topsis-vani-102303064 1.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- topsis_vani_102303064-1.0.2/LICENSE +21 -0
- topsis_vani_102303064-1.0.2/PKG-INFO +81 -0
- topsis_vani_102303064-1.0.2/README.md +59 -0
- topsis_vani_102303064-1.0.2/pyproject.toml +3 -0
- topsis_vani_102303064-1.0.2/setup.cfg +4 -0
- topsis_vani_102303064-1.0.2/setup.py +20 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064/__init__.py +1 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064/pred_as1.py +148 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064.egg-info/PKG-INFO +81 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064.egg-info/SOURCES.txt +12 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064.egg-info/dependency_links.txt +1 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064.egg-info/entry_points.txt +2 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064.egg-info/requires.txt +2 -0
- topsis_vani_102303064-1.0.2/topsis_vani_102303064.egg-info/top_level.txt +1 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 Vani
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the “Software”), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: topsis-vani-102303064
|
|
3
|
+
Version: 1.0.2
|
|
4
|
+
Summary: TOPSIS implementation as a Python package
|
|
5
|
+
Author: Vani
|
|
6
|
+
Author-email: vanimohindru7@gmail.com
|
|
7
|
+
License: MIT
|
|
8
|
+
Requires-Python: >=3.8
|
|
9
|
+
Description-Content-Type: text/markdown
|
|
10
|
+
License-File: LICENSE
|
|
11
|
+
Requires-Dist: pandas
|
|
12
|
+
Requires-Dist: numpy
|
|
13
|
+
Dynamic: author
|
|
14
|
+
Dynamic: author-email
|
|
15
|
+
Dynamic: description
|
|
16
|
+
Dynamic: description-content-type
|
|
17
|
+
Dynamic: license
|
|
18
|
+
Dynamic: license-file
|
|
19
|
+
Dynamic: requires-dist
|
|
20
|
+
Dynamic: requires-python
|
|
21
|
+
Dynamic: summary
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
# Topsis-Vani-102303064
|
|
25
|
+
|
|
26
|
+
This package implements the **TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)** method.
|
|
27
|
+
It is used to rank alternatives based on multiple criteria.
|
|
28
|
+
|
|
29
|
+
---
|
|
30
|
+
|
|
31
|
+
## Installation
|
|
32
|
+
|
|
33
|
+
```bash
|
|
34
|
+
|
|
35
|
+
pip install topsis-vani-102303064
|
|
36
|
+
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
Usage (Command Line)
|
|
40
|
+
|
|
41
|
+
```bash
|
|
42
|
+
topsis <InputDataFile> <Weights> <Impacts> <OutputResultFileName>
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
Example
|
|
46
|
+
```bash
|
|
47
|
+
topsis data.csv "1,1,1,2" "+,+,-,+" output.csv
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
Input File Format
|
|
51
|
+
-CSV file
|
|
52
|
+
-Minimum 3 columns
|
|
53
|
+
-First column: alternative names (non-numeric)
|
|
54
|
+
-Remaining columns: numeric criteria values
|
|
55
|
+
|
|
56
|
+
Example Input
|
|
57
|
+
```bash
|
|
58
|
+
Fund Name,P1,P2,P3,P4
|
|
59
|
+
M1,0.67,0.45,6.5,42.6
|
|
60
|
+
M2,0.60,0.36,3.6,53.3
|
|
61
|
+
M3,0.82,0.67,3.8,63.1
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
Weights and Impacts
|
|
65
|
+
Weights (comma separated):
|
|
66
|
+
-1,1,1,2
|
|
67
|
+
Impacts (+ for benefit, - for cost):
|
|
68
|
+
-+,+,-,+
|
|
69
|
+
|
|
70
|
+
Output
|
|
71
|
+
-Output file is generated in CSV format
|
|
72
|
+
-Two new columns are added:
|
|
73
|
+
-Topsis Score
|
|
74
|
+
-Rank (Rank 1 = Best alternative)
|
|
75
|
+
|
|
76
|
+
License
|
|
77
|
+
-MIT License
|
|
78
|
+
|
|
79
|
+
Author
|
|
80
|
+
-Vani
|
|
81
|
+
-Roll Number: 102303064
|
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
|
|
2
|
+
# Topsis-Vani-102303064
|
|
3
|
+
|
|
4
|
+
This package implements the **TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)** method.
