tonik 0.1.12__tar.gz → 0.1.13__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tonik-0.1.12 → tonik-0.1.13}/.devcontainer/devcontainer.json +12 -4
- {tonik-0.1.12 → tonik-0.1.13}/HOW_TO_RELEASE.md +6 -0
- {tonik-0.1.12 → tonik-0.1.13}/PKG-INFO +7 -5
- {tonik-0.1.12 → tonik-0.1.13}/pyproject.toml +29 -6
- {tonik-0.1.12 → tonik-0.1.13}/src/tonik/xarray2zarr.py +5 -1
- {tonik-0.1.12 → tonik-0.1.13}/tests/test_save.py +11 -0
- tonik-0.1.12/docs/grafana_dashboard_screenshot.png +0 -0
- tonik-0.1.12/docs/grafana_integration.md +0 -35
- tonik-0.1.12/docs/grafana_login_screenshot.png +0 -0
- tonik-0.1.12/docs/index.md +0 -30
- tonik-0.1.12/docs/tonik_example.ipynb +0 -350
- {tonik-0.1.12 → tonik-0.1.13}/.gitignore +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/LICENSE +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/README.md +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/grafana_example/Dockerfile_api +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/grafana_example/Dockerfile_grafana +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/grafana_example/dashboards/demo_dashboard.json +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/grafana_example/docker-compose.yml +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/grafana_example/grafana.ini +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/grafana_example/provisioning/dashboards/default.yaml +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/grafana_example/provisioning/datasources/default.yaml +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/mkdocs.yml +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/src/tonik/__init__.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/src/tonik/api.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/src/tonik/package_data/index.html +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/src/tonik/storage.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/src/tonik/utils.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/src/tonik/xarray2netcdf.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/tests/backend_speed_test.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/tests/conftest.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/tests/test_api.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/tests/test_storage.py +0 -0
- {tonik-0.1.12 → tonik-0.1.13}/tests/test_utils.py +0 -0
|
@@ -3,8 +3,7 @@
|
|
|
3
3
|
{
|
|
4
4
|
"name": "Python 3",
|
|
5
5
|
// Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile
|
|
6
|
-
"image": "mcr.microsoft.com/devcontainers/python:1-3.
|
|
7
|
-
//"image": "mcr.microsoft.com/devcontainers/python:1-3.9-bullseye",
|
|
6
|
+
"image": "mcr.microsoft.com/devcontainers/python:1-3.9-bullseye",
|
|
8
7
|
|
|
9
8
|
|
|
10
9
|
// Features to add to the dev container. More info: https://containers.dev/features.
|
|
@@ -15,10 +14,19 @@
|
|
|
15
14
|
"appPort": ["8000:8000"],
|
|
16
15
|
|
|
17
16
|
// Use 'postCreateCommand' to run commands after the container is created.
|
|
18
|
-
"postCreateCommand": "pip3 install -e .",
|
|
17
|
+
"postCreateCommand": "pip3 install -e . && pip3 install httpx pytest ipykernel hatch",
|
|
19
18
|
|
|
20
19
|
// Configure tool-specific properties.
|
|
21
|
-
|
|
20
|
+
"customizations": {
|
|
21
|
+
"vscode": {
|
|
22
|
+
"extensions": [
|
|
23
|
+
"ms-python.python",
|
|
24
|
+
"ms-toolsai.jupyter",
|
|
25
|
+
"astral-sh.ruff"
|
|
26
|
+
]
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
}
|
|
22
30
|
|
|
23
31
|
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
|
24
32
|
// "remoteUser": "root"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: tonik
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.13
|
|
4
4
|
Summary: Store time series data as HDF5 files and access them through an API.
|
|
5
5
|
Project-URL: Homepage, https://tsc-tools.github.io/tonik
|
|
6
6
|
Project-URL: Issues, https://github.com/tsc-tools/tonik/issues
|
|
@@ -9,8 +9,7 @@ License-File: LICENSE
|
|
|
9
9
|
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|
|
10
10
|
Classifier: Operating System :: OS Independent
|
|
11
11
|
Classifier: Programming Language :: Python :: 3
|
|
12
|
-
Requires-Python: >=3.
|
|
13
|
-
Requires-Dist: dask<=2024.10.0
|
|
12
|
+
Requires-Python: >=3.9
|
|
14
13
|
Requires-Dist: datashader>=0.14
|
|
15
14
|
Requires-Dist: fastapi>=0.112
|
|
16
15
|
Requires-Dist: h5netcdf>=1.1
|
|
@@ -20,9 +19,12 @@ Requires-Dist: netcdf4>=1.6
|
|
|
20
19
|
Requires-Dist: pandas>=2.0
|
|
21
20
|
Requires-Dist: python-json-logger>=2.0
|
|
22
21
|
Requires-Dist: uvicorn[standard]>=0.22
|
|
23
|
-
Requires-Dist: xarray
|
|
24
|
-
Requires-Dist: zarr
|
|
22
|
+
Requires-Dist: xarray[accel,io,parallel]
|
|
23
|
+
Requires-Dist: zarr<3; python_version < '3.11'
|
|
24
|
+
Requires-Dist: zarr>=3.0.3; python_version >= '3.11'
|
|
25
25
|
Provides-Extra: dev
|
|
26
|
+
Requires-Dist: httpx; extra == 'dev'
|
|
27
|
+
Requires-Dist: ipykernel; extra == 'dev'
|
|
26
28
|
Requires-Dist: mkdocs; extra == 'dev'
|
|
27
29
|
Requires-Dist: mkdocs-jupyter; extra == 'dev'
|
|
28
30
|
Requires-Dist: mkdocstrings[python]; extra == 'dev'
|
|
@@ -2,9 +2,17 @@
|
|
|
2
2
|
requires = ["hatchling"]
|
|
3
3
|
build-backend = "hatchling.build"
|
|
4
4
|
|
|
5
|
+
[tool.hatch.build.targets.sdist]
|
|
6
|
+
exclude = [
|
|
7
|
+
"/.github",
|
|
8
|
+
"/site",
|
|
9
|
+
"/docs",
|
|
10
|
+
"/sandbox.ipynb"
|
|
11
|
+
]
|
|
12
|
+
|
|
5
13
|
[project]
|
|
6
14
|
name = "tonik"
|
|
7
|
-
version = "0.1.
