torch-bessel 0.0.3__cp310-cp310-macosx_11_0_arm64.whl → 0.0.4__cp310-cp310-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
benchmarks/__init__.py ADDED
File without changes
@@ -0,0 +1,99 @@
1
+ import torch
2
+ from asv_runner.benchmarks.mark import skip_benchmark_if
3
+
4
+ import torch_bessel
5
+
6
+
7
+ def _setup(
8
+ n, is_real, singularity, dtype=torch.float, requires_grad=False, device="cpu"
9
+ ):
10
+ kwargs = {"dtype": dtype, "requires_grad": requires_grad, "device": device}
11
+ real = torch.randn(n, **kwargs).abs()
12
+ if is_real:
13
+ args = (real, singularity)
14
+ else:
15
+ imag = torch.randn(n, **kwargs)
16
+ args = (torch.complex(real, imag), singularity)
17
+ return args
18
+
19
+
20
+ class ModifiedBesselK0ForwardCPU:
21
+ params = (
22
+ [10_000, 100_000, 1_000_000],
23
+ [False, True],
24
+ [None, 0.0],
25
+ [torch.float32, torch.float64],
26
+ [False, True],
27
+ )
28
+ param_names = ["n", "is_real", "singularity", "dtype", "requires_grad"]
29
+
30
+ def setup(self, n, is_real, singularity, dtype, requires_grad):
31
+ self.args = _setup(n, is_real, singularity, dtype, requires_grad)
32
+
33
+ def time_modified_bessel_k0_forward_cpu(
34
+ self, n, is_real, singularity, dtype, requires_grad
35
+ ):
36
+ torch_bessel.ops.modified_bessel_k0(*self.args)
37
+
38
+
39
+ @skip_benchmark_if(not torch.cuda.is_available())
40
+ class ModifiedBesselK0ForwardCUDA:
41
+ params = (
42
+ [10_000, 100_000, 1_000_000],
43
+ [False, True],
44
+ [None, 0.0],
45
+ [torch.float32, torch.float64],
46
+ [False, True],
47
+ )
48
+ param_names = ["n", "is_real", "singularity", "dtype", "requires_grad"]
49
+
50
+ def setup(self, n, is_real, singularity, dtype, requires_grad):
51
+ self.args = _setup(n, is_real, singularity, dtype, requires_grad, device="cuda")
52
+
53
+ def time_modified_bessel_k0_forward_cuda(
54
+ self, n, is_real, singularity, dtype, requires_grad
55
+ ):
56
+ torch.cuda.synchronize()
57
+ torch_bessel.ops.modified_bessel_k0(*self.args)
58
+ torch.cuda.synchronize()
59
+
60
+
61
+ class ModifiedBesselK0BackwardCPU:
62
+ warmup_time = 0.0 # for some reason backward is called multiple times if not 0
63
+ number = 1 # Avoids calling backward multiple times
64
+ params = (
65
+ [10_000, 100_000, 1_000_000],
66
+ [False, True],
67
+ [None, 0.0],
68
+ [torch.float32, torch.float64],
69
+ )
70
+ param_names = ["n", "is_real", "singularity", "dtype"]
71
+
72
+ def setup(self, n, is_real, singularity, dtype):
73
+ args = _setup(n, is_real, singularity, dtype, requires_grad=True)
74
+ self.out = torch_bessel.ops.modified_bessel_k0(*args).norm()
75
+
76
+ def time_modified_bessel_k0_backward_cpu(self, n, is_real, singularity, dtype):
77
+ self.out.backward()
78
+
79
+
80
+ @skip_benchmark_if(not torch.cuda.is_available())
81
+ class ModifiedBesselK0BackwardCUDA:
82
+ warmup_time = 0.0 # for some reason backward is called multiple times if not 0
83
+ number = 1 # Avoids calling backward multiple times
84
+ params = (
85
+ [10_000, 100_000, 1_000_000],
86
+ [False, True],
87
+ [None, 0.0],
88
+ [torch.float32, torch.float64],
89
+ )
90
+ param_names = ["n", "is_real", "singularity", "dtype"]
91
+
92
+ def setup(self, n, is_real, singularity, dtype):
93
+ args = _setup(n, is_real, singularity, dtype, requires_grad=True, device="cuda")
94
+ self.out = torch_bessel.ops.modified_bessel_k0(*args).norm()
95
+
96
+ def time_modified_bessel_k0_backward_cuda(self, n, is_real, singularity, dtype):
97
+ torch.cuda.synchronize()
98
+ self.out.backward()
99
+ torch.cuda.synchronize()
Binary file
torch_bessel/ops.py CHANGED
@@ -1,4 +1,6 @@
1
1
  from pathlib import Path
2
+ from numbers import Number
3
+ from typing import Union
2
4
 