|
|
5
|
+
It is used to rank alternatives based on multiple criteria.
|
|
6
|
+
|
|
7
|
+
---
|
|
8
|
+
|
|
9
|
+
## Installation
|
|
10
|
+
|
|
11
|
+
```bash
|
|
12
|
+
|
|
13
|
+
pip install topsis-vani-102303064
|
|
14
|
+
|
|
15
|
+
```
|
|
16
|
+
|
|
17
|
+
Usage (Command Line)
|
|
18
|
+
|
|
19
|
+
```bash
|
|
20
|
+
topsis <InputDataFile> <Weights> <Impacts> <OutputResultFileName>
|
|
21
|
+
```
|
|
22
|
+
|
|
23
|
+
Example
|
|
24
|
+
```bash
|
|
25
|
+
topsis data.csv "1,1,1,2" "+,+,-,+" output.csv
|
|
26
|
+
```
|
|
27
|
+
|
|
28
|
+
Input File Format
|
|
29
|
+
-CSV file
|
|
30
|
+
-Minimum 3 columns
|
|
31
|
+
-First column: alternative names (non-numeric)
|
|
32
|
+
-Remaining columns: numeric criteria values
|
|
33
|
+
|
|
34
|
+
Example Input
|
|
35
|
+
```bash
|
|
36
|
+
Fund Name,P1,P2,P3,P4
|
|
37
|
+
M1,0.67,0.45,6.5,42.6
|
|
38
|
+
M2,0.60,0.36,3.6,53.3
|
|
39
|
+
M3,0.82,0.67,3.8,63.1
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
Weights and Impacts
|
|
43
|
+
Weights (comma separated):
|
|
44
|
+
-1,1,1,2
|
|
45
|
+
Impacts (+ for benefit, - for cost):
|
|
46
|
+
-+,+,-,+
|
|
47
|
+
|
|
48
|
+
Output
|
|
49
|
+
-Output file is generated in CSV format
|
|
50
|
+
-Two new columns are added:
|
|
51
|
+
-Topsis Score
|
|
52
|
+
-Rank (Rank 1 = Best alternative)
|
|
53
|
+
|
|
54
|
+
License
|
|
55
|
+
-MIT License
|
|
56
|
+
|
|
57
|
+
Author
|
|
58
|
+
-Vani
|
|
59
|
+
-Roll Number: 102303064
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
from setuptools import setup, find_packages
|
|
2
|
+
|
|
3
|
+
setup(
|
|
4
|
+
name="topsis-vani-102303064",
|
|
5
|
+
version="1.0.2",
|
|
6
|
+
author="Vani",
|
|
7
|
+
author_email="vanimohindru7@gmail.com",
|
|
8
|
+
description="TOPSIS implementation as a Python package",
|
|
9
|
+
long_description=open("README.md", encoding="utf-8").read(),
|
|
10
|
+
long_description_content_type="text/markdown",
|
|
11
|
+
packages=find_packages(),
|
|
12
|
+
install_requires=["pandas", "numpy"],
|
|
13
|
+
entry_points={
|
|
14
|
+
"console_scripts": [
|
|
15
|
+
"topsis=topsis_vani_102303064.pred_as1:main"
|
|
16
|
+
]
|
|
17
|
+
},
|
|
18
|
+
license="MIT",
|
|
19
|
+
python_requires=">=3.8",
|
|
20
|
+
)
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .pred_as1 import main
|
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
import pandas as pd
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def error_exit(msg):
|
|
8
|
+
print("Error:", msg)
|
|
9
|
+
sys.exit(1)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def main():
|
|
13
|
+
# --------------------------------------------------
|
|
14
|
+
# 1. Check number of command-line arguments
|
|
15
|
+
# --------------------------------------------------
|
|
16
|
+
if len(sys.argv) != 5:
|
|
17
|
+
error_exit(
|
|
18
|
+
"Incorrect number of parameters.\n"
|
|
19
|
+
"Usage: topsis <InputDataFile> <Weights> <Impacts> <OutputResultFileName>"
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
input_file = sys.argv[1]
|
|
23
|
+
weights_str = sys.argv[2]
|
|
24
|
+
impacts_str = sys.argv[3]
|
|
25
|
+
output_file = sys.argv[4]
|
|
26
|
+
|
|
27
|
+
# --------------------------------------------------
|
|
28
|
+
# 2. Check if input file exists
|
|
29
|
+
# --------------------------------------------------
|
|
30
|
+
if not os.path.isfile(input_file):
|
|
31
|
+
error_exit("Input file not found.")