|
|
15
|
+
version = "0.1.13"
|
|
8
16
|
authors = [
|
|
9
17
|
{ name="Yannik Behr", email="y.behr@gns.cri.nz" },
|
|
10
18
|
{ name="Christof Mueller", email="c.mueller@gns.cri.nz" }
|
|
@@ -12,17 +20,16 @@ authors = [
|
|
|
12
20
|
|
|
13
21
|
description = "Store time series data as HDF5 files and access them through an API."
|
|
14
22
|
readme = "README.md"
|
|
15
|
-
requires-python = ">=3.
|
|
23
|
+
requires-python = ">=3.9"
|
|
16
24
|
classifiers = [
|
|
17
25
|
"Programming Language :: Python :: 3",
|
|
18
26
|
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
|
|
19
27
|
"Operating System :: OS Independent",
|
|
20
28
|
]
|
|
21
29
|
dependencies = [
|
|
22
|
-
"dask<=2024.10.0",
|
|
23
30
|
"h5py>=3.8",
|
|
24
31
|
"datashader>=0.14",
|
|
25
|
-
"xarray
|
|
32
|
+
"xarray[io,accel,parallel]",
|
|
26
33
|
"pandas>=2.0",
|
|
27
34
|
"netcdf4>=1.6",
|
|
28
35
|
"h5netcdf>=1.1",
|
|
@@ -30,11 +37,14 @@ dependencies = [
|
|
|
30
37
|
"uvicorn[standard]>=0.22",
|
|
31
38
|
"fastapi>=0.112",
|
|
32
39
|
"matplotlib",
|
|
33
|
-
"zarr",
|
|
40
|
+
"zarr>=3.0.3; python_version >= '3.11'",
|
|
41
|
+
"zarr<3; python_version < '3.11'",
|
|
34
42
|
]
|
|
35
43
|
|
|
36
44
|
[project.optional-dependencies]
|
|
37
45
|
dev = ["pytest",
|
|
46
|
+
"httpx",
|
|
47
|
+
"ipykernel",
|
|
38
48
|
"mkdocs",
|
|
39
49
|
"mkdocstrings[python]",
|
|
40
50
|
"mkdocs-jupyter"]
|
|
@@ -48,4 +58,17 @@ tonik_api = "tonik.api:main"
|
|
|
48
58
|
test_data = "tonik.utils:main"
|
|
49
59
|
|
|
50
60
|
[tool.pytest.ini_options]
|
|
51
|
-
log_cli = true
|
|
61
|
+
log_cli = true
|
|
62
|
+
|
|
63
|
+
[tool.hatch.envs.test]
|
|
64
|
+
dependencies = [
|
|
65
|
+
"coverage[toml]",
|
|
66
|
+
"pytest",
|
|
67
|
+
"httpx"
|
|
68
|
+
]
|
|
69
|
+
|
|
70
|
+
[[tool.hatch.envs.test.matrix]]
|
|
71
|
+
python = ["3.11", "3.9"]
|
|
72
|
+
|
|
73
|
+
[tool.hatch.envs.test.scripts]
|
|
74
|
+
run-pytest = "pytest tests"
|
|
@@ -7,6 +7,7 @@ import xarray as xr
|
|
|
7
7
|
|
|
8
8
|
from tonik import Storage, generate_test_data
|
|
9
9
|
from tonik.xarray2netcdf import xarray2netcdf
|
|
10
|
+
from tonik.xarray2zarr import xarray2zarr
|
|
10
11
|
|
|
11
12
|
|
|
12
13
|
def test_xarray2netcdf(tmp_path_factory):
|
|
@@ -302,3 +303,13 @@ def test_xarray2zarr_overwrite(tmp_path_factory):
|
|
|
302
303
|
xdf_test.values, xdf1.rsam.values)
|
|
303
304
|
np.testing.assert_array_equal(
|
|
304
305
|
xdf_test.datetime.values, xdf1.datetime.values)
|
|
306
|
+
|
|
307
|
+
|
|
308
|
+
def test_xarray2zarr_errors(tmp_path_factory):
|
|
309
|
+
temp_dir = tmp_path_factory.mktemp('test_xarray2zarr')
|
|
310
|
+
start = datetime(2022, 7, 18, 8, 0, 0)
|
|
311
|
+
xdf = generate_test_data(dim=1, intervals=3, freq='1h', tstart=start)
|
|
312
|
+
for feature in xdf.data_vars.keys():
|
|
313
|
+
xdf[feature].to_zarr(os.path.join(temp_dir, feature + '.zarr'),
|
|
314
|
+
mode='w')
|
|
315
|
+
xarray2zarr(xdf, temp_dir, mode='a')
|
|
Binary file
|
|
@@ -1,35 +0,0 @@
|
|
|
1
|
-
# Grafana integration
|
|
2
|
-
|
|
3
|
-
Tonik's API was written to work well with [Grafana](https://grafana.com/oss/grafana/) for visualising data and data labels.
|
|
4
|
-
|
|
5
|
-
The [repo](https://github.com/tsc-tools/tonik) contains a Grafana
|
|
6
|
-
[example](https://github.com/tsc-tools/tonik/tree/main/grafana_example) that demonstrates
|
|
7
|
-
an example setup using [docker-compose](https://docs.docker.com/compose/).
|
|
8
|
-
|
|
9
|
-
To run the example you first have to install [docker](https://docs.docker.com/get-started/get-docker/) and [docker-compose](https://docs.docker.com/compose/install/). Then get a local copy of the repository by running:
|
|
10
|
-
|
|
11
|
-
```
|
|
12
|
-
git clone --depth=1 https://github.com/tsc-tools/tonik.git
|
|
13
|
-
```
|
|
14
|
-
|
|
15
|
-
and finally start the example by running the following commands:
|
|
16
|
-
```
|
|
17
|
-
cd tonik/grafana_example
|
|
18
|
-
docker-compose up --build
|
|
19
|
-
```
|
|
20
|
-
|
|
21
|
-
This will build and start the necessary docker containers and then start Grafana on port `11223` of your host machine. Should this port not be available you can change the port in the `docker-compose.yml` file under the `ports` section.
