torch-rechub 0.0.5__tar.gz → 0.0.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (263) hide show
  1. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/workflows/ci.yml +1 -1
  2. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/workflows/deploy.yml +8 -0
  3. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/CHANGELOG.md +20 -0
  4. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/CONTRIBUTING.md +1 -1
  5. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/PKG-INFO +13 -5
  6. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/README.md +3 -2
  7. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/README_en.md +3 -1
  8. torch_rechub-0.0.6/docs/.vitepress/config.mts +214 -0
  9. torch_rechub-0.0.6/docs/en/community/faq.md +0 -0
  10. torch_rechub-0.0.6/docs/en/core/data.md +0 -0
  11. torch_rechub-0.0.6/docs/en/core/evaluation.md +0 -0
  12. torch_rechub-0.0.6/docs/en/core/features.md +0 -0
  13. torch_rechub-0.0.6/docs/en/core/intro.md +0 -0
  14. torch_rechub-0.0.6/docs/en/guide/install.md +0 -0
  15. torch_rechub-0.0.6/docs/en/guide/intro.md +0 -0
  16. torch_rechub-0.0.6/docs/en/guide/quick_start.md +0 -0
  17. torch_rechub-0.0.6/docs/en/models/intro.md +0 -0
  18. torch_rechub-0.0.6/docs/en/models/matching.md +0 -0
  19. torch_rechub-0.0.6/docs/en/models/mtl.md +0 -0
  20. torch_rechub-0.0.6/docs/en/models/ranking.md +0 -0
  21. torch_rechub-0.0.6/docs/en/serving/demo.md +0 -0
  22. torch_rechub-0.0.6/docs/en/serving/intro.md +0 -0
  23. torch_rechub-0.0.6/docs/en/serving/onnx.md +0 -0
  24. torch_rechub-0.0.6/docs/en/serving/vector_index.md +0 -0
  25. torch_rechub-0.0.6/docs/en/tools/callbacks.md +0 -0
  26. torch_rechub-0.0.6/docs/en/tools/intro.md +0 -0
  27. torch_rechub-0.0.6/docs/en/tools/tracking.md +0 -0
  28. torch_rechub-0.0.6/docs/en/tools/visualization.md +0 -0
  29. torch_rechub-0.0.6/docs/en/tutorials/ctr.md +0 -0
  30. torch_rechub-0.0.6/docs/en/tutorials/intro.md +0 -0
  31. torch_rechub-0.0.6/docs/en/tutorials/pipeline.md +0 -0
  32. torch_rechub-0.0.6/docs/en/tutorials/retrieval.md +0 -0
  33. torch_rechub-0.0.6/docs/public/favicon.ico +0 -0
  34. torch_rechub-0.0.6/docs/public/img/logo.png +0 -0
  35. torch_rechub-0.0.6/docs/public/img/logo_with_name.png +0 -0
  36. torch_rechub-0.0.6/docs/zh/api/api.md +0 -0
  37. torch_rechub-0.0.6/docs/zh/community/changelog.md +9 -0
  38. torch_rechub-0.0.6/docs/zh/core/data.md +143 -0
  39. torch_rechub-0.0.6/docs/zh/core/evaluation.md +206 -0
  40. torch_rechub-0.0.6/docs/zh/core/features.md +96 -0
  41. torch_rechub-0.0.6/docs/zh/core/intro.md +60 -0
  42. torch_rechub-0.0.5/docs/zh/manual/installation.md → torch_rechub-0.0.6/docs/zh/guide/install.md +1 -1
  43. torch_rechub-0.0.6/docs/zh/guide/intro.md +97 -0
  44. torch_rechub-0.0.5/docs/zh/manual/getting-started.md → torch_rechub-0.0.6/docs/zh/guide/quick_start.md +5 -4
  45. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/zh/index.md +2 -2
  46. torch_rechub-0.0.6/docs/zh/models/generative.md +310 -0
  47. torch_rechub-0.0.6/docs/zh/models/intro.md +119 -0
  48. torch_rechub-0.0.6/docs/zh/models/matching.md +853 -0
  49. torch_rechub-0.0.6/docs/zh/models/mtl.md +451 -0
  50. torch_rechub-0.0.6/docs/zh/models/ranking.md +695 -0
  51. torch_rechub-0.0.6/docs/zh/serving/demo.md +9 -0
  52. torch_rechub-0.0.6/docs/zh/serving/intro.md +9 -0
  53. torch_rechub-0.0.6/docs/zh/serving/onnx.md +9 -0
  54. torch_rechub-0.0.6/docs/zh/serving/vector_index.md +9 -0
  55. torch_rechub-0.0.6/docs/zh/tools/callbacks.md +9 -0
  56. torch_rechub-0.0.6/docs/zh/tools/intro.md +9 -0
  57. torch_rechub-0.0.6/docs/zh/tools/tracking.md +111 -0
  58. torch_rechub-0.0.6/docs/zh/tools/visualization.md +9 -0
  59. torch_rechub-0.0.6/docs/zh/tutorials/intro.md +9 -0
  60. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/pyproject.toml +12 -3
  61. torch_rechub-0.0.6/tests/test_pa_array_to_tensor.py +221 -0
  62. torch_rechub-0.0.6/tests/test_parquet_dataset.py +82 -0
  63. torch_rechub-0.0.6/torch_rechub/basic/__init__.py +0 -0
  64. torch_rechub-0.0.6/torch_rechub/basic/tracking.py +198 -0
  65. torch_rechub-0.0.6/torch_rechub/data/__init__.py +0 -0
  66. torch_rechub-0.0.6/torch_rechub/data/convert.py +67 -0
  67. torch_rechub-0.0.6/torch_rechub/data/dataset.py +120 -0
  68. torch_rechub-0.0.6/torch_rechub/models/__init__.py +0 -0
  69. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/trainers/ctr_trainer.py +40 -1
  70. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/trainers/match_trainer.py +39 -1
  71. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/trainers/mtl_trainer.py +49 -1
  72. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/trainers/seq_trainer.py +59 -2
  73. torch_rechub-0.0.6/torch_rechub/utils/__init__.py +0 -0
  74. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/uv.lock +98 -3
  75. torch_rechub-0.0.5/docs/.vitepress/config.mts +0 -154
  76. torch_rechub-0.0.5/docs/public/favicon.ico +0 -0
  77. torch_rechub-0.0.5/docs/public/img/logo.png +0 -0
  78. torch_rechub-0.0.5/docs/public/img/logo_with_name.png +0 -0
  79. torch_rechub-0.0.5/docs/zh/introduction.md +0 -78
  80. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/ISSUE_TEMPLATE/bug_report.md +0 -0
  81. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/ISSUE_TEMPLATE/config.yml +0 -0
  82. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/ISSUE_TEMPLATE/feature_request.md +0 -0
  83. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/ISSUE_TEMPLATE/help_wanted.md +0 -0
  84. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/dependabot.yml +0 -0
  85. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/pull_request_template.md +0 -0
  86. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.github/release.yml +0 -0
  87. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.gitignore +0 -0
  88. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/.pre-commit-config.yaml +0 -0
  89. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/CODE_OF_CONDUCT.md +0 -0
  90. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/LICENSE +0 -0
  91. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/config/.flake8 +0 -0
  92. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/config/.pep8 +0 -0
  93. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/config/.pre-commit-config.yaml +0 -0
  94. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/config/CONFIG_GUIDE.md +0 -0
  95. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/config/fix_encoding.py +0 -0
  96. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/config/format_code.py +0 -0
  97. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/config/pytest.ini +0 -0
  98. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/.vitepress/theme/custom.css +0 -0
  99. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/.vitepress/theme/index.ts +0 -0
  100. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/.vitepress/theme/style.css +0 -0
  101. /torch_rechub-0.0.5/docs/zh/manual/api-reference/basic.md → /torch_rechub-0.0.6/docs/cache/api-basic.md +0 -0
  102. /torch_rechub-0.0.5/docs/zh/manual/api-reference/models.md → /torch_rechub-0.0.6/docs/cache/api-models.md +0 -0