|
|
32
|
+
|
|
33
|
+
# --------------------------------------------------
|
|
34
|
+
# 3. Read input file (CSV or XLSX)
|
|
35
|
+
# --------------------------------------------------
|
|
36
|
+
try:
|
|
37
|
+
if input_file.endswith(".csv"):
|
|
38
|
+
data = pd.read_csv(input_file)
|
|
39
|
+
elif input_file.endswith(".xlsx"):
|
|
40
|
+
data = pd.read_excel(input_file)
|
|
41
|
+
else:
|
|
42
|
+
error_exit("Input file must be a .csv or .xlsx file.")
|
|
43
|
+
except Exception as e:
|
|
44
|
+
error_exit(f"Unable to read input file: {e}")
|
|
45
|
+
|
|
46
|
+
# --------------------------------------------------
|
|
47
|
+
# 4. Minimum column check (>= 3 columns)
|
|
48
|
+
# --------------------------------------------------
|
|
49
|
+
if data.shape[1] < 3:
|
|
50
|
+
error_exit("Input file must contain at least three columns.")
|
|
51
|
+
|
|
52
|
+
# --------------------------------------------------
|
|
53
|
+
# 5. Extract criteria columns (2nd to last)
|
|
54
|
+
# --------------------------------------------------
|
|
55
|
+
criteria = data.iloc[:, 1:]
|
|
56
|
+
|
|
57
|
+
# --------------------------------------------------
|
|
58
|
+
# 6. Check numeric values in criteria columns
|
|
59
|
+
# --------------------------------------------------
|
|
60
|
+
if not np.all(criteria.applymap(np.isreal)):
|
|
61
|
+
error_exit("From 2nd to last columns must contain numeric values only.")
|
|
62
|
+
|
|
63
|
+
# --------------------------------------------------
|
|
64
|
+
# 7. Validate comma-separated weights & impacts
|
|
65
|
+
# --------------------------------------------------
|
|
66
|
+
if "," not in weights_str:
|
|
67
|
+
error_exit("Weights must be separated by commas.")
|
|
68
|
+
|
|
69
|
+
if "," not in impacts_str:
|
|
70
|
+
error_exit("Impacts must be separated by commas.")
|
|
71
|
+
|
|
72
|
+
try:
|
|
73
|
+
weights = [float(w.strip()) for w in weights_str.split(",")]
|
|
74
|
+
impacts = [i.strip() for i in impacts_str.split(",")]
|
|
75
|
+
except:
|
|
76
|
+
error_exit("Invalid weights or impacts format.")
|
|
77
|
+
|
|
78
|
+
# --------------------------------------------------
|
|
79
|
+
# 8. Check counts match
|
|
80
|
+
# --------------------------------------------------
|
|
81
|
+
if len(weights) != criteria.shape[1] or len(impacts) != criteria.shape[1]:
|
|
82
|
+
error_exit(
|
|
83
|
+
"Number of weights, impacts, and criteria columns must be the same."