|
|
22
|
-
|
|
23
|
-
Navigating to [http://localhost:11223](http://localhost:11223) will show the following login screen:
|
|
24
|
-
|
|
25
|
-

|
|
26
|
-
|
|
27
|
-
Entering the shown details will then load the following demo dashboard:
|
|
28
|
-
|
|
29
|
-

|
|
30
|
-
|
|
31
|
-
To shut down the grafana instance first stop docker-compose using Ctrl-c and then clean up by running
|
|
32
|
-
|
|
33
|
-
```
|
|
34
|
-
docker-compose down
|
|
35
|
-
```
|
|
Binary file
|
tonik-0.1.12/docs/index.md
DELETED
|
@@ -1,30 +0,0 @@
|
|
|
1
|
-
# Tonik
|
|
2
|
-
|
|
3
|
-
Tonik provides you with a solution to store and retrieve scientific time-series data as well as serving it through an API.
|
|
4
|
-
For visualisations, the API can serve large requests very quickly by downsampling the data to the requested resolution on demand. The API was optimised to visualise time-series and data labels with [Grafana](https://grafana.com/oss/grafana/).
|
|
5
|
-
|
|
6
|
-
## Requirements
|
|
7
|
-
* h5py
|
|
8
|
-
* datashader
|
|
9
|
-
* xarray
|
|
10
|
-
* pandas
|
|
11
|
-
* netcdf4
|
|
12
|
-
* h5netcdf
|
|
13
|
-
* python-json-logger
|
|
14
|
-
* uvicorn
|
|
15
|
-
* fastapi
|
|
16
|
-
* matplotlib (only needed to reproduce the examples in the user guide)
|
|
17
|
-
|
|
18
|
-
## Installation
|
|
19
|
-
```
|
|
20
|
-
pip install -U tonik
|
|
21
|
-
```
|
|
22
|
-
|
|
23
|
-
## Documentation
|
|
24
|
-
|
|
25
|
-
Learn more about tonik in its official [documentation](https://tsc-tools.github.io/tonik.github.io/)
|
|
26
|
-
Try out a [Jupyter notebook](https://github.com/tsc-tools/tonik/blob/main/docs/tonik_example.ipynb)
|
|
27
|
-
|
|
28
|
-
## Get in touch
|
|
29
|
-
|
|
30
|
-
Report bugs, suggest features, view the source code, and ask questions [on GitHub](https://github.com/tsc-tools/tonik/issues).
|
|
@@ -1,350 +0,0 @@
|
|
|
1
|
-
{
|
|
2
|
-
"cells": [
|
|
3
|
-
{
|
|
4
|
-
"cell_type": "markdown",
|
|
5
|
-
"metadata": {},
|
|
6
|
-
"source": [
|
|
7
|
-
"# User Guide\n",
|
|
8
|
-
"## Examples on how to store and retrieve data using Storage "
|
|
9
|
-
]
|
|
10
|
-
},
|
|
11
|
-
{
|
|
12
|
-
"cell_type": "code",
|
|
13
|
-
"execution_count": 1,
|
|
14
|
-
"metadata": {},
|
|
15
|
-
"outputs": [],
|
|
16
|
-
"source": [
|
|
17
|
-
"from datetime import datetime\n",
|
|
18
|
-
"import numpy as np\n",
|
|
19
|
-
"import pandas as pd\n",
|
|
20
|
-
"import requests\n",
|
|
21
|
-
"import xarray as xr\n",
|
|
22
|
-
"from tonik import Storage "
|
|
23
|
-
]
|
|
24
|
-
},
|
|
25
|
-
{
|
|
26
|
-
"cell_type": "markdown",
|
|
27
|
-
"metadata": {},
|
|
28
|
-
"source": [
|
|
29
|
-
"You can define any directory structure within a storage group. We here use the hierarchy that is common for seismometers which is network, site, sensor, and channel. Data can be stored under each of them. We will start by generating fake spectrogram data and then store that under a channel."
