topsis-anshul-102303930 1.0.0__tar.gz → 1.0.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,97 @@
1
+ Metadata-Version: 2.1
2
+ Name: topsis-anshul-102303930
3
+ Version: 1.0.1
4
+ Summary: A Python package for TOPSIS multi-criteria decision making
5
+ Author: Anshul Kaushal
6
+ Author-email: anshulkaushal27@gmail.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.6
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: pandas
14
+ Requires-Dist: numpy
15
+
16
+ \# Topsis-Anshul-102303930
17
+
18
+
19
+
20
+ \## 📌 Description
21
+
22
+ This package implements the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.
23
+
24
+ TOPSIS is a multi-criteria decision-making approach used to rank alternatives based on their distance from
25
+
26
+ an ideal best and an ideal worst solution.
27
+
28
+
29
+
30
+ ---
31
+
32
+
33
+
34
+ \## ⚙️ Installation
35
+
36
+ Install the package using pip:
37
+
38
+
39
+
40
+ ```bash
41
+
42
+ pip install Topsis-Anshul-102303930
43
+
44
+
45
+
46
+ \## Usage
47
+
48
+ \# After installation, the topsis command becomes available in the terminal.
49
+ topsis <input_csv> <weights> <impacts> <output_csv>
50
+
51
+ Parameters
52
+ Parameter Description
53
+ input_csv CSV file containing the dataset
54
+ weights Comma-separated numerical weights
55
+ impacts Comma-separated impacts (+ for benefit, - for cost)
56
+
57
+ Example Commands
58
+
59
+ topsis sample.csv "1,1,1,1" "+,-,+,+"
60
+
61
+
62
+ Weights and impacts can also be provided without quotes:
63
+
64
+ topsis sample.csv 1,1,1,1 +,-,+,+
65
+
66
+
67
+ Example
68
+ Input File (sample.csv)
69
+
70
+ A CSV file showing data for different mobile handsets with varying features:
71
+
72
+ Model,Storage space(in gb),Camera(in MP),Price(in $),Looks(out of 5)
73
+ M1,16,12,250,5
74
+ M2,16,8,200,3
75
+ M3,32,16,300,4
76
+ M4,32,8,275,4
77
+ M5,16,16,225,2
78
+
79
+ Weights Vector
80
+ [0.25, 0.25, 0.25, 0.25]
81
+
82
+ Impacts Vector
83
+ [+, +, -, +]
84
+
85
+ Command
86
+ topsis sample.csv "0.25,0.25,0.25,0.25" "+,+,-,+"
87
+
88
+ Output
89
+ TOPSIS RESULTS
90
+ -----------------------------
91
+
92
+ P-Score Rank
93
+ 1 0.534277 3
94
+ 2 0.308368 5
95
+ 3 0.691632 1
96
+ 4 0.534737 2
97
+ 5 0.401046 4
@@ -0,0 +1,82 @@
1
+ \# Topsis-Anshul-102303930
2
+
3
+
4
+
5
+ \## 📌 Description
6
+
7
+ This package implements the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.
8
+
9
+ TOPSIS is a multi-criteria decision-making approach used to rank alternatives based on their distance from
10
+
11
+ an ideal best and an ideal worst solution.
12
+
13
+
14
+
15
+ ---
16
+
17
+
18
+
19
+ \## ⚙️ Installation
20
+
21
+ Install the package using pip:
22
+
23
+
24
+
25
+ ```bash
26
+
27
+ pip install Topsis-Anshul-102303930
28
+
29
+
30
+
31
+ \## Usage
32
+
33
+ \# After installation, the topsis command becomes available in the terminal.
34
+ topsis <input_csv> <weights> <impacts> <output_csv>
35
+
36
+ Parameters
37
+ Parameter Description
38
+ input_csv CSV file containing the dataset
39
+ weights Comma-separated numerical weights
40
+ impacts Comma-separated impacts (+ for benefit, - for cost)
41
+
42
+ Example Commands
43
+
44
+ topsis sample.csv "1,1,1,1" "+,-,+,+"
45
+
46
+
47
+ Weights and impacts can also be provided without quotes:
48
+
49
+ topsis sample.csv 1,1,1,1 +,-,+,+
50
+
51
+
52
+ Example
53
+ Input File (sample.csv)
54
+
55
+ A CSV file showing data for different mobile handsets with varying features:
56
+
57
+ Model,Storage space(in gb),Camera(in MP),Price(in $),Looks(out of 5)
58
+ M1,16,12,250,5
59
+ M2,16,8,200,3
60
+ M3,32,16,300,4
61
+ M4,32,8,275,4
62
+ M5,16,16,225,2
63
+
64
+ Weights Vector
65
+ [0.25, 0.25, 0.25, 0.25]
66
+
67
+ Impacts Vector
68
+ [+, +, -, +]
69
+
70
+ Command
71
+ topsis sample.csv "0.25,0.25,0.25,0.25" "+,+,-,+"
72
+
73
+ Output
74
+ TOPSIS RESULTS
75
+ -----------------------------
76
+
77
+ P-Score Rank
78
+ 1 0.534277 3
79
+ 2 0.308368 5
80
+ 3 0.691632 1
81
+ 4 0.534737 2
82
+ 5 0.401046 4
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name="topsis-anshul-102303930",
5
- version="1.0.0",
5
+ version="1.0.1",
6
6
  author="Anshul Kaushal",
7
7
  author_email="anshulkaushal27@gmail.com",
8
8
  description="A Python package for TOPSIS multi-criteria decision making",
@@ -0,0 +1,97 @@
1
+ Metadata-Version: 2.1
2
+ Name: topsis-anshul-102303930
3
+ Version: 1.0.1
4
+ Summary: A Python package for TOPSIS multi-criteria decision making
5
+ Author: Anshul Kaushal
6
+ Author-email: anshulkaushal27@gmail.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.6
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: pandas
14
+ Requires-Dist: numpy
15
+
16
+ \# Topsis-Anshul-102303930
17
+
18
+
19
+
20
+ \## 📌 Description
21
+
22
+ This package implements the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.