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
# --------------------------------------------------
|
|
87
|
+
# 9. Validate impacts (+ or - only)
|
|
88
|
+
# --------------------------------------------------
|
|
89
|
+
for imp in impacts:
|
|
90
|
+
if imp not in ['+', '-']:
|
|
91
|
+
error_exit("Impacts must be either '+' or '-'.")
|
|
92
|
+
|
|
93
|
+
# --------------------------------------------------
|
|
94
|
+
# ---------------- TOPSIS STEPS --------------------
|
|
95
|
+
# --------------------------------------------------
|
|
96
|
+
|
|
97
|
+
# Step 1: Normalize decision matrix
|
|
98
|
+
norm = np.sqrt((criteria ** 2).sum())
|
|
99
|
+
normalized = criteria / norm
|
|
100
|
+
|
|
101
|
+
# Step 2: Apply weights
|
|
102
|
+
weighted = normalized * weights
|
|
103
|
+
|
|
104
|
+
# Step 3: Ideal best and worst
|
|
105
|
+
ideal_best = []
|
|
106
|
+
ideal_worst = []
|
|
107
|
+
|
|
108
|
+
for i in range(len(impacts)):
|
|
109
|
+
if impacts[i] == '+':
|
|
110
|
+
ideal_best.append(weighted.iloc[:, i].max())
|
|
111
|
+
ideal_worst.append(weighted.iloc[:, i].min())
|
|
112
|
+
else:
|
|
113
|
+
ideal_best.append(weighted.iloc[:, i].min())
|
|
114
|
+
ideal_worst.append(weighted.iloc[:, i].max())
|
|
115
|
+
|
|
116
|
+
ideal_best = np.array(ideal_best)
|
|
117
|
+
ideal_worst = np.array(ideal_worst)
|
|
118
|
+
|
|
119
|
+
# Step 4: Distance from ideal best and worst
|
|
120
|
+
dist_best = np.sqrt(((weighted - ideal_best) ** 2).sum(axis=1))
|
|
121
|
+
dist_worst = np.sqrt(((weighted - ideal_worst) ** 2).sum(axis=1))
|
|
122
|
+
|
|
123
|
+
# Step 5: TOPSIS score
|
|
124
|
+
topsis_score = dist_worst / (dist_best + dist_worst)
|
|
125
|
+
|
|
126
|
+
# Step 6: Rank (higher score = better)
|
|
127
|
+
rank = topsis_score.rank(ascending=False, method='dense').astype(int)
|
|
128
|
+
|
|
129
|
+
# --------------------------------------------------
|
|
130
|
+
# 10. Prepare output
|
|
131
|
+
# --------------------------------------------------
|
|
132
|
+
result = data.copy()
|
|
133
|
+
result["Topsis Score"] = topsis_score.round(4)
|
|
134
|
+
result["Rank"] = rank
|
|
135
|
+
|
|
136
|
+
# --------------------------------------------------
|
|
137
|
+
# 11. Save output file
|
|
138
|
+
# --------------------------------------------------
|
|
139
|
+
try:
|
|
140
|
+
result.to_csv(output_file, index=False)
|
|
141
|
+
print("TOPSIS analysis completed successfully.")