|
|
30
|
-
]
|
|
31
|
-
},
|
|
32
|
-
{
|
|
33
|
-
"cell_type": "code",
|
|
34
|
-
"execution_count": 2,
|
|
35
|
-
"metadata": {},
|
|
36
|
-
"outputs": [
|
|
37
|
-
{
|
|
38
|
-
"data": {
|
|
39
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAGwCAYAAAB/xbX8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUWlJREFUeJzt3Xd4VFX+P/D3nR6SzFAkzRSidBALKoSqkCUqiyDZtdKEH+y6AQREhZWiiAZZKRaKuhhkFUFUsH3FEiGKBESkKoYWSBCSKJIEEqbe8/tjJgNjgplyySST9+t57gO55dzPmZk7+eScc8+VhBACRERERHVMFewAiIiIqHFiEkJERERBwSSEiIiIgoJJCBEREQUFkxAiIiIKCiYhREREFBRMQoiIiCgoNMEOIBCyLOPkyZOIjIyEJEnBDoeIiOoxIQTOnj2LuLg4qFSX729ws9kMq9UacDk6nQ4Gg0GBiOqvBp2EnDx5EgkJCcEOg4iIGpDCwkLEx8dflrLNZjOSkyJQVOIIuKyYmBjk5+eHdCLSoJOQyMhIAECfLpOhMjSBavdByK7sUxVmgKTTufeVmppwvk1L5/9lgbPxOqjszsliw0rsEFoJks35s8bsgFA5W1YsTTUoba1Gyz3OcivitNCcF9BWyACA8D2/QI5u5jzn6XKIM2WQz1sAAOpmJkAIiJgrnEEcOwG5fSvnvudtkM5WAGZnuXJsC5y+zgQAqIwGrthnR/iRUgCA0Koh/3wEapNzu4i9wnksABgMkMO0ONPZCAA4Gy8hvAgwHTU76+oQUFfanOestAJ2B2RjGACgrE0EtJUC4cfKnfueOw8IZ71EuHMfyeq8kH7r0RLnrpQg652ntV9pRq/WhwEAe3+7Eja7GufPOV9vjd4OrVZG1Vy8DllCmN7ufE1UMnrHHMV3vyY6y5cEft0ZAwDQnwEqEmSorM7XXtYJNDmhQsx2Z12tJh00lc5ydAdOAAYdYHfGJ5eWQWUywtYmzllXix3qX8uc24p+hdQkDPK5Smfd7DaoO7SGw/U6aA79AvsZ52utiYmC/VQR1O1aO4PXqiGdrYTcPMIZ79FfYOuS7Nx0xgxxtACqCOc2REbAfvQ4NC1buF4kB2BybjMnt0BllBbNcwqcMUU1hbllEwDA6c5ahP0mUBnlrHd4kQAkoEmR830LO3AKjuJfnfUyRgKyDCnMGbvjyhawNDcg7OQ55ylNBsga5194FXE6GE7bYW+iBgA0OXUe6jIzRMEJZ1nh4XC46q02mYAwPcxtne+FptKO4hubQOv6mDX/qQLmK5xvvlBJqIxWw9LUuQ0SYG0mYDc635sWseU483u48xwleqisEqxXOLdpytVo8ouznhEnZRhOW2GLdH4NhZ2qREV8OCTZ+cFx6FVw6J37Nt/xKxzNmuB0Z+freTbZ9RI3cX5ejUdUQNXczxJgOmLD+ZbOclV2IOKE+cJ1UH4ecLWcit/PQNJoAIfrcx/dHHKYDupS52fFktgU56/QOou1A2GnraiMcn7OtZUywooqIR0udMZ79hyqqMIMQPtkqCqc1/eZa5ujMtr5vtgiAJtJuOONPCah/EYzhM35PklaB0SZ61q64jyk/HBIzpcPhmvP4P9d/S1GGYsAAB9XhOMXe3P3eb/8tT0itc5zDr3ie/zmiESi9jcAwKaznbC/1Pn+Hiu+AvowGyrLnL/c2iQWYUJ8Nkoczu+R7DMdoZGc19a2gmTIsgRHuev7VC9DF2GBxXWsJsyOq2Kcn8+SikiUFkegyTHna2ZtJiBrnRWVWligUsuQHc7XIa5lKdSSjON5sc7XzCZBumj+blkrEBbvfE1bRpxFYsQZlJid3/m/VkZgQNzPAIB1B26AzmCDzep8/RwlYRB6GZoy5/svWZ2fAQDQFptxYOUc9++Oy8FqtaKoxIHjO1vBGOl/a0v5WRlJXY/BarUyCamvqrpgNGo9VBoDVJIWsutTrJJ0kKSLkhCVHhqN842UZAG1TgeVypV0aF1JiOtbQWO/kIQ4tBqo9WpoXF/sap0WGruARuv80tKo9JDVznJVKguEpIMsObepVTpnEqJ2/eaWdJBdMajUKkgqu3tUjqzWQ61zblPrnTFpXMcJtRqypHWWB0Co9c5jXTvLau1Fx0pQ6wCNpuo1ElCrVa5zSoBwQHaVq9EaoNEKaNQW12skX0hCXPtIaoer3gaoDRLgqooqDNBFOONRV+oh29VQOZwb1QY71FqHOwmBrIJab3O9JjL0EVpoKvUX4jNcqLcqTIbK9dpDL6DWq6DRuBINrQ4ajeuXmUoHqPTubxdZ0kKl0kFUvb4OO9Qqs3ubJOkgS84YhASo1XpIrn01Kh0gaT3+r656z9RqSCqH+z2WpAvn0KgFhKSDyvW+QK0HJK2zDGcQzhgBaDQG52fHtU1W66HRVtVbC7VOQO36havWOZMQjUbtikkPyRWfSqUDhAzJVY6kMcChNUCjdtYNmgtJiFqng0ZrB7SucjQCalfMVWVVlat2vZ5V14hGY4dab4C7WI0DGu2FJEStU6PqJYIEqAwCqjBXotnEAtV51/tg0EOlktzbVFa1u54arQyNRgWh1bheTwc0WoM7CZG0KkB34RqXNAb351zl+k5WhbmuNb1nEqLRqqHWuZIQlfN6uHAdyBeSEJUOkkrj8bmX1XqoXZ97