3
5
  import torch
4
6
  from torch import Tensor
@@ -17,32 +19,57 @@ torch.ops.load_library(so_files[0])
17
19
 
18
20
  class ModifiedBesselK0(torch.autograd.Function):
19
21
  @staticmethod
20
- def forward(x):
21
- return torch.special.modified_bessel_k0(x)
22
+ def forward(z, singularity):
23
+ if not z.is_complex():
24
+ out = (torch.special.modified_bessel_k0(z), None)
25
+ elif not z.requires_grad:
26
+ out = (
27
+ torch.ops.torch_bessel.modified_bessel_k0_complex_forward.default(z),
28
+ None,
29
+ )
30
+ else:
31
+ out = torch.ops.torch_bessel.modified_bessel_k0_complex_forward_backward.default(
32
+ z
33
+ )
34
+
35
+ if singularity is None:
36
+ return (*out, None)
37
+
38
+ mask = z != 0
39
+ return (out[0].where(mask, singularity), out[1], mask)
22
40
 
23
41
  @staticmethod
24
- def setup_context(ctx, inputs, _):
42
+ def setup_context(ctx, inputs, outputs):
43
+ if ctx.needs_input_grad[1]:
44
+ raise NotImplementedError("Gradient w.r.t. singularity is not implemented")
45
+
25
46
  if ctx.needs_input_grad[0]:
26
- ctx.save_for_backward(*inputs)
47
+ if outputs[1] is None:
48
+ ctx.save_for_backward(inputs[0], None, outputs[2])
49
+ else:
50
+ ctx.save_for_backward(None, outputs[1], outputs[2])
51
+
27
52
  ctx.set_materialize_grads(False)
28
53
 
29
54
  @staticmethod
30
- def backward(ctx, grad):
55
+ def backward(ctx, grad, _, __):
31
56
  if grad is None or not ctx.needs_input_grad[0]:
32
- return None
33
-
34
- (x,) = ctx.saved_tensors
35
- return -torch.special.modified_bessel_k1(x).mul_(grad)
36
-
37
-
38
- def modified_bessel_k0(z: Tensor) -> Tensor:
39
- if not z.is_complex():
40
- return ModifiedBesselK0.apply(z)
41
- if not z.requires_grad:
42
- return torch.ops.torch_bessel.modified_bessel_k0_complex_forward.default(z)
43
- return torch.ops.torch_bessel.modified_bessel_k0_complex_forward_backward.default(
44
- z
45
- )[0]
57
+ return (None, None)
58
+
59
+ x, deriv, mask = ctx.saved_tensors
60
+ if deriv is None:
61
+ out = -torch.special.modified_bessel_k1(x).mul_(grad)
62
+ else:
63
+ out = grad * deriv
64
+ if mask is not None:
65
+ out = out.where(mask, 0)
66
+ return (out, None)
67
+
68
+
69
+ def modified_bessel_k0(
70
+ z: Tensor, singularity: Union[Number, Tensor, None] = None
71
+ ) -> Tensor:
72
+ return ModifiedBesselK0.apply(z, singularity)[0]
46
73
 
47
74
 
48
75
  @torch.library.register_fake("torch_bessel::modified_bessel_k0_complex_forward")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: torch_bessel
3
- Version: 0.0.3
3
+ Version: 0.0.4
4
4
  Summary: PyTorch extension package for Bessel functions with arbitrary real order and complex inputs
5
5
  Home-page: https://github.com/hchau630/torch-bessel
6
6
  Author: Ho Yin Chau
@@ -39,3 +39,6 @@ torch_bessel.ops.modified_bessel_k0(z)
39
39
 
40
40
  # WIP
41
41
  - `modified_bessel_kv`: Analogue of `scipy.special.kv`.
42
+
43
+ # Benchmarks
44
+ Benchmarking performed with the `asv` package. Results can be viewed at https://hchau630.github.io/torch-bessel.
@@ -0,0 +1,10 @@
1
+ benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ benchmarks/benchmarks.py,sha256=qRwHDxsrqRQjbExAwtWcrUtggUCL-UGJQQHnqjIoUIM,3311
3
+ torch_bessel/_C.cpython-310-darwin.so,sha256=ACQdYDXJFXSFdRL8QVsC293diLaUpKSvzLTR6K5bO4c,231080
4
+ torch_bessel/__init__.py,sha256=oohbWz8vxekl7kqDNSWqDH3ORabf9-Tug1KJryKw51A,230
5
+ torch_bessel/ops.py,sha256=htS41Mnz2eTcBWNCs33PSFee__S4KRfJ5zVopM2VNd8,2908
6
+ torch_bessel-0.0.4.dist-info/LICENSE,sha256=do0DI6wu4mF3VXnEXXPYZqVEatoRSSamgz9t80wU7_o,1068
7
+ torch_bessel-0.0.4.dist-info/METADATA,sha256=t73hRVqeL4sosAMOVmAgnJjUfOCsahFtE_jL1yHBy6Q,1347
8
+ torch_bessel-0.0.4.dist-info/WHEEL,sha256=ezfKMaDztqf77C8lvQ0NCnZxkTaOaKLprqJ8q932MhU,109
9
+ torch_bessel-0.0.4.dist-info/top_level.txt,sha256=xmyVjWSQ91kX-v8KCzl6wDwfAmbdZNWsP2EH9b9BccQ,24
10
+ torch_bessel-0.0.4.dist-info/RECORD,,
@@ -1 +1,2 @@
1
+ benchmarks
1
2
  torch_bessel
@@ -1,8 +0,0 @@
1
- torch_bessel/_C.cpython-310-darwin.so,sha256=4CEZxUFE2_LvYHrqV1bTeXn0P9LieU1eSAnRBnP6l10,231080
2
- torch_bessel/__init__.py,sha256=oohbWz8vxekl7kqDNSWqDH3ORabf9-Tug1KJryKw51A,230
3
- torch_bessel/ops.py,sha256=Q9BrLxi15MS53xSt_S9dyE3g8_8_GCFYhfAztIor8Fw,2043
4
- torch_bessel-0.0.3.dist-info/LICENSE,sha256=do0DI6wu4mF3VXnEXXPYZqVEatoRSSamgz9t80wU7_o,1068
5
- torch_bessel-0.0.3.dist-info/METADATA,sha256=7hH6thd8bu4oaKYfNq5v6V4JkUe6g6_C9Irl618y3-8,1220
6
- torch_bessel-0.0.3.dist-info/WHEEL,sha256=ezfKMaDztqf77C8lvQ0NCnZxkTaOaKLprqJ8q932MhU,109
7
- torch_bessel-0.0.3.dist-info/top_level.txt,sha256=cbDIjTj71LuAlVyyYyDt8fOAeLaVeX3Vums5F2FBa-4,13
8
- torch_bessel-0.0.3.dist-info/RECORD,,