  103. /torch_rechub-0.0.5/docs/zh/manual/api-reference/trainers.md → /torch_rechub-0.0.6/docs/cache/api-trainers.md +0 -0
  104. /torch_rechub-0.0.5/docs/zh/manual/api-reference/utils.md → /torch_rechub-0.0.6/docs/cache/api-utils.md +0 -0
  105. {torch_rechub-0.0.5/docs/zh/blog → torch_rechub-0.0.6/docs/cache}/hllm_reproduction.md +0 -0
  106. {torch_rechub-0.0.5/docs/zh/blog → torch_rechub-0.0.6/docs/cache}/hstu_reproduction.md +0 -0
  107. {torch_rechub-0.0.5/docs/zh/blog → torch_rechub-0.0.6/docs/cache}/match.md +0 -0
  108. {torch_rechub-0.0.5/docs/zh/blog → torch_rechub-0.0.6/docs/cache}/rank.md +0 -0
  109. {torch_rechub-0.0.5/docs/zh//345/217/202/350/200/203/350/265/204/346/226/231 → torch_rechub-0.0.6/docs/cache}//345/217/202/350/200/203/350/265/204/346/226/231.md" +0 -0
  110. /torch_rechub-0.0.5/torch_rechub/utils/__init__.py → /torch_rechub-0.0.6/docs/en/api/api.md +0 -0
  111. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/blog/hllm_reproduction.md +0 -0
  112. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/blog/match.md +0 -0
  113. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/blog/rank.md +0 -0
  114. /torch_rechub-0.0.5/torch_rechub/models/__init__.py → /torch_rechub-0.0.6/docs/en/community/changelog.md +0 -0
  115. /torch_rechub-0.0.5/torch_rechub/basic/__init__.py → /torch_rechub-0.0.6/docs/en/community/contributing.md +0 -0
  116. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/contributing.md +0 -0
  117. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/index.md +0 -0
  118. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/introduction.md +0 -0
  119. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/api-reference/basic.md +0 -0
  120. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/api-reference/models.md +0 -0
  121. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/api-reference/trainers.md +0 -0
  122. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/api-reference/utils.md +0 -0
  123. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/faq.md +0 -0
  124. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/getting-started.md +0 -0
  125. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/installation.md +0 -0
  126. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/tutorials/matching.md +0 -0
  127. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/tutorials/multi-task.md +0 -0
  128. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/en/manual/tutorials/ranking.md +0 -0
  129. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/img/banner.png +0 -0
  130. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/img/project_framework.jpg +0 -0
  131. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/img/win_install_annoy_error.png +0 -0
  132. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1606.07792_l8JrVnuYXA.pdf +0 -0
  133. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1703.04247_sFSyE7q3U1.pdf +0 -0
  134. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1706.06978_0xZD_K10S2.pdf +0 -0
  135. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1708.05123_f3lKSqxIvw.pdf +0 -0
  136. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1711.00165_eosOSOmTfE.pdf +0 -0
  137. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1804.07931_ybf_jOAFRp.pdf +0 -0
  138. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1808.09781-3_bmRm284Rxd.pdf +0 -0
  139. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1808.09781v1.pdf +0 -0
  140. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/1905.06336_2oH3RMtROA.pdf +0 -0
  141. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/2006.11632_qiN67CrHNs.pdf +0 -0
  142. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/2020 (Tencent) (Recsys) [PLE] Progressive Layered .pdf +0 -0
  143. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/2102.09267_cdwBFKPCrj.pdf +0 -0
  144. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/2105.08489-2_XnVVGxN9GG.pdf +0 -0
  145. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/2203.06801v1-3_qUTY4TbvSL.pdf +0 -0
  146. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/2959100.2959190_jRzTU81Xmq.pdf +0 -0
  147. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/3219819.3219950_aTMFXHL3JB.pdf +0 -0
  148. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/3219819.3220007_zvaZg_CZ6z.pdf +0 -0
  149. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/4545-Article Text-7584-1-10-20190706.pdf +0 -0
  150. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566_1QYYhqJR8.pdf +0 -0
  151. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/Caruana1997_Article_MultitaskLearning_ySprcjzJ6v.pdf +0 -0
  152. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/DCN V2 Improved Deep & Cross Network and Practical.pdf +0 -0
  153. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/docs/public/pdf/cikm2013_DSSM_fullversion_c9ZSdM19XJ.pdf +0 -0
  154. {torch_rechub-0.0.5/docs/zh → torch_rechub-0.0.6/docs/zh/community}/contributing.md +0 -0
  155. {torch_rechub-0.0.5/docs/zh/manual → torch_rechub-0.0.6/docs/zh/community}/faq.md +0 -0
  156. /torch_rechub-0.0.5/docs/zh/manual/tutorials/ranking.md → /torch_rechub-0.0.6/docs/zh/tutorials/ctr.md +0 -0
  157. /torch_rechub-0.0.5/docs/zh/manual/tutorials/multi-task.md → /torch_rechub-0.0.6/docs/zh/tutorials/pipeline.md +0 -0
  158. /torch_rechub-0.0.5/docs/zh/manual/tutorials/matching.md → /torch_rechub-0.0.6/docs/zh/tutorials/retrieval.md +0 -0
  159. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/data/amazon-books/README.md +0 -0
  160. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/data/amazon-books/preprocess_amazon_books.py +0 -0
  161. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/data/amazon-books/preprocess_amazon_books_hllm.py +0 -0
  162. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/data/ml-1m/README +0 -0
  163. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/data/ml-1m/preprocess_hllm_data.py +0 -0
  164. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/data/ml-1m/preprocess_ml_hstu.py +0 -0
  165. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/run_hllm_amazon_books.py +0 -0
  166. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/run_hllm_movielens.py +0 -0
  167. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/generative/run_hstu_movielens.py +0 -0
  168. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/README.md +0 -0
  169. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/data/million-song-dataset/process_msd.py +0 -0
  170. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/data/ml-1m/preprocess_ml.py +0 -0
  171. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/data/session_based/preprocess_session_based.py +0 -0
  172. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/data/yidian_news/preprocess.py +0 -0
  173. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/movielens_utils.py +0 -0
  174. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_comirec.py +0 -0
  175. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_dssm.py +0 -0
  176. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_facebook_dssm.py +0 -0
  177. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_gru4rec.py +0 -0
  178. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_mind.py +0 -0
  179. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_sine.py +0 -0
  180. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_youtube_dnn.py +0 -0
  181. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_ml_youtube_sbc.py +0 -0
  182. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/matching/run_sbr.py +0 -0
  183. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/README.md +0 -0
  184. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/data/ali-ccp/preprocess_ali_ccp.py +0 -0
  185. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/data/amazon-beauty/preprocess_amazon_beauty.py +0 -0
  186. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/data/amazon-books/preprocess_amazon_books.py +0 -0
  187. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/data/amazon-electronics/preprocess_amazon_electronics.py +0 -0
  188. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/data/avazu/download_avazu.py +0 -0
  189. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/data/census-income/preprocess_census.py +0 -0
  190. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_ali_ccp_ctr_ranking.py +0 -0
  191. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_ali_ccp_multi_task.py +0 -0
  192. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_aliexpress.py +0 -0
  193. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_amazon_electronics.py +0 -0
  194. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_avazu.py +0 -0
  195. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_census.py +0 -0
  196. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_criteo.py +0 -0
  197. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_gradnorm.py +0 -0
  198. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/examples/ranking/run_metabalance.py +0 -0
  199. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/package-lock.json +0 -0
  200. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/package.json +0 -0
  201. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tests/test_e2e_matching.py +0 -0
  202. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tests/test_e2e_multitask.py +0 -0
  203. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tests/test_e2e_ranking.py +0 -0
  204. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tests/test_onnx_export.py +0 -0
  205. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tests/test_regularization.py +0 -0
  206. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/__init__.py +0 -0
  207. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/activation.py +0 -0
  208. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/callback.py +0 -0
  209. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/features.py +0 -0
  210. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/initializers.py +0 -0
  211. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/layers.py +0 -0
  212. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/loss_func.py +0 -0
  213. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/metaoptimizer.py +0 -0
  214. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/basic/metric.py +0 -0
  215. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/generative/__init__.py +0 -0
  216. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/generative/hllm.py +0 -0
  217. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/generative/hstu.py +0 -0
  218. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/__init__.py +0 -0
  219. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/comirec.py +0 -0
  220. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/dssm.py +0 -0
  221. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/dssm_facebook.py +0 -0
  222. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/dssm_senet.py +0 -0
  223. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/gru4rec.py +0 -0
  224. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/mind.py +0 -0
  225. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/narm.py +0 -0
  226. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/sasrec.py +0 -0
  227. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/sine.py +0 -0
  228. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/stamp.py +0 -0
  229. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/youtube_dnn.py +0 -0
  230. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/matching/youtube_sbc.py +0 -0
  231. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/multi_task/__init__.py +0 -0
  232. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/multi_task/aitm.py +0 -0
  233. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/multi_task/esmm.py +0 -0
  234. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/multi_task/mmoe.py +0 -0
  235. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/multi_task/ple.py +0 -0
  236. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/multi_task/shared_bottom.py +0 -0
  237. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/__init__.py +0 -0
  238. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/afm.py +0 -0
  239. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/autoint.py +0 -0
  240. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/bst.py +0 -0
  241. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/dcn.py +0 -0
  242. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/dcn_v2.py +0 -0
  243. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/deepffm.py +0 -0
  244. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/deepfm.py +0 -0
  245. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/dien.py +0 -0
  246. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/din.py +0 -0
  247. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/edcn.py +0 -0
  248. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/fibinet.py +0 -0
  249. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/models/ranking/widedeep.py +0 -0
  250. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/trainers/__init__.py +0 -0
  251. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/trainers/matching.md +0 -0
  252. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/utils/data.py +0 -0
  253. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/utils/hstu_utils.py +0 -0
  254. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/utils/match.py +0 -0
  255. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/utils/model_utils.py +0 -0
  256. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/utils/mtl.py +0 -0
  257. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/utils/onnx_export.py +0 -0
  258. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/torch_rechub/utils/visualization.py +0 -0
  259. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tutorials/DIN.ipynb +0 -0
  260. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tutorials/DeepFM.ipynb +0 -0
  261. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tutorials/Matching.ipynb +0 -0
  262. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tutorials/Milvus.ipynb +0 -0
  263. {torch_rechub-0.0.5 → torch_rechub-0.0.6}/tutorials/Multi_Task.ipynb +0 -0
@@ -348,7 +348,7 @@ jobs:
348
348
  fi
349
349
 