h8YAjdaVhEiARqOCRqu7EL9adn/PVL2WgPP7B2qD85qD81pT653nl/WAw3AhCVHrJKjCAKG5KAmxut6jJgKSweD+JapuokdYhAbGSFdiqVLDYLvwNa6p1MMVLppEqhFm1yBc59xXL7TQ2PSucg1Qh6mgsrre73A9wl37A4DOqoNG5XDvC1mCsF1IQtRNJPexqiZ2aMJd177QQxVmgFrv+rwaBKBzvZ9NJOdr70pCNOF6qCXZmbDB+f10cRICnYC6ic21rxW6CJ37O1ENPfQR2gt1MajgcH3piTADhF6GynLh/VfZql5ruN6ry999HxEpISLS//PIaBxDDBp0EkJERFQfOYQMRwBPZnO4EuNQxySEiIhIYTIEZPifhQRybEPCW3SJiIgoKNgSQkREpDAZMgLpUAns6IaDSQgREZHCHELAIfzvUgnk2IaE3TFEREQUFGwJISIiUhgHpnqHSQgREZHCZAg4mITUit0xREREFBRsCSEiIlIYu2O8wySEiIhIYbw7xjvsjiEiIqKgYEsIERGRwmTXEsjxjQGTECIiIoU5Arw7JpBjGxImIURERApzCAT4FF3lYqnPOCaEiIiIgoItIURERArjmBDvMAkhIiJSmAwJDkgBHd8YsDuGiIiIgoItIURERAqThXMJ5PjGgEkIERGRwhwBdscEcmxDwu4YIiIiCgq2hBARESmMLSHeYRJCRESkMFlIkEUAd8cEcGxDwu4YIiIiCgq2hBARESmM3THeYRJCRESkMAdUcATQ2eBQMJb6jEkIERGRwkSAY0IEx4QQERERXT5sCSEiIlIYx4R4h0kIERGRwhxCBYcIYExII5m2nd0xREREFBRsCSEiIlKYDAlyAH/ny2gcTSFMQoiIiBTGMSHeYXcMERFRA+dwODBz5kwkJycjLCwMV199NZ5++mkIcaFFRQiBWbNmITY2FmFhYUhNTcWhQ4eCGDWTECIiIsVVDUwNZPHFc889h2XLluHll1/GgQMH8Nxzz2H+/Pl46aWX3PvMnz8fL774IpYvX47t27cjPDwcaWlpMJvNSlffa+yOISIiUphzTEgAD7BzHVteXu6xXq/XQ6/XV9t/69atGDx4MAYOHAgAaNWqFd5++2189913AJytIIsXL8aMGTMwePBgAMCqVasQHR2NDRs24N577/U71kCwJYSIiKieSkhIgMlkci+ZmZk17tejRw9kZ2fj4MGDAIA9e/Zgy5YtuP322wEA+fn5KCoqQmpqqvsYk8mEbt26ITc39/JX5BLYEkJERKQwOcBnx1TdHVNYWAij0eheX1MrCABMmzYN5eXlaN++PdRqNRwOB5555hk88MADAICioiIAQHR0tMdx0dHR7m3BwCSEiIhIYYFPVuZMQoxGo0cScinvvPMO3nrrLaxevRqdOnXC7t27MWnSJMTFxWHkyJF+x3G5MQkhIiJSmAxVnc4T8uijj2LatGnusR3XXHMNjh8/jszMTIwcORIxMTEAgOLiYsTGxrqPKy4uxnXXXed3nIHimBAiIqIGrrKyEiqV5690tVoNWZYBAMnJyYiJiUF2drZ7e3l5ObZv346UlJQ6jfVibAkhIiJSmENIcIgAJivz8dhBgwbhmWeeQWJiIjp16oRdu3Zh4cKFGD16NABAkiRMmjQJc+fORZs2bZCcnIyZM2ciLi4OQ4YM8TvOQDEJISIiUpgjwIGpDh+7Y1566SXMnDkT//rXv1BSUoK4uDj84x//wKxZs9z7PPbYY6ioqMC4ceNQWlqKXr16YePGjTAYDH7HGSgmIURERA1cZGQkFi9ejMWLF19yH0mSMGfOHMyZM6fuAqsFkxAiIiKFyUIFOYC7Y2TBB9gRERGRH+q6O6ah4t0xREREFBRsCSEiIlKYDN/vcPnj8Y1BUFtCvHn0MBERUUNTNVlZIEtjENSWkKpHD7/xxhvo1KkTvv/+ezz44IMwmUyYOHFiMEMjIiKiyyyoSUhtjx4mIiJqiAJ/dkzjaAkJai1re/TwH1ksFpSXl3ssRERE9Y0MKeClMQhqS0htjx7+o8zMTDz11FN1HCUREZFv2BLinaDW8uJHD//www9444038Pzzz+ONN96ocf/p06ejrKzMvRQWFtZxxERERKSUoLaE1Pbo4T/S6/XQ6/V1HSYREZFPAp+srHG0hAQ1Cant0cNEREQNkSwkyIHMExLAsQ1JUJOQ2h49TERERKErqEmIN48eJiIiamjkALtjOFlZHfDm0cNEREQNTeBP0W0cSUjjqCURERHVO3yAHRERkcIckOAIYMKxQI5tSJiEEBERKYzdMd5pHLUkIiKieoctIURERApzILAuFYdyodRrTEKIiIgUxu4Y7zAJISIiUhgfYOedxlFLIiIiqnfYEkJERKQwAQlyAGNCBG/RJSIiIn+wO8Y7jaOWREREVO+wJYSIiEhhspAgC/+7VAI5tiFhEkJERKQwR4BP0Q3k2IakcdSSiIiI6h22hBARESmM3THeYUsIERGRwmSoAl580apVK0iSVG3JyMgAAJjNZmRkZKBFixaIiIhAeno6iouLL0fVfcIkhIiIqIHbsWMHTp065V6++OILAMDf//53AMDkyZPx0UcfYd26dcjJycHJkycxdOjQYIYMgN0xREREinMICY4AulSqji0vL/dYr9frodfrq+3fsmVLj5/nzZuHq6++Gn379kVZWRlWrFiB1atXo1+/fgCArKwsdOjQAdu2bUP37t39jjNQbAkhIiJSWNWYkEAWAEhISIDJZHIvmZmZtZ7barXizTffxOjRoyFJEnbu3AmbzYbU1FT3Pu3bt0diYiJyc3Mv22vgDbaEEBERKUwE+BRd4Tq2sLAQRqPRvb6mVpA/2rBhA0pLSzFq1CgAQFFREXQ6HZo2beqxX3R0NIqKivyOUQlMQoiIiOopo9HokYR4Y8WKFbj99tsRFxd3maJSDpMQIiIihTkgwRHAQ+j8Pfb48eP48ssv8f7777vXxcTEwGq1orS01KM1pLi4GDExMX7HqASOCSEiIlKYLAIdF+LfebOyshAVFYWBAwe613Xt2hVarRbZ2dnudXl5eSgoKEBKSkqgVQ0IW0KIiIhCgCzLyMrKwsiRI6HRXPj1bjKZMGbMGEyZMgXNmzeH0WjEhAkTkJKSEtQ7YwAmIURERIqTAxyY6s+xX375JQoKCjB69Ohq2xYtWgSVSoX09HRYLBakpaVh6dKlfsenFCYhRERECpMhQQ5gTIg/xw4YMABC1NyPYzAYsGTJEixZssTvmC4HjgkhIiKioGBLCBERkcKUmjE11DEJISIiUlgwxoQ0RI2jlkRERFTvsCWEiIhIYTIuPP/F3+MbAyYhREREChMB3h0jmIQQERGRPy5+Eq6/xzcGHBNCREREQcGWECIiIoXx7hjvMAkhIiJSGLtjvNM4Ui0iIiKqd9gSQkREpLBgPDumIWISQkREpDB2x3iH3TFEREQUFGwJISIiUhhbQrzDJISIiEhhTEK8w+4YIiIiCgq2hBARESmMLSHeYRJCRESkMIHAbrMVyoVSrzEJISIiUhhbQrzDMSFEREQUFGwJISIiUhhbQrzDJISIiEhhTEK8w+4YIiIiCgq2hBARESmMLSHeYRJCRESkMCEkiAASiUCObUjYHUNERERBwZYQIiIihcmQApqsLJBjGxImIURERArjmBDvsDuGiIiIgoJJCBERkcKqBqYGsvjql19+wbBhw9CiRQuEhYXhmmuuwffff39RTAKzZs1CbGwswsLCkJqaikOHDilZbZ8xCSEiIlJYVXdMIIsvzpw5g549e0Kr1eLTTz/FTz/9hAULFqBZs2bufebPn48XX3wRy5cvx/bt2xEeHo60tDSYzWalq+81jgkhIiJSWF3fovvcc88hISEBWVlZ7nXJyckXlSewePFizJgxA4MHDwYArFq1CtHR0diwYQPuvfdev2MNBFtCiIiI6qny8nKPxWKx1Ljfhx9+iBtvvBF///vfERUVheuvvx6vvfaae3t+fj6KioqQmprqXmcymdCtWzfk5uZe9npcCpMQIiIihYkAu2KqWkISEhJgMpncS2ZmZo3nO3r0KJYtW4Y2bdrgs88+w0MPPYSJEyfijTfeAAAUFRUBAKKjoz2Oi46Odm8LBnbHEBERKUwAECKw4wGgsLAQRqPRvV6v19e4vyzLuPHGG/Hss88CAK6//nrs378fy5cvx8iRI/0P5DJjSwgREVE9ZTQaPZZLJSGxsbHo2LGjx7oOHTqgoKAAABATEwMAKC4u9tinuLjYvS0Ygp6E1HZLERERUUNTNWNqIIsvevbsiby8PI91Bw8eRFJSEgDnINWYmBhkZ2e7t5eXl2P79u1ISUkJvMJ+Cmp3TNUtRbfeeis+/fRTtGzZEocOHfK4pYiIiKihqeu7YyZPnowePXrg2Wefxd13343vvvsOr776Kl599VUAgCRJmDRpEubOnYs2bdogOTkZM2fORFxcHIYMGeJ3nIEKahJS2y1Ff2SxWDxGBpeXl1/W+IiIiBqCm266CevXr8f06dMxZ84cJCcnY/HixXjggQfc+zz22GOoqKjAuHHjUFpail69emHjxo0wGAxBizuo3TG13VL0R5mZmR6jhBMSEuowWiIiIu/U9WRlAPDXv/4V+/btg9lsxoEDBzB27FiP7ZIkYc6cOSgqKoLZbMaXX36Jtm3bKlVlvwQ1CantlqI/mj59OsrKytxLYWFhHUdMRERUOyECXxqDoHbH+HpLkV6vv+TIYCIiImpYgtoSUtstRURERA1RMB5g1xAFtSWktluKiIiIGqK6vjumoQpqElLbLUVEREQNkSwkSAEkEv4MTG2IgtodU3VL0dtvv43OnTvj6aefrnZLEREREYWmoD875q9//Sv++te/BjsMIiIixQR6hwvvjiEiIiK/OJOQQMaEKBhMPRb0Z8cQERFR48SWECIiIoXx7hjvMAkhIiJSmHAtgRzfGLA7hoiIiIKCLSFEREQKY3eMd5iEEBERKY39MV5hEkJERKS0QJ//Uo9bQkpKSlBSUgJZlj3Wd+nSxeeymIQQERFRrXbu3ImRI0fiwIEDEK6JTCRJghACkiTB4XD4XCaTECIiIoWF4oypo0ePRtu2bbFixQpER0dDkgJvrWESQkREpLBQHJh69OhRvPfee2jdurViZfIWXSIiIqpV//79sWfPHkXLZEsIERGR0oQU2ODSetgS8t///hcjR47E/v370blzZ2i1Wo/td955p89lMgkhIiJSWCiOCcnNzcW3336LTz/9tNo2fwemsjuGiIiIajVhwgQMGzYMp06dgizLHos/CQjAlhAiIiLlheBkZadPn8bkyZMRHR2tWJk+t4QcPXpUsZMTERGFoqq7YwJZ6puhQ4di06ZNipbpc0tI69at0bdvX4wZMwZ/+9vfYDAYFA2IiIiI6p+2bdti+vTp2LJlC6655ppqA1MnTpzoc5k+JyE//PADsrKyMGXKFIwfPx733HMPxowZg5tvvtnnkxMREYWsetilEoj//ve/iIiIQE5ODnJycjy2SZJUN0nIddddhxdeeAELFizAhx9+iJUrV6JXr15o27YtRo8ejeHDh6Nly5Y+B0JERBQqQnGysvz8fMXL9PvuGI1Gg6FDh2LdunV47rnncPjwYUydOhUJCQkYMWIETp06pWScREREDYdQYGkE/L475vvvv8frr7+ONWvWIDw8HFOnTsWYMWNw4sQJPPXUUxg8eDC+++47JWMlIiKiIDpx4gQ+/PBDFBQUwGq1emxbuHChz+X5nIQsXLgQWVlZyMvLwx133IFVq1bhjjvugErlbFRJTk7GypUr0apVK5+DISIiCg2Sawnk+PolOzsbd955J6666ir8/PPP6Ny5M44dOwYhBG644Qa/yvS5O2bZsmW4//77cfz4cWzYsAF//etf3QlIlaioKKxYscKvgIiIiBq8Ou6OefLJJyFJksfSvn1793az2YyMjAy0aNECERERSE9PR3FxsU/nmD59OqZOnYp9+/bBYDDgvffeQ2FhIfr27Yu///3vvgXs4nNLyKFDh2rdR6fTYeTIkX4FRERERL7r1KkTvvzyS/fPGs2FX/GTJ0/GJ598gnXr1sFkMmH8+PEYOnQovv32W6/LP3DgAN5++2132efPn0dERATmzJmDwYMH46GHHvI5Zp+TkKysLERERFTLetatW4fKykomH0REREGYMVWj0SAmJqba+rKyMqxYsQKrV69Gv379ADh/l3fo0AHbtm1D9+7dvSo/PDzcPQ4kNjYWR44cQadOnQAAv/32m+8Bw4/umMzMTFxxxRXV1kdFReHZZ5/1KwgiIqKQUvUU3UAWAOXl5R6LxWK55CkPHTqEuLg4XHXVVXjggQdQUFAAANi5cydsNhtSU1Pd+7Zv3x6JiYnIzc31ukrdu3fHli1bAAB33HEHHnnkETzzzDMYPXq014nMH/mchBQUFCA5Obna+qSkJHeFiYiIKHAJCQkwmUzuJTMzs8b9unXrhpUrV2Ljxo1YtmwZ8vPz0bt3b5w9exZFRUXQ6XRo2rSpxzHR0dEoKiryOpaFCxeiW7duAICnnnoK/fv3x9q1a9GqVSu/x4H63B0TFRWFvXv3Vrv7Zc+ePWjRooVfQRAREYUSIZxLIMcDQGFhIYxGo3u9Xq+vcf/bb7/d/f8uXbqgW7duSEpKwjvvvIOwsDD/A3FxOBw4ceIEunTpAsDZNbN8+fKAy/W5JeS+++7DxIkTsWnTJjgcDjgcDnz11Vd4+OGHce+99wYcEBERUYOn0N0xRqPRY7lUEvJHTZs2Rdu2bXH48GHExMTAarWitLTUY5/i4uIax5DURK1WY8CAAThz5oxX+3vL5yTk6aefRrdu3dC/f3+EhYUhLCwMAwYMQL9+/TgmhIiIqB44d+4cjhw5gtjYWHTt2hVarRbZ2dnu7Xl5eSgoKEBKSorXZXbu3BlHjx5VNE6fu2N0Oh3Wrl2Lp59+Gnv27EFYWBiuueYaJCUlKRoYERFRg3XR4FK/j/fB1KlTMWjQICQlJeHkyZOYPXs21Go17rvvPphMJowZMwZTpkxB8+bNYTQaMWHCBKSkpPg0oHTu3LmYOnUqnn76aXTt2hXh4eEe2y/uNvKW39O2t23bFm3btvX3cCIiopAlCecSyPG+OHHiBO677z6cPn0aLVu2RK9evbBt2zb3A2UXLVoElUqF9PR0WCwWpKWlYenSpT6d44477gAA3HnnnZCkC0mSEAKSJMHhcPgWNPxIQhwOB1auXIns7GyUlJRAlmWP7V999ZXPQRAREYWUOp4nZM2aNX+63WAwYMmSJViyZInfIW3atMnvYy/F5yTk4YcfxsqVKzFw4EB07tzZIxsiIiKi0NS3b1/Fy/Q5CVmzZg3eeecdd7MMERER/UEdjwmpC3v37q1xvSRJMBgMSExM9PrunSp+DUxt3bq1r4cRERE1HkGYtv1yu+666/6090Or1eKee+7BK6+8AoPB4FWZPt+i+8gjj+CFF16ACGQWFiIiImpQ1q9fjzZt2uDVV1/F7t27sXv3brz66qto164dVq9ejRUrVuCrr77CjBkzvC7T55aQLVu2YNOmTfj000/RqVMnaLVaj+3vv/++r0USERGFlhBsCXnmmWfwwgsvIC0tzb3ummuuQXx8PGbOnInvvvsO4eHheOSRR/D88897VabPSUjTpk1x1113+XoYERFR4xGCSci+fftqnBMsKSkJ+/btA+Dssjl16pTXZfqchGRlZfl6CBERETVw7du3x7x58/Dqq69Cp9MBAGw2G+bNm4f27dsDAH755RdER0d7XaZfk5XZ7XZs3rwZR44cwf3334/IyEicPHkSRqMRERER/hRJREQUOkLw7pglS5bgzjvvRHx8vPtBdvv27YPD4cDHH38MADh69Cj+9a9/eV2mz0nI8ePHcdttt6GgoAAWiwV/+ctfEBkZieeeew4Wi0WRp+oRERE1ZHU9Y2pd6NGjB/Lz8/HWW2/h4MGDAIC///3v7sYIABg+fLhPZfo1WdmNN96IPXv2oEWLFu71d911F8aOHetrcURERNRAREZG4p///Kdi5fmchHzzzTfYunWruz+oSqtWrfDLL78oFhgREVGDFYIDUwHgyJEjWLx4MQ4cOAAA6NSpEyZOnIirr77ar/J8nidEluUaH1Jz4sQJd3MMERERhZbPPvsMHTt2xHfffYcuXbqgS5cu2LZtGzp16oQvvvjCrzJ9bgkZMGAAFi9ejFdffRWAc7rWc+fOYfbs2ZzKnYiICICEAMeEKBaJcqZNm4bJkydj3rx51dY//vjj+Mtf/uJzmT63hCxYsADffvstOnbsCLPZjPvvv9/dFfPcc8/5HAARERHVfwcOHMCYMWOqrR89ejR++uknv8r0uSUkPj4ee/bswZo1a7B3716cO3cOY8aMwQMPPICwsDC/giAiIgopIXiLbsuWLbF79260adPGY/3u3bsRFRXlV5l+zROi0WgwbNgwv05IREQU8kJwYOrYsWMxbtw4HD16FD169AAAfPvtt3juuecwZcoUv8r0OQlZtWrVn24fMWKEX4EQERFR/TVz5kxERkZiwYIFmD59OgAgLi4OTz75JCZOnOhXmX