23
+
24
+ TOPSIS is a multi-criteria decision-making approach used to rank alternatives based on their distance from
25
+
26
+ an ideal best and an ideal worst solution.
27
+
28
+
29
+
30
+ ---
31
+
32
+
33
+
34
+ \## ⚙️ Installation
35
+
36
+ Install the package using pip:
37
+
38
+
39
+
40
+ ```bash
41
+
42
+ pip install Topsis-Anshul-102303930
43
+
44
+
45
+
46
+ \## Usage
47
+
48
+ \# After installation, the topsis command becomes available in the terminal.
49
+ topsis <input_csv> <weights> <impacts> <output_csv>
50
+
51
+ Parameters
52
+ Parameter Description
53
+ input_csv CSV file containing the dataset
54
+ weights Comma-separated numerical weights
55
+ impacts Comma-separated impacts (+ for benefit, - for cost)
56
+
57
+ Example Commands
58
+
59
+ topsis sample.csv "1,1,1,1" "+,-,+,+"
60
+
61
+
62
+ Weights and impacts can also be provided without quotes:
63
+
64
+ topsis sample.csv 1,1,1,1 +,-,+,+
65
+
66
+
67
+ Example
68
+ Input File (sample.csv)
69
+
70
+ A CSV file showing data for different mobile handsets with varying features:
71
+
72
+ Model,Storage space(in gb),Camera(in MP),Price(in $),Looks(out of 5)
73
+ M1,16,12,250,5
74
+ M2,16,8,200,3
75
+ M3,32,16,300,4
76
+ M4,32,8,275,4
77
+ M5,16,16,225,2
78
+
79
+ Weights Vector
80
+ [0.25, 0.25, 0.25, 0.25]
81
+
82
+ Impacts Vector
83
+ [+, +, -, +]
84
+
85
+ Command
86
+ topsis sample.csv "0.25,0.25,0.25,0.25" "+,+,-,+"
87
+
88
+ Output
89
+ TOPSIS RESULTS
90
+ -----------------------------
91
+
92
+ P-Score Rank
93
+ 1 0.534277 3
94
+ 2 0.308368 5
95
+ 3 0.691632 1
96
+ 4 0.534737 2
97
+ 5 0.401046 4
@@ -1,45 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: topsis-anshul-102303930
3
- Version: 1.0.0
4
- Summary: A Python package for TOPSIS multi-criteria decision making
5
- Author: Anshul Kaushal
6
- Author-email: anshulkaushal27@gmail.com
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: License :: OSI Approved :: MIT License
9
- Classifier: Operating System :: OS Independent
10
- Requires-Python: >=3.6
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: pandas
14
- Requires-Dist: numpy
15
-
16
- \# Topsis-Anshul-102303930
17
-
18
-
19
-
20
- \## 📌 Description
21
-
22
- This package implements the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.
23
-
24
- TOPSIS is a multi-criteria decision-making approach used to rank alternatives based on their distance from
25
-
26
- an ideal best and an ideal worst solution.
27
-
28
-
29
-
30
- ---
31
-
32
-
33
-
34
- \## ⚙️ Installation
35
-
36
- Install the package using pip:
37
-
38
-
39
-
40
- ```bash
41
-
42
- pip install Topsis-Anshul-102303930
43
-
44
-
45
-
@@ -1,30 +0,0 @@
1
- \# Topsis-Anshul-102303930
2
-
3
-
4
-
5
- \## 📌 Description
6
-
7
- This package implements the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.
8
-
9
- TOPSIS is a multi-criteria decision-making approach used to rank alternatives based on their distance from
10
-
11
- an ideal best and an ideal worst solution.
12
-
13
-
14
-
15
- ---
16
-
17
-
18
-
19
- \## ⚙️ Installation
20
-
21
- Install the package using pip:
22
-
23
-
24
-
25
- ```bash
26
-
27
- pip install Topsis-Anshul-102303930
28
-
29
-
30
-
@@ -1,45 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: topsis-anshul-102303930
3
- Version: 1.0.0
4
- Summary: A Python package for TOPSIS multi-criteria decision making
5
- Author: Anshul Kaushal
6
- Author-email: anshulkaushal27@gmail.com
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: License :: OSI Approved :: MIT License
9
- Classifier: Operating System :: OS Independent
10
- Requires-Python: >=3.6
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: pandas
14
- Requires-Dist: numpy
15
-
16
- \# Topsis-Anshul-102303930
17
-
18
-
19
-
20
- \## 📌 Description
21
-
22
- This package implements the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.
23
-
24
- TOPSIS is a multi-criteria decision-making approach used to rank alternatives based on their distance from
25
-
26
- an ideal best and an ideal worst solution.
27
-
28
-
29
-
30
- ---
31
-
32
-
33
-
34
- \## ⚙️ Installation
35
-
36
- Install the package using pip:
37
-
38
-
39
-
40
- ```bash
41
-
42
- pip install Topsis-Anshul-102303930
43
-
44
-
45
-