|
|
142
|
+
print(f"Output saved to: {output_file}")
|
|
143
|
+
except Exception as e:
|
|
144
|
+
error_exit(f"Unable to write output file: {e}")
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
if __name__ == "__main__":
|
|
148
|
+
main()
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: topsis-vani-102303064
|
|
3
|
+
Version: 1.0.2
|
|
4
|
+
Summary: TOPSIS implementation as a Python package
|
|
5
|
+
Author: Vani
|
|
6
|
+
Author-email: vanimohindru7@gmail.com
|
|
7
|
+
License: MIT
|
|
8
|
+
Requires-Python: >=3.8
|
|
9
|
+
Description-Content-Type: text/markdown
|
|
10
|
+
License-File: LICENSE
|
|
11
|
+
Requires-Dist: pandas
|
|
12
|
+
Requires-Dist: numpy
|
|
13
|
+
Dynamic: author
|
|
14
|
+
Dynamic: author-email
|
|
15
|
+
Dynamic: description
|
|
16
|
+
Dynamic: description-content-type
|
|
17
|
+
Dynamic: license
|
|
18
|
+
Dynamic: license-file
|
|
19
|
+
Dynamic: requires-dist
|
|
20
|
+
Dynamic: requires-python
|
|
21
|
+
Dynamic: summary
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
# Topsis-Vani-102303064
|
|
25
|
+
|
|
26
|
+
This package implements the **TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)** method.
|
|
27
|
+
It is used to rank alternatives based on multiple criteria.
|
|
28
|
+
|
|
29
|
+
---
|
|
30
|
+
|
|
31
|
+
## Installation
|
|
32
|
+
|
|
33
|
+
```bash
|
|
34
|
+
|
|
35
|
+
pip install topsis-vani-102303064
|
|
36
|
+
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
Usage (Command Line)
|
|
40
|
+
|
|
41
|
+
```bash
|
|
42
|
+
topsis <InputDataFile> <Weights> <Impacts> <OutputResultFileName>
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
Example
|
|
46
|
+
```bash
|
|
47
|
+
topsis data.csv "1,1,1,2" "+,+,-,+" output.csv
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
Input File Format
|
|
51
|
+
-CSV file
|
|
52
|
+
-Minimum 3 columns
|
|
53
|
+
-First column: alternative names (non-numeric)
|
|
54
|
+
-Remaining columns: numeric criteria values
|
|
55
|
+
|
|
56
|
+
Example Input
|
|
57
|
+
```bash
|
|
58
|
+
Fund Name,P1,P2,P3,P4
|
|
59
|
+
M1,0.67,0.45,6.5,42.6
|
|
60
|
+
M2,0.60,0.36,3.6,53.3
|
|
61
|
+
M3,0.82,0.67,3.8,63.1
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
Weights and Impacts
|
|
65
|
+
Weights (comma separated):
|
|
66
|
+
-1,1,1,2
|
|
67
|
+
Impacts (+ for benefit, - for cost):
|
|
68
|
+
-+,+,-,+
|
|
69
|
+
|
|
70
|
+
Output
|
|
71
|
+
-Output file is generated in CSV format
|
|
72
|
+
-Two new columns are added:
|
|
73
|
+
-Topsis Score
|
|
74
|
+
-Rank (Rank 1 = Best alternative)
|
|
75
|
+
|
|
76
|
+
License
|
|
77
|
+
-MIT License
|
|
78
|
+
|
|
79
|
+
Author
|
|
80
|
+
-Vani
|
|
81
|
+
-Roll Number: 102303064
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
LICENSE
|
|
2
|
+
README.md
|
|
3
|
+
pyproject.toml
|
|
4
|
+
setup.py
|
|
5
|
+
topsis_vani_102303064/__init__.py
|
|
6
|
+
topsis_vani_102303064/pred_as1.py
|
|
7
|
+
topsis_vani_102303064.egg-info/PKG-INFO
|
|
8
|
+
topsis_vani_102303064.egg-info/SOURCES.txt
|
|
9
|
+
topsis_vani_102303064.egg-info/dependency_links.txt
|
|
10
|
+
topsis_vani_102303064.egg-info/entry_points.txt
|
|
11
|
+
topsis_vani_102303064.egg-info/requires.txt
|
|
12
|
+
topsis_vani_102303064.egg-info/top_level.txt
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
topsis_vani_102303064
|