350
350
  - name: Install uv
351
- uses: astral-sh/setup-uv@v4
351
+ uses: astral-sh/setup-uv@v7
352
352
  with:
353
353
  version: "latest"
354
354
 
@@ -7,6 +7,7 @@ on:
7
7
  paths:
8
8
  - 'docs/**'
9
9
  - 'package.json'
10
+ - 'CHANGELOG.md'
10
11
  - '.github/workflows/deploy.yml'
11
12
 
12
13
  jobs:
@@ -27,6 +28,13 @@ jobs:
27
28
  - name: Install dependencies
28
29
  run: npm ci
29
30
 
31
+ - name: Sync CHANGELOG to docs
32
+ run: |
33
+ # 复制 CHANGELOG.md 到中英文文档目录
34
+ cp CHANGELOG.md docs/zh/community/changelog.md
35
+ cp CHANGELOG.md docs/en/community/changelog.md
36
+ echo "✅ CHANGELOG.md synced to docs directories"
37
+
30
38
  - name: Build VitePress site
31
39
  run: npm run docs:build
32
40
 
@@ -7,6 +7,26 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
7
7
 
8
8
  ---
9
9
 
10
+ ## [0.0.6] - 2025-12-11
11
+
12
+ <!-- Release notes generated using configuration in .github/release.yml at main -->
13
+
14
+ ## What's Changed
15
+ ### ✨ 新特性 / Features
16
+ * FEATURE: Support Streaming Parquet Dataset by @ywuenthought in https://github.com/datawhalechina/torch-rechub/pull/143
17
+ * Docs & tracking polish: logger docstrings, README refresh, dependency tweak by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/146
18
+ ### 📝 文档更新 / Documentation
19
+ * Refator Chinese documentation structure by @1985312383 in https://github.com/datawhalechina/torch-rechub/pull/145
20
+
21
+ ## New Contributors
22
+ * @ywuenthought made their first contribution in https://github.com/datawhalechina/torch-rechub/pull/143
23
+
24
+ **Full Changelog**: https://github.com/datawhalechina/torch-rechub/compare/v0.0.5...v0.0.6
25
+
26
+ ---
27
+
28
+
29
+
10
30
  ## [0.0.5] - 2025-12-05
11
31
 