7NE3Ixm82GyspK6HQ6NGnShEkIERFRiLWE2O12rF69Gvfffz8mT56Ms2fPAkDAd8X6PDD1zJkzHsu5c+eQl5eHXr164e233w4oGCIiolBQNWNqIEt9otFo8M9//hNmsxmAM/lQYloOn5OQmrRp0wbz5s2r1kpCREREoeHmm2/Grl27FC3Tr4GpNRak0eDkyZNKFUdERNRwhVh3DAD861//wiOPPIITJ06ga9euCA8P99he9VA7X/ichHz44YcePwshcOrUKbz88svo2bOnzwEQERGFnBBMQu69914A8BiEKkkShBCQJKnG2dRr43MSMmTIEI+fJUlCy5Yt0a9fPyxYsMDnAIiIiKj+y8/PV7xMn5MQWZYVD4KIiCiUBDq4tL4NTAWA48ePo0ePHtBoPFMHu92OrVu3IikpyecyFRmYSkRERBepmjE1kKWeufXWW/H7779XW19WVoZbb73VrzJ9bgnxZVa0hQsX+lo8ERFRwxeCY0Kqxn780enTp6sNUvWWz0nIrl27sGvXLthsNrRr1w4AcPDgQajVatxwww3u/WoKlIiIiBqWoUOHAnD+Xh81ahT0er17m8PhwN69e93TuPvK5yRk0KBBiIyMxBtvvIFmzZoBcE5g9uCDD6J379545JFH/AqEiIgoVITSmBCTyQTA2RISGRnp8bBanU6H7t27Y+zYsX6V7XMSsmDBAnz++efuBAQAmjVrhrlz52LAgAFMQoiIiEKoOyYrKwsA0KpVKzz66KNo0qSJYmX7PDC1vLwcv/76a7X1v/76q3sueX/MmzcPkiRh0qRJfpdBREREl8eIESPwyy+/VFt/6NAhHDt2zK8yfU5C7rrrLjz44IN4//33ceLECZw4cQLvvfcexowZ4+438tWOHTvwyiuv+DXbGhERUb0T6HNjAmwJqekPe7PZjIyMDLRo0QIRERFIT09HcXGx12WOGjUKW7durbZ++/btGDVqlF9x+pyELF++HLfffjvuv/9+JCUlISkpCffffz9uu+02LF261OcAzp07hwceeACvvfaaRxdPTSwWC8rLyz0WIiKiekcosPjpUn/YT548GR999BHWrVuHnJwcnDx50qfGg127dtU4M3r37t2xe/duv2L1OQlp0qQJli5ditOnT7vvlPn999+xdOlSv27RycjIwMCBA5GamlrrvpmZmTCZTO4lISHB5/MRERGFqkv9YV9WVoYVK1Zg4cKF6NevH7p27YqsrCxs3boV27Zt86psSZJqHHZRVlbm15TtQACTlZ06dQqnTp1CmzZtEB4eDiF8T9vWrFmDH374AZmZmV7tP336dJSVlbmXwsJCn89JRER02SnUEvLH1n+LxfKnp73UH/Y7d+6EzWbzWN++fXskJiYiNzfXqyr16dMHmZmZHgmHw+FAZmYmevXq5VUZf+Tz3TGnT5/G3XffjU2bNkGSJBw6dAhXXXUVxowZg2bNmnn9/JjCwkI8/PDD+OKLL2AwGLw6Rq/Xe9yfTEREVB8pdYvuH1v8Z8+ejSeffLLGY6r+sN+xY0e1bUVFRdDpdGjatKnH+ujoaBQVFXkV03PPPYc+ffqgXbt26N27NwDgm2++QXl5Ob766iuvyvgjn1tCJk+eDK1Wi4KCAo/bdO655x5s3LjR63J27tyJkpIS3HDDDdBoNNBoNMjJycGLL74IjUbjd9MOERFRqCgsLPToAZg+ffol93v44Yfx1ltvef2Hva86duyIvXv34u6770ZJSQnOnj2LESNG4Oeff0bnzp39KtPnlpDPP/8cn332GeLj4z3Wt2nTBsePH/e6nP79+2Pfvn0e6x588EG0b98ejz/+ONRqta+hERERhRSj0Qij0Vjrfhf/YV/F4XDg66+/xssvv4zPPvsMVqsVpaWlHq0hxcXFiImJ8TqeuLg4PPvssz7V4c/4nIRUVFTUOFHJ77//7lNXSWRkZLXMKTw8HC1atPA7oyIiIqoX6niystr+sE9ISIBWq0V2djbS09MBAHl5eSgoKEBKSorX5/nmm2/wyiuv4OjRo1i3bh2uvPJK/O9//0NycrJf40J87o7p3bs3Vq1a5f5ZkiTIsoz58+f7/RQ9IiKiUBLIHCH+jCep+sP+4uXiP+xNJhPGjBmDKVOmYNOmTdi5cycefPBBpKSkoHv37l6d47333kNaWhrCwsLwww8/uAfJlpWV+d064nNLyPz589G/f398//33sFqteOyxx/Djjz/i999/x7fffutXEFU2b94c0PFERERUs0WLFkGlUiE9PR0WiwVpaWk+ze81d+5cLF++HCNGjMCaNWvc63v27Im5c+f6FZPPSUjnzp1x8OBBvPzyy4iMjMS5c+cwdOhQZGRkIDY21q8giIiIQk6Qn//yxz/sDQYDlixZgiVLlvhVXl5eHvr06VNtvclkQmlpqV9l+pSE2Gw23HbbbVi+fDmeeOIJv05IREQU8kLoAXZVYmJicPjwYbRq1cpj/ZYtW3DVVVf5VaZPY0K0Wi327t3r14mIiIio4Ro7diwefvhhbN++HZIk4eTJk3jrrbcwdepUPPTQQ36V6XN3zLBhw7BixQrMmzfPrxMSERGFOqUmK6tPpk2bBlmW0b9/f1RWVqJPnz7Q6/WYOnUqJkyY4FeZPichdrsdr7/+Or788kt07dq12vNiFi5c6FcgREREISMEu2MkScITTzyBRx99FIcPH8a5c+fQsWNHRERE+F2mV0nI3r170blzZ6hUKuzfv989GcrBgwerBUhEREShS6fTITIyEpGRkQElIICXScj111+PU6dOISoqCsePH8eOHTvQokWLgE5MREQUqkKxO8Zut+Opp57Ciy++iHPnzgEAIiIiMGHCBMyePRtardbnMr1KQpