipynb +0 -0
  282. {torch_rechub-0.1.0 → torch_rechub-0.2.0}/uv.lock +0 -0
@@ -7,6 +7,26 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
7
7
 
8
8
  ---
9
9
 
10
+ ## [0.2.0] - 2026-01-11
11
+
12
+ <!-- Release notes generated using configuration in .github/release.yml at main -->
13
+
14
+ ## What's Changed
15
+ ### 🐛 Bug 修复 / Bug Fixes
16
+ * Update HSTULayer with L2 norm and SiLU attention by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/157
17
+ * Add ONNX quantization scripts and tests, improve dataloader split by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/161
18
+ ### 📝 文档更新 / Documentation
19
+ * Update docs and README with new architecture image by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/154
20
+ * Add comprehensive vector index docs (EN & ZH) by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/162
21
+ * Update quick start and tracking docs in EN and ZH by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/163
22
+
23
+
24
+ **Full Changelog**: https://github.com/datawhalechina/torch-rechub/compare/v0.1.0...v0.2.0
25
+
26
+ ---
27
+
28
+
29
+
10
30
  ## [0.1.0] - 2025-12-17
11
31
 
12
32
  <!-- Release notes generated using configuration in .github/release.yml at main -->
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: torch-rechub
3
- Version: 0.1.0
3
+ Version: 0.2.0
4
4
  Summary: A Pytorch Toolbox for Recommendation Models, Easy-to-use and Easy-to-extend.
5
5
  Project-URL: Homepage, https://github.com/datawhalechina/torch-rechub
6
6
  Project-URL: Documentation, https://www.torch-rechub.com
@@ -31,7 +31,7 @@ Requires-Dist: transformers>=4.46.3
31
31
  Provides-Extra: annoy
32
32
  Requires-Dist: annoy>=1.17.2; extra == 'annoy'
33
33
  Provides-Extra: bigdata
34
- Requires-Dist: pyarrow~=21.0; extra == 'bigdata'
34
+ Requires-Dist: pyarrow<23,>=21; extra == 'bigdata'
35
35
  Provides-Extra: dev
36
36
  Requires-Dist: bandit>=1.7.0; extra == 'dev'
37
37
  Requires-Dist: flake8>=3.8.0; extra == 'dev'
@@ -60,9 +60,11 @@ Requires-Dist: graphviz>=0.20; extra == 'visualization'
60
60
  Requires-Dist: torchview>=0.2.6; extra == 'visualization'
61
61
  Description-Content-Type: text/markdown
62
62
 
63
- # 🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架
63
+ <div align="center">
64
64
 
65
- > 🚀 **30+ 主流推荐模型** | 🎯 **开箱即用** | 📦 **一键部署 ONNX** | 🤖 **支持生成式推荐 (HSTU/HLLM)**
65
+ ![Torch-RecHub 横幅](docs/public/img/banner.png)
66
+
67
+ # Torch-RecHub: 轻量、高效、易用的 PyTorch 推荐系统框架
66
68
 
67
69
  [![许可证](https://img.shields.io/badge/license-MIT-blue?style=for-the-badge)](LICENSE)
68
70
  ![GitHub Repo stars](https://img.shields.io/github/stars/datawhalechina/torch-rechub?style=for-the-badge)
@@ -78,21 +80,13 @@ Description-Content-Type: text/markdown
78
80
 
79
81
  [English](README_en.md) | 简体中文
80
82
 
81
- **在线文档:** https://datawhalechina.github.io/torch-rechub/ (英文)| https://datawhalechina.github.io/torch-rechub/zh/ (简体中文)
83
+ ![架构图](docs/public/img/project_framework.png)
82
84
 
83
- **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
85
+ </div>
84
86
 
85
- ![Torch-RecHub 横幅](docs/public/img/banner.png)
87
+ **在线文档:** https://datawhalechina.github.io/torch-rechub/zh/
86
88
 
87
- ## 🎯 为什么选择 Torch-RecHub?
88
-
89
- | 特性 | Torch-RecHub | 其他框架 |
90
- | ------------- | --------------------------- | ---------- |
91
- | 代码行数 | **10行** 完成训练+评估+部署 | 100+ 行 |
92
- | 模型覆盖 | **30+** 主流模型 | 有限 |
93
- | 生成式推荐 | ✅ HSTU/HLLM (Meta 2024) | ❌ |
94
- | ONNX 一键导出 | ✅ 内置支持 | 需手动适配 |
95
- | 学习曲线 | 极低 | 陡峭 |
89
+ **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
96
90
 
97
91
  ## ✨ 特性
98
92
 
@@ -109,7 +103,6 @@ Description-Content-Type: text/markdown
109
103
  ## 📖 目录
110
104
 
111
105
  - [🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架](#-torch-rechub---轻量高效易用的-pytorch-推荐系统框架)
112
- - [🎯 为什么选择 Torch-RecHub?](#-为什么选择-torch-rechub)
113
106
  - [✨ 特性](#-特性)
114
107
  - [📖 目录](#-目录)
115
108
  - [🔧 安装](#-安装)
@@ -221,6 +214,8 @@ torch-rechub/ # 根目录
221
214
 
222
215
  本框架目前支持 **30+** 主流推荐模型:
223
216
 
217
+ <details>
218
+
224
219
  ### 排序模型 (Ranking Models) - 13个
225
220
 
226
221
  | 模型 | 论文 | 简介 |
@@ -236,7 +231,11 @@ torch-rechub/ # 根目录
236
231
  | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | 自动特征交互学习 |
237
232
  | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | 特征重要性 + 双线性交互 |
238
233
  | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | 场感知因子分解机 |
239
- | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络 |
234
+ | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络
235
+ |
236
+ </details>
237
+
238
+ <details>
240
239
 
241
240
  ### 召回模型 (Matching Models) - 12个
242
241
 
@@ -253,6 +252,10 @@ torch-rechub/ # 根目录
253
252
  | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | 短期注意力记忆优先 |
254
253
  | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | 可控多兴趣推荐 |
255
254
 
255
+ </details>
256
+
257
+ <details>
258
+
256
259
  ### 多任务模型 (Multi-Task Models) - 5个
257
260
 
258
261
  | 模型 | 论文 | 简介 |
@@ -263,6 +266,10 @@ torch-rechub/ # 根目录
263
266
  | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | 自适应信息迁移 |
264
267
  | **SharedBottom** | - | 经典多任务共享底层 |
265
268
 
269
+ </details>
270
+
271
+ <details>
272
+
266
273
  ### 生成式推荐 (Generative Recommendation) - 2个
267
274
 
268
275
  | 模型 | 论文 | 简介 |
@@ -270,6 +277,8 @@ torch-rechub/ # 根目录
270
277
  | **HSTU** | [Meta 2024](https://arxiv.org/abs/2402.17152) | 层级序列转换单元,支撑 Meta 万亿参数推荐系统 |
271
278
  | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | 层级大语言模型推荐,融合 LLM 语义理解能力 |
272
279
 
280
+ </details>
281
+
273
282
  ## 📊 支持的数据集
274
283
 
275
284
  框架内置了对以下常见数据集格式的支持或提供了处理脚本:
@@ -1,6 +1,8 @@
1
- # 🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架
1
+ <div align="center">
2
2
 
3
- > 🚀 **30+ 主流推荐模型** | 🎯 **开箱即用** | 📦 **一键部署 ONNX** | 🤖 **支持生成式推荐 (HSTU/HLLM)**
3
+ ![Torch-RecHub 横幅](docs/public/img/banner.png)
4
+
5
+ # Torch-RecHub: 轻量、高效、易用的 PyTorch 推荐系统框架
4
6
 
5
7
  [![许可证](https://img.shields.io/badge/license-MIT-blue?style=for-the-badge)](LICENSE)
6
8
  ![GitHub Repo stars](https://img.shields.io/github/stars/datawhalechina/torch-rechub?style=for-the-badge)
@@ -16,21 +18,13 @@
16
18
 
17
19
  [English](README_en.md) | 简体中文
18
20
 
19
- **在线文档:** https://datawhalechina.github.io/torch-rechub/ (英文)| https://datawhalechina.github.io/torch-rechub/zh/ (简体中文)
21
+ ![架构图](docs/public/img/project_framework.png)
20
22
 
21
- **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
23
+ </div>
22
24
 
23
- ![Torch-RecHub 横幅](docs/public/img/banner.png)
25
+ **在线文档:** https://datawhalechina.github.io/torch-rechub/zh/
24
26
 
25
- ## 🎯 为什么选择 Torch-RecHub?
26
-
27
- | 特性 | Torch-RecHub | 其他框架 |
28
- | ------------- | --------------------------- | ---------- |
29
- | 代码行数 | **10行** 完成训练+评估+部署 | 100+ 行 |
30
- | 模型覆盖 | **30+** 主流模型 | 有限 |
31
- | 生成式推荐 | ✅ HSTU/HLLM (Meta 2024) | ❌ |
32
- | ONNX 一键导出 | ✅ 内置支持 | 需手动适配 |
33
- | 学习曲线 | 极低 | 陡峭 |
27
+ **Torch-RecHub** —— **10 行代码实现工业级推荐系统**。30+ 主流模型开箱即用,支持一键 ONNX 部署,让你专注于业务而非工程。
34
28
 
35
29
  ## ✨ 特性
36
30
 
@@ -47,7 +41,6 @@
47
41
  ## 📖 目录
48
42
 
49
43
  - [🔥 Torch-RecHub - 轻量、高效、易用的 PyTorch 推荐系统框架](#-torch-rechub---轻量高效易用的-pytorch-推荐系统框架)
50
- - [🎯 为什么选择 Torch-RecHub?](#-为什么选择-torch-rechub)
51
44
  - [✨ 特性](#-特性)
52
45
  - [📖 目录](#-目录)
53
46
  - [🔧 安装](#-安装)
@@ -159,6 +152,8 @@ torch-rechub/ # 根目录
159
152
 
160
153
  本框架目前支持 **30+** 主流推荐模型:
161
154
 
155
+ <details>
156
+
162
157
  ### 排序模型 (Ranking Models) - 13个
163
158
 
164
159
  | 模型 | 论文 | 简介 |
@@ -174,7 +169,11 @@ torch-rechub/ # 根目录
174
169
  | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | 自动特征交互学习 |
175
170
  | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | 特征重要性 + 双线性交互 |
176
171
  | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | 场感知因子分解机 |
177
- | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络 |
172
+ | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | 增强型交叉网络
173
+ |
174
+ </details>
175
+
176
+ <details>
178
177
 
179
178
  ### 召回模型 (Matching Models) - 12个
180
179
 
@@ -191,6 +190,10 @@ torch-rechub/ # 根目录
191
190
  | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | 短期注意力记忆优先 |
192
191
  | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | 可控多兴趣推荐 |
193
192
 
193
+ </details>
194
+
195
+ <details>
196
+
194
197
  ### 多任务模型 (Multi-Task Models) - 5个
195
198
 
196
199
  | 模型 | 论文 | 简介 |
@@ -201,6 +204,10 @@ torch-rechub/ # 根目录
201
204
  | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | 自适应信息迁移 |
202
205
  | **SharedBottom** | - | 经典多任务共享底层 |
203
206
 
207
+ </details>
208
+
209
+ <details>
210
+
204
211
  ### 生成式推荐 (Generative Recommendation) - 2个
205
212
 
206
213
  | 模型 | 论文 | 简介 |
@@ -208,6 +215,8 @@ torch-rechub/ # 根目录
208
215
  | **HSTU** | [Meta 2024](https://arxiv.org/abs/2402.17152) | 层级序列转换单元,支撑 Meta 万亿参数推荐系统 |
209
216
  | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | 层级大语言模型推荐,融合 LLM 语义理解能力 |
210
217
 
218
+ </details>
219
+
211
220
  ## 📊 支持的数据集
212
221
 
213
222
  框架内置了对以下常见数据集格式的支持或提供了处理脚本:
@@ -1,6 +1,8 @@
1
- # 🔥 Torch-RecHub - Lightweight, Efficient & Easy-to-use PyTorch Recommender Framework
1
+ <div align="center">
2
2
 
3
- > 🚀 **30+ Mainstream Models** | 🎯 **Out-of-the-box** | 📦 **One-click ONNX Export** | 🤖 **Generative RecSys (HSTU/HLLM)**
3
+ ![Torch-RecHub Banner](docs/public/img/banner.png)
4
+
5
+ # Torch-RecHub: A Lightweight, Efficient, and Easy-to-use PyTorch Recommender Framework
4
6
 
5
7
  [![License](https://img.shields.io/badge/license-MIT-blue?style=for-the-badge)](LICENSE)
6
8
  ![GitHub Repo stars](https://img.shields.io/github/stars/datawhalechina/torch-rechub?style=for-the-badge)
@@ -16,39 +18,29 @@
16
18
 
17
19
  English | [简体中文](README.md)
18
20
 
19
- **Online Documentation:** https://datawhalechina.github.io/torch-rechub/ (English) | https://datawhalechina.github.io/torch-rechub/zh/ (简体中文)
21
+ ![Project Framework](docs/public/img/project_framework.png)
20
22
 
21
- **Torch-RecHub** — **Build production-grade recommender systems in 10 lines of code**. 30+ mainstream models out-of-the-box, one-click ONNX deployment, letting you focus on business instead of engineering.
23
+ </div>
22
24
 
23
- ![Torch-RecHub Banner](docs/public/img/banner.png)
25
+ **Online Documentation:** https://datawhalechina.github.io/torch-rechub/
24
26
 
25
- ## 🎯 Why Torch-RecHub?
26
-
27
- | Feature | Torch-RecHub | Other Frameworks |
28
- |---------|-------------|------------------|
29
- | Lines of Code | **10 lines** for train+eval+deploy | 100+ lines |
30
- | Model Coverage | **30+** mainstream models | Limited |
31
- | Generative RecSys | ✅ HSTU/HLLM (Meta 2024) | ❌ |
32
- | ONNX Export | ✅ Built-in support | Manual adaptation |
33
- | Learning Curve | Very Low | Steep |
27
+ **Torch-RecHub** —— **Build production-grade recommender systems in 10 lines of code**. 30+ mainstream models out-of-the-box, one-click ONNX deployment, letting you focus on business instead of engineering.
34
28
 
35
29
  ## ✨ Features
36
30
 
37
31
  * **Modular Design:** Easy to add new models, datasets, and evaluation metrics.
38
- * **PyTorch-based:** Leverages PyTorch's dynamic graph and GPU acceleration capabilities.
39
- * **Rich Model Library:** Covers **30+** classic and cutting-edge recommendation algorithms (matching, ranking, multi-task, generative).
32
+ * **Based on PyTorch:** Leverages PyTorch's dynamic graph and GPU acceleration capabilities.
33
+ * **Rich Model Library:** Covers **30+** classic and cutting-edge recommendation algorithms (Matching, Ranking, Multi-task, Generative Recommendation, etc.).
40
34
  * **Standardized Pipeline:** Provides unified data loading, training, and evaluation workflows.
41
35
  * **Easy Configuration:** Adjust experiment settings via config files or command-line arguments.
42
36
  * **Reproducibility:** Designed to ensure reproducible experimental results.
43
- * **ONNX Export:** Export trained models to ONNX format for production deployment.
44
- * **Cross-engine data processing:** PySpark-based data processing and conversion supported for large-scale pipelines.
45
- * **Experiment visualization & tracking:** Unified integration of WandB, SwanLab, and TensorBoardX.
46
- * **Additional Features:** Negative sampling, multi-task learning, etc.
37
+ * **ONNX Export:** Export trained models to ONNX format for seamless production deployment.
38
+ * **Cross-engine Data Processing:** Support for PySpark-based data processing and transformation, facilitating deployment in big data pipelines.
39
+ * **Experiment Visualization & Tracking:** Built-in unified integration for WandB, SwanLab, and TensorBoardX.
47
40
 
48
41
  ## 📖 Table of Contents
49
42
 
50
- - [🔥 Torch-RecHub - Lightweight, Efficient \& Easy-to-use PyTorch Recommender Framework](#-torch-rechub---lightweight-efficient--easy-to-use-pytorch-recommender-framework)
51
- - [🎯 Why Torch-RecHub?](#-why-torch-rechub)
43
+ - [🔥 Torch-RecHub - A Lightweight, Efficient, and Easy-to-use PyTorch Recommender Framework](#-torch-rechub---a-lightweight-efficient-and-easy-to-use-pytorch-recommender-framework)
52
44
  - [✨ Features](#-features)
53
45
  - [📖 Table of Contents](#-table-of-contents)
54
46
  - [🔧 Installation](#-installation)
@@ -61,7 +53,8 @@ English | [简体中文](README.md)
61
53
  - [🧪 Examples](#-examples)
62
54
  - [Ranking (CTR Prediction)](#ranking-ctr-prediction)
63
55
  - [Multi-Task Ranking](#multi-task-ranking)
64
- - [Matching Model](#matching-model)
56
+ - [Matching Models](#matching-models)
57
+ - [Model Visualization](#model-visualization)
65
58
  - [👨‍💻‍ Contributors](#-contributors)
66
59
  - [🤝 Contributing](#-contributing)
67
60
  - [📜 License](#-license)
@@ -82,7 +75,7 @@ English | [简体中文](README.md)
82
75
 
83
76
  ### Installation Steps
84
77
 
85
- **Stable Version (Recommended for Users):**
78
+ **Stable Version (Recommended):**
86
79
  ```bash
87
80
  pip install torch-rechub
88
81
  ```
@@ -147,7 +140,7 @@ torch-rechub/ # Root directory
147
140
  │ ├── matching/ # Matching task examples
148
141
  │ ├── ranking/ # Ranking task examples
149
142
  │ └── generative/ # Generative recommendation examples (HSTU, HLLM, etc.)
150
- ├── docs/ # Documentation (VitePress: multi-language, English & Chinese)
143
+ ├── docs/ # Documentation (VitePress, multi-language)
151
144
  ├── tutorials/ # Jupyter tutorials
152
145
  ├── tests/ # Unit tests
153
146
  ├── config/ # Configuration files
@@ -158,54 +151,70 @@ torch-rechub/ # Root directory
158
151
 
159
152
  The framework currently supports **30+** mainstream recommendation models:
160
153
 
154
+ <details>
155
+
161
156
  ### Ranking Models - 13
162
157
 
163
- | Model | Paper | Description |
164
- |-------|-------|-------------|
165
- | **DeepFM** | [IJCAI 2017](https://arxiv.org/abs/1703.04247) | FM + Deep joint training |
166
- | **Wide&Deep** | [DLRS 2016](https://arxiv.org/abs/1606.07792) | Memorization + Generalization |
167
- | **DCN** | [KDD 2017](https://arxiv.org/abs/1708.05123) | Explicit feature crossing |
168
- | **DCN-v2** | [WWW 2021](https://arxiv.org/abs/2008.13535) | Enhanced cross network |
169
- | **DIN** | [KDD 2018](https://arxiv.org/abs/1706.06978) | Attention for user interest |
170
- | **DIEN** | [AAAI 2019](https://arxiv.org/abs/1809.03672) | Interest evolution modeling |
171
- | **BST** | [DLP-KDD 2019](https://arxiv.org/abs/1905.06874) | Transformer for sequences |
172
- | **AFM** | [IJCAI 2017](https://arxiv.org/abs/1708.04617) | Attentional FM |
173
- | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | Auto feature interaction |
174
- | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | Feature importance + Bilinear |
175
- | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | Field-aware FM |
176
- | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | Enhanced DCN |
158
+ | Model | Paper | Description |
159
+ | -------------- | ------------------------------------------------- | ------------------------------- |
160
+ | **DeepFM** | [IJCAI 2017](https://arxiv.org/abs/1703.04247) | FM + Deep joint training |
161
+ | **Wide&Deep** | [DLRS 2016](https://arxiv.org/abs/1606.07792) | Memorization + Generalization |
162
+ | **DCN** | [KDD 2017](https://arxiv.org/abs/1708.05123) | Explicit feature crossing |
163
+ | **DCN-v2** | [WWW 2021](https://arxiv.org/abs/2008.13535) | Enhanced cross network |
164
+ | **DIN** | [KDD 2018](https://arxiv.org/abs/1706.06978) | Attention for user interest |
165
+ | **DIEN** | [AAAI 2019](https://arxiv.org/abs/1809.03672) | Interest evolution modeling |
166
+ | **BST** | [DLP-KDD 2019](https://arxiv.org/abs/1905.06874) | Transformer for sequences |
167
+ | **AFM** | [IJCAI 2017](https://arxiv.org/abs/1708.04617) | Attentional FM |
168
+ | **AutoInt** | [CIKM 2019](https://arxiv.org/abs/1810.11921) | Auto feature interaction learning |
169
+ | **FiBiNET** | [RecSys 2019](https://arxiv.org/abs/1905.09433) | Feature importance + Bilinear |
170
+ | **DeepFFM** | [RecSys 2019](https://arxiv.org/abs/1611.00144) | Field-aware FM |
171
+ | **EDCN** | [KDD 2021](https://arxiv.org/abs/2106.03032) | Enhanced DCN |
172
+
173
+ </details>
174
+
175
+ <details>
177
176
 
178
177
  ### Matching Models - 12
179
178
 
180
- | Model | Paper | Description |
181
- |-------|-------|-------------|
182
- | **DSSM** | [CIKM 2013](https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf) | Classic two-tower model |
183
- | **YoutubeDNN** | [RecSys 2016](https://dl.acm.org/doi/10.1145/2959100.2959190) | YouTube deep retrieval |
184
- | **YoutubeSBC** | [RecSys 2019](https://dl.acm.org/doi/10.1145/3298689.3346997) | Sampling bias correction |
185
- | **MIND** | [CIKM 2019](https://arxiv.org/abs/1904.08030) | Multi-interest dynamic routing |
186
- | **SINE** | [WSDM 2021](https://arxiv.org/abs/2103.06920) | Sparse interest network |
187
- | **GRU4Rec** | [ICLR 2016](https://arxiv.org/abs/1511.06939) | GRU for sequences |
188
- | **SASRec** | [ICDM 2018](https://arxiv.org/abs/1808.09781) | Self-attentive sequential |
189
- | **NARM** | [CIKM 2017](https://arxiv.org/abs/1711.04725) | Neural attentive session |
190
- | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | Short-term attention memory |
191
- | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | Controllable multi-interest |
179
+ | Model | Paper | Description |
180
+ | --------------- | ------------------------------------------------------------------------------- | ------------------------- |
181
+ | **DSSM** | [CIKM 2013](https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf) | Classic two-tower model |
182
+ | **YoutubeDNN** | [RecSys 2016](https://dl.acm.org/doi/10.1145/2959100.2959190) | YouTube deep retrieval |
183
+ | **YoutubeSBC** | [RecSys 2019](https://dl.acm.org/doi/10.1145/3298689.3346997) | Sampling bias correction |
184
+ | **MIND** | [CIKM 2019](https://arxiv.org/abs/1904.08030) | Multi-interest dynamic routing |
185
+ | **SINE** | [WSDM 2021](https://arxiv.org/abs/2103.06920) | Sparse interest network |
186
+ | **GRU4Rec** | [ICLR 2016](https://arxiv.org/abs/1511.06939) | GRU for sequences |
187
+ | **SASRec** | [ICDM 2018](https://arxiv.org/abs/1808.09781) | Self-attentive sequential |
188
+ | **NARM** | [CIKM 2017](https://arxiv.org/abs/1711.04725) | Neural attentive session |
189
+ | **STAMP** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3219895) | Short-term attention memory priority |
190
+ | **ComiRec** | [KDD 2020](https://arxiv.org/abs/2005.09347) | Controllable multi-interest |
191
+
192
+ </details>
193
+
194
+ <details>
192
195
 
193
196
  ### Multi-Task Models - 5
194
197
 
195
- | Model | Paper | Description |
196
- |-------|-------|-------------|
197
- | **ESMM** | [SIGIR 2018](https://arxiv.org/abs/1804.07931) | Entire space multi-task |
198
- | **MMoE** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3220007) | Multi-gate mixture-of-experts |
199
- | **PLE** | [RecSys 2020](https://dl.acm.org/doi/10.1145/3383313.3412236) | Progressive layered extraction |
200
- | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | Adaptive information transfer |
201
- | **SharedBottom** | - | Classic shared bottom |
198
+ | Model | Paper | Description |
199
+ | ----------------- | -------------------------------------------------------------- | ------------------------- |
200
+ | **ESMM** | [SIGIR 2018](https://arxiv.org/abs/1804.07931) | Entire space multi-task |
201
+ | **MMoE** | [KDD 2018](https://dl.acm.org/doi/10.1145/3219819.3220007) | Multi-gate Mixture-of-Experts |
202
+ | **PLE** | [RecSys 2020](https://dl.acm.org/doi/10.1145/3383313.3412236) | Progressive Layered Extraction |
203
+ | **AITM** | [KDD 2021](https://arxiv.org/abs/2105.08489) | Adaptive Information Transfer |
204
+ | **SharedBottom** | - | Classic shared bottom |
205
+
206
+ </details>
207
+
208
+ <details>
202
209
 
203
210
  ### Generative Recommendation - 2
204
211
 
205
- | Model | Paper | Description |
206
- |-------|-------|-------------|
212
+ | Model | Paper | Description |
213
+ | --------- | ---------------------------------------------- | -------------------------------------------------------- |
207
214
  | **HSTU** | [Meta 2024](https://arxiv.org/abs/2402.17152) | Hierarchical Sequential Transduction Units, powering Meta's trillion-parameter RecSys |
208
- | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | Hierarchical LLM for recommendation, combining LLM semantic understanding |
215
+ | **HLLM** | [2024](https://arxiv.org/abs/2409.12740) | Hierarchical LLM for recommendation, combining LLM semantic understanding |
216
+
217
+ </details>
209
218
 
210
219
  ## 📊 Supported Datasets
211
220
 
@@ -219,7 +228,7 @@ The framework provides built-in support or preprocessing scripts for the followi
219
228
  * **BookCrossing**
220
229
  * **Ali-ccp**
221
230
  * **Yidian**
222
- * ...
231
+ * ...
223
232
 
224
233
  The expected data format is typically an interaction file containing:
225
234
  - User ID
@@ -231,7 +240,6 @@ For specific format requirements, please refer to the example code in the `tutor
231
240
 
232
241
  You can easily integrate your own datasets by ensuring they conform to the framework's data format requirements or by writing custom data loaders.
233
242
 