12
32
  <!-- Release notes generated using configuration in .github/release.yml at main -->
@@ -143,7 +143,7 @@ def test_deepfm_forward():
143
143
  - Include code examples
144
144
  - Provide clear step-by-step instructions
145
145
  - Keep both English and Chinese versions synchronized
146
- - Follow Google-style docstrings for Python code
146
+ - Follow scikit-learn style docstrings (NumPy/SciPy convention) for Python code
147
147
 
148
148
  ### Docstring Example
149
149
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: torch-rechub
3
- Version: 0.0.5
3
+ Version: 0.0.6
4
4
  Summary: A Pytorch Toolbox for Recommendation Models, Easy-to-use and Easy-to-extend.
5
5
  Project-URL: Homepage, https://github.com/datawhalechina/torch-rechub
6
6
  Project-URL: Documentation, https://www.torch-rechub.com
@@ -28,19 +28,26 @@ Requires-Dist: scikit-learn>=0.24.0
28
28
  Requires-Dist: torch>=1.10.0
29
29
  Requires-Dist: tqdm>=4.60.0
30
30
  Requires-Dist: transformers>=4.46.3
31
+ Provides-Extra: bigdata
32
+ Requires-Dist: pyarrow~=21.0; extra == 'bigdata'
31
33
  Provides-Extra: dev
32
34
  Requires-Dist: bandit>=1.7.0; extra == 'dev'
33
35
  Requires-Dist: flake8>=3.8.0; extra == 'dev'
34
36
  Requires-Dist: isort==5.13.2; extra == 'dev'
35
37
  Requires-Dist: mypy>=0.800; extra == 'dev'
36
38
  Requires-Dist: pre-commit>=2.20.0; extra == 'dev'
39
+ Requires-Dist: pyarrow-stubs>=20.0; extra == 'dev'
37
40
  Requires-Dist: pytest-cov>=2.0; extra == 'dev'
38
41
  Requires-Dist: pytest>=6.0; extra == 'dev'
39
42
  Requires-Dist: toml>=0.10.2; extra == 'dev'
40
43
  Requires-Dist: yapf==0.43.0; extra == 'dev'
41
44
  Provides-Extra: onnx
42
- Requires-Dist: onnx>=1.12.0; extra == 'onnx'
43
- Requires-Dist: onnxruntime>=1.12.0; extra == 'onnx'
45
+ Requires-Dist: onnx>=1.14.0; extra == 'onnx'
46
+ Requires-Dist: onnxruntime>=1.14.0; extra == 'onnx'
47
+ Provides-Extra: tracking
48
+ Requires-Dist: swanlab>=0.1.0; extra == 'tracking'
49
+ Requires-Dist: tensorboardx>=2.5; extra == 'tracking'
50
+ Requires-Dist: wandb>=0.13.0; extra == 'tracking'
44
51
  Provides-Extra: visualization
45
52
  Requires-Dist: graphviz>=0.20; extra == 'visualization'
46
53
  Requires-Dist: torchview>=0.2.6; extra == 'visualization'
@@ -89,7 +96,8 @@ Description-Content-Type: text/markdown
89
96
  * **易于配置:** 通过配置文件或命令行参数轻松调整实验设置。
90
97
  * **可复现性:** 旨在确保实验结果的可复现性。
91
98
  * **ONNX 导出:** 支持将训练好的模型导出为 ONNX 格式,便于部署到生产环境。
92
- * **其他特性:** 例如,支持负采样、多任务学习等。
99
+ * **跨引擎数据处理:** 现已支持基于 PySpark 的数据处理与转换,方便在大数据管道中落地。
100
+ * **实验可视化与跟踪:** 内置 WandB、SwanLab、TensorBoardX 三种可视化/追踪工具的统一集成。
93
101
 
94
102
  ## 📖 目录
95
103
 
@@ -399,4 +407,4 @@ ctr_trainer.visualization(save_path="model.pdf", dpi=300) # 保存为高清 PDF
399
407
 
400
408
  ---
401
409
 
402
- *最后更新: [2025-12-04]*
410
+ *最后更新: [2025-12-11]*
@@ -41,7 +41,8 @@
41
41
  * **易于配置:** 通过配置文件或命令行参数轻松调整实验设置。
42
42
  * **可复现性:** 旨在确保实验结果的可复现性。
43
43
  * **ONNX 导出:** 支持将训练好的模型导出为 ONNX 格式,便于部署到生产环境。
44
- * **其他特性:** 例如,支持负采样、多任务学习等。
44
+ * **跨引擎数据处理:** 现已支持基于 PySpark 的数据处理与转换,方便在大数据管道中落地。
45
+ * **实验可视化与跟踪:** 内置 WandB、SwanLab、TensorBoardX 三种可视化/追踪工具的统一集成。
45
46
 
46
47
  ## 📖 目录
47
48
 
@@ -351,4 +352,4 @@ ctr_trainer.visualization(save_path="model.pdf", dpi=300) # 保存为高清 PDF
351
352
 