234
-
235
243
  ## 🧪 Examples
236
244
 
237
245
  All model usage examples can be found in `/examples`
@@ -260,7 +268,7 @@ ctr_trainer.export_onnx("deepfm.onnx")
260
268
  from torch_rechub.models.multi_task import SharedBottom, ESMM, MMOE, PLE, AITM
261
269
  from torch_rechub.trainers import MTLTrainer
262
270
 
263
- task_types = ["classification", "classification"]
271
+ task_types = ["classification", "classification"]
264
272
  model = MMOE(features, task_types, 8, expert_params={"dims": [32,16]}, tower_params_list=[{"dims": [32, 16]}, {"dims": [32, 16]}])
265
273
 
266
274
  mtl_trainer = MTLTrainer(model)
@@ -269,7 +277,7 @@ auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)
269
277
  mtl_trainer.export_onnx("mmoe.onnx")
270
278
  ```
271
279
 
272
- ### Matching Model
280
+ ### Matching Models
273
281
 
274
282
  ```python
275
283
  from torch_rechub.models.matching import DSSM
@@ -282,19 +290,27 @@ train_dl, test_dl, item_dl = dg.generate_dataloader(test_user, all_item, batch_s
282
290
  model = DSSM(user_features, item_features, temperature=0.02,
283
291
  user_params={
284
292
  "dims": [256, 128, 64],
285
- "activation": 'prelu',
293
+ "activation": 'prelu',
286
294
  },
287
295
  item_params={
288
296
  "dims": [256, 128, 64],
289
- "activation": 'prelu',
297
+ "activation": 'prelu',
290
298
  })
291
299
 
292
300
  match_trainer = MatchTrainer(model)
293
301
  match_trainer.fit(train_dl)
294
302
  match_trainer.export_onnx("dssm.onnx")
295
- # For two-tower models, you can also export user and item towers separately:
296
- # match_trainer.export_onnx("dssm_user.onnx", tower="user")
297
- # match_trainer.export_onnx("dssm_item.onnx", tower="item")
303
+ # For two-tower models, you can export user and item towers separately:
304
+ # match_trainer.export_onnx("user_tower.onnx", mode="user")
305
+ # match_trainer.export_onnx("item_tower.onnx", mode="item")
306
+ ```
307
+
308
+ ### Model Visualization
309
+
310
+ ```python
311
+ # Visualize model architecture (Requires: pip install torch-rechub[visualization])
312
+ graph = ctr_trainer.visualization(depth=4) # Generate computation graph
313
+ ctr_trainer.visualization(save_path="model.pdf", dpi=300) # Save as high-resolution PDF
298
314
  ```
299
315
 
300
316
  ## 👨‍💻‍ Contributors
@@ -333,11 +349,9 @@ If you use this framework in your research or work, please consider citing:
333
349
 
334
350
  ## 📫 Contact
335
351
 
336
- * **Project Lead:** [1985312383](https://github.com/1985312383)
352
+ * **Project Lead:** [1985312383](https://github.com/1985312383)
337
353
  * [**GitHub Discussions**](https://github.com/datawhalechina/torch-rechub/discussions)
338
354
 
339
-
340
-
341
355
  ## ⭐️ Star History
342
356
 
343
357
  [![Star History Chart](https://api.star-history.com/svg?repos=datawhalechina/torch-rechub&type=Date)](https://www.star-history.com/#datawhalechina/torch-rechub&Date)
@@ -26,7 +26,7 @@ description: Overview of Torch-RecHub project architecture, features, and design
26
26
 
27
27
  ## Overall Architecture
28
28
 
29
- ![Architecture Design Diagram](/img/project_framework.jpg "Architecture Design Diagram")
29
+ ![Architecture Design Diagram](/img/project_framework.png "Architecture Design Diagram")
30
30
 
31
31
  ## Data Layer Design
32
32