352
353
  ---
353
354
 
354
- *最后更新: [2025-12-04]*
355
+ *最后更新: [2025-12-11]*
@@ -41,6 +41,8 @@ English | [简体中文](README.md)
41
41
  * **Easy Configuration:** Adjust experiment settings via config files or command-line arguments.
42
42
  * **Reproducibility:** Designed to ensure reproducible experimental results.
43
43
  * **ONNX Export:** Export trained models to ONNX format for production deployment.
44
+ * **Cross-engine data processing:** PySpark-based data processing and conversion supported for large-scale pipelines.
45
+ * **Experiment visualization & tracking:** Unified integration of WandB, SwanLab, and TensorBoardX.
44
46
  * **Additional Features:** Negative sampling, multi-task learning, etc.
45
47
 
46
48
  ## 📖 Table of Contents
@@ -342,4 +344,4 @@ If you use this framework in your research or work, please consider citing:
342
344
 
343
345
  ---
344
346
 
345
- *Last updated: [2025-12-04]*
347
+ *Last updated: [2025-12-11]*
@@ -0,0 +1,214 @@
1
+ import { defineConfig } from 'vitepress'
2
+
3
+ export default defineConfig({
4
+ title: "torch-rechub",
5
+ description: "A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.",
6
+ head: [
7
+ ['link', { rel: 'icon', href: '/torch-rechub/favicon.ico' }]
8
+ ],
9
+
10
+ base: '/torch-rechub/',
11
+
12
+ // 路径重写: 假设你的源文件都在 docs/en/ 下,但访问路径去掉 en
13
+ rewrites: {
14
+ 'en/:rest*': ':rest*'
15
+ },
16
+
17
+ themeConfig: {
18
+ logo: '/img/logo.png',
19
+ search: { provider: 'local' },
20
+ socialLinks: [
21
+ { icon: 'github', link: 'https://github.com/datawhalechina/torch-rechub' }
22
+ ]
23
+ },
24
+
25
+ locales: {
26
+ // ====================================================
27
+ // 🇬🇧 English (Root)
28
+ // ====================================================
29
+ root: {
30
+ label: 'English',
31
+ lang: 'en',
32
+ themeConfig: {
33
+ nav: [
34
+ { text: '🏠 Home', link: '/' },
35
+ { text: '🚀 Getting Started', link: '/guide/intro' },
36
+ { text: '⚙️ Core', link: '/core/intro' },
37
+ { text: '🏰 Models', link: '/models/intro' },
38
+ { text: '🛠️ Tools', link: '/tools/intro' },
39
+ { text: '🚀 Serving', link: '/serving/intro' },
40
+ { text: '📖 Tutorials', link: '/tutorials/intro' },
41
+ { text: 'ℹ️ API', link: '/api/api' },
42
+ { text: '👥 Community', link: '/community/faq' }
43
+ ],
44
+
45
+ sidebar: {
46
+ '/guide/': [
47
+ {
48
+ text: '🚀 Getting Started',
49
+ items: [
50
+ { text: 'Overview', link: '/guide/intro' },
51
+ { text: 'Installation', link: '/guide/install' },
52
+ { text: 'Quick Start', link: '/guide/quick_start' }
53
+ ]
54
+ }
55
+ ],
56
+ '/core/': [{
57
+ text: '⚙️ Core Components', items: [
58
+ { text: 'Overview', link: '/core/intro' },
59
+ { text: 'Feature Columns', link: '/core/features' },
60
+ { text: 'Data Pipeline', link: '/core/data' },
61
+ { text: 'Training & Eval', link: '/core/evaluation' }
62
+ ]
63
+ }],
64
+ '/models/': [{
65
+ text: '🏰 Model Zoo', items: [
66
+ { text: 'Overview', link: '/models/intro' },
67
+ { text: 'Ranking Models', link: '/models/ranking' },
68
+ { text: 'Matching Models', link: '/models/matching' },
69
+ { text: 'Multi-Task Models', link: '/models/mtl' },
70
+ { text: 'Generative Models', link: '/models/generative' }
71
+ ]
72
+ }],
73
+ '/tools/': [{
74
+ text: '🛠️ Dev Tools', items: [
75
+ { text: 'Overview', link: '/tools/intro' },
76
+ { text: 'Visualization', link: '/tools/visualization' },
77
+ { text: 'Experiment Tracking', link: '/tools/tracking' },
78
+ { text: 'Callbacks', link: '/tools/callbacks' }
79
+ ]
80
+ }],
81
+ '/serving/': [{
82
+ text: '🚀 Serving', items: [
83
+ { text: 'Overview', link: '/serving/intro' },
84
+ { text: 'ONNX & Quantization', link: '/serving/onnx' },
85
+ { text: 'Vector Indexing', link: '/serving/vector_index' },
86
+ { text: 'Serving Demo', link: '/serving/demo' }
87
+ ]
88
+ }],
89
+ '/tutorials/': [{
90
+ text: '📖 Tutorials', items: [
91
+ { text: 'Overview', link: '/tutorials/intro' },
92
+ { text: 'CTR Pipeline', link: '/tutorials/ctr' },
93
+ { text: 'Retrieval System', link: '/tutorials/retrieval' },
94
+ { text: 'Big Data Pipeline', link: '/tutorials/pipeline' }
95
+ ]
96
+ }],
97
+
98
+ '/api/': [
99
+ {
100
+ text: 'ℹ️ API Reference',
101
+ items: [
102
+ { text: 'Main API', link: '/api/api' },
103
+ ]
104
+ }
105
+ ],
106
+ '/community/': [
107
+ {
108
+ text: '📘 Community',
109
+ items: [
110
+ { text: 'FAQ', link: '/community/faq' },
111
+ { text: 'Contributing', link: '/community/contributing' },
112
+ { text: 'Changelog', link: '/community/changelog' }
113
+ ]
114
+ }
115
+ ]
116
+ }
117
+ }
118
+ },
119
+
120
+ // ====================================================
121
+ // 🇨🇳 中文 (Zh)
122
+ // ====================================================
123
+ zh: {
124
+ label: '中文',
125
+ lang: 'zh-CN',
126
+ link: '/zh/',
127
+ themeConfig: {
128
+ nav: [
129
+ { text: '🏠 首页', link: '/zh/' },
130
+ { text: '🚀 快速入门', link: '/zh/guide/intro' },
131
+ { text: '⚙️ 核心组件', link: '/zh/core/intro' },
132
+ { text: '🏰 模型库', link: '/zh/models/intro' },
133
+ { text: '🛠️ 研发工具', link: '/zh/tools/intro' },
134
+ { text: '🚀 生产部署', link: '/zh/serving/intro' },
135
+ { text: '📖 场景教程', link: '/zh/tutorials/intro' },
136
+ { text: 'ℹ️ API', link: '/zh/api/api' },
137
+ { text: '👥 社区', link: '/zh/community/faq' }
138
+ ],
139
+
140
+ sidebar: {
141
+ '/zh/guide/': [
142
+ {
143
+ text: '🚀 快速入门',
144
+ items: [
145
+ { text: '导览 (Overview)', link: '/zh/guide/intro' },
146
+ { text: '安装指南', link: '/zh/guide/install' },
147
+ { text: '3分钟上手', link: '/zh/guide/quick_start' }
148
+ ]
149
+ }
150
+ ],
151
+ '/zh/core/': [{
152
+ text: '⚙️ 核心组件', items: [
153
+ { text: '导览 (Overview)', link: '/zh/core/intro' },
154
+ { text: '特征定义 (Features)', link: '/zh/core/features' },
155
+ { text: '数据流水线 (Data)', link: '/zh/core/data' },
156
+ { text: '训练与评估 (Eval)', link: '/zh/core/evaluation' }
157
+ ]
158
+ }],
159
+ '/zh/models/': [{
160
+ text: '🏰 模型库', items: [
161
+ { text: '导览 (Overview)', link: '/zh/models/intro' },
162
+ { text: '排序模型 (Ranking)', link: '/zh/models/ranking' },
163
+ { text: '召回模型 (Matching)', link: '/zh/models/matching' },
164
+ { text: '多任务模型 (MTL)', link: '/zh/models/mtl' },
165
+ { text: '生成式模型 (Generative)', link: '/zh/models/generative' }
166
+ ]
167
+ }],
168
+ '/zh/tools/': [{
169
+ text: '🛠️ 研发工具', items: [
170
+ { text: '导览 (Overview)', link: '/zh/tools/intro' },
171
+ { text: '可视化监控', link: '/zh/tools/visualization' },
172
+ { text: '实验追踪', link: '/zh/tools/tracking' },
173
+ { text: '回调函数', link: '/zh/tools/callbacks' }
174
+ ]
175
+ }],
176
+ '/zh/serving/': [{
177
+ text: '🚀 生产部署', items: [
178
+ { text: '导览 (Overview)', link: '/zh/serving/intro' },
179
+ { text: 'ONNX 导出与量化', link: '/zh/serving/onnx' },
180
+ { text: '向量检索封装', link: '/zh/serving/vector_index' },
181
+ { text: '在线服务示例', link: '/zh/serving/demo' }
182
+ ]
183
+ }],
184
+ '/zh/tutorials/': [{
185
+ text: '📖 场景教程', items: [
186
+ { text: '导览 (Overview)', link: '/zh/tutorials/intro' },
187
+ { text: 'CTR 预估流程', link: '/zh/tutorials/ctr' },
188
+ { text: '召回系统搭建', link: '/zh/tutorials/retrieval' },
189
+ { text: '全链路流水线', link: '/zh/tutorials/pipeline' }
190
+ ]
191
+ }],
192
+ '/zh/api/': [
193
+ {
194
+ text: 'ℹ️ API Reference',
195
+ items: [
196
+ { text: 'API 参考', link: '/zh/api/api' },
197
+ ]
198
+ }
199
+ ],
200
+ '/zh/community/': [
201
+ {
202
+ text: '📘 社区信息',
203
+ items: [
204
+ { text: '常见问题 (FAQ)', link: '/zh/community/faq' },
205
+ { text: '贡献指南 (Contributing)', link: '/zh/community/contributing' },
206
+ { text: '版本日志 (Changelog)', link: '/zh/community/changelog' }
207
+ ]
208
+ }
209
+ ]
210
+ }
211
+ }
212
+ }
213
+ }
214
+ })
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
@@ -0,0 +1,9 @@
1
+ ---
2
+ title: 版本日志
3
+ description: Torch-RecHub 版本更新历史
4
+ ---
5
+
6
+ # 版本日志
7
+
8
+ 此页面正在建设中。
9
+
@@ -0,0 +1,143 @@
1
+ ---
2
+ title: 数据流水线
3
+ description: Torch-RecHub 数据加载与预处理
4
+ ---
5
+
6
+ # 数据流水线
7
+
8
+ Torch-RecHub提供了完整的数据处理流水线,包括数据集类、数据生成器和工具函数,用于处理推荐系统中的各种数据需求。
9
+
10
+ ## 数据类
11
+
12
+ ### TorchDataset
13
+
14
+ 用于训练和验证的数据集合,包含特征和标签。
15
+
16
+ ```python
17
+ from torch_rechub.utils.data import TorchDataset
18
+
19
+ # 创建数据集
20
+ dataset = TorchDataset(x, y)
21
+ ```
22
+
23
+ **参数说明:**
24
+ - `x`:特征字典,键为特征名称,值为特征数据
25
+ - `y`:标签数据
26
+
27
+ ### PredictDataset
28
+
29
+ 用于预测的数据集合,仅包含特征。
30
+
31
+ ```python
32
+ from torch_rechub.utils.data import PredictDataset
33
+
34
+ # 创建预测数据集
35
+ dataset = PredictDataset(x)
36
+ ```
37
+
38
+ **参数说明:**
39
+ - `x`:特征字典,键为特征名称,值为特征数据
40
+
41
+ ## 数据生成器
42
+
43
+ ### DataGenerator
44
+
45
+ 用于生成排序模型和多任务模型的数据加载器。
46
+
47
+ ```python
48
+ from torch_rechub.utils.data import DataGenerator
49
+
50
+ # 创建数据生成器
51
+ dg = DataGenerator(x, y)
52
+ # 生成数据加载器
53
+ train_dl, val_dl, test_dl = dg.generate_dataloader(
54
+ split_ratio=[0.7, 0.1], # 训练集:验证集:测试集比例
55
+ batch_size=256, # 批次大小
56
+ num_workers=8 # 并行工作线程数
57
+ )
58
+ ```
59
+
60
+ **参数说明:**
61
+ - `x`:特征数据
62
+ - `y`:标签数据
63
+
64
+ **generate_dataloader方法参数:**
65
+ - `split_ratio`:数据分割比例,长度为2
66
+ - `batch_size`:批次大小
67
+ - `num_workers`:并行工作线程数
68
+
69
+ ### MatchDataGenerator
70
+
71
+ 用于生成召回模型的数据加载器。
72
+
73
+ ```python
74
+ from torch_rechub.utils.data import MatchDataGenerator
75
+
76
+ # 创建召回数据生成器
77
+ dg = MatchDataGenerator(x, y)
78
+ # 生成数据加载器
79
+ train_dl, test_dl, item_dl = dg.generate_dataloader(
80
+ x_test_user=x_test_user, # 测试用户数据
81
+ x_all_item=x_all_item, # 所有物品数据
82
+ batch_size=256, # 批次大小
83
+ num_workers=8 # 并行工作线程数
84
+ )
85
+ ```
86
+
87
+ **参数说明:**
88
+ - `x`:特征数据
89
+ - `y`:标签数据,可选
90
+
91
+ **generate_dataloader方法参数:**
92
+ - `x_test_user`:测试用户数据
93
+ - `x_all_item`:所有物品数据
94
+ - `batch_size`:批次大小
95
+ - `num_workers`:并行工作线程数
96
+
97
+ ## 工具函数
98
+
99
+ ### get_auto_embedding_dim
100
+
101
+ 根据类别数量自动计算嵌入向量长度。
102
+
103
+ ```python
104
+ from torch_rechub.utils.data import get_auto_embedding_dim
105
+
106
+ # 自动计算嵌入向量长度
107
+ embed_dim = get_auto_embedding_dim(vocab_size=1000)
108
+ ```
109
+
110
+ **参数说明:**
111
+ - `num_classes`:类别数量
112
+
113
+ **返回值:**
114
+ - 嵌入向量长度,计算公式:`int(np.floor(6 * np.pow(num_classes, 0.25)))`
115
+
116
+ ### get_loss_func
117
+
118
+ 根据任务类型获取对应的损失函数。
119
+
120
+ ```python
121
+ from torch_rechub.utils.data import get_loss_func
122
+
123
+ # 获取分类任务损失函数
124
+ loss_func = get_loss_func(task_type="classification")
125
+ # 获取回归任务损失函数
126
+ loss_func = get_loss_func(task_type="regression")
127
+ ```
128
+
129
+ **参数说明:**
130
+ - `task_type`:任务类型,可选值:classification(分类)、regression(回归)
131
+
132
+ **返回值:**
133
+ - 对应的损失函数实例
134
+
135
+ ## 数据处理流程
136
+
137
+ 1. **特征定义**:使用DenseFeature、SparseFeature、SequenceFeature定义特征
138
+ 2. **数据加载**:加载原始数据
139
+ 3. **特征编码**:对类别型特征进行LabelEncoder编码
140
+ 4. **序列处理**:对序列特征进行填充、截断等处理
141
+ 5. **样本构造**:构造训练样本,包括负采样等
142
+ 6. **数据生成**:使用DataGenerator或MatchDataGenerator生成数据加载器
143
+ 7. **模型训练**:将数据加载器传入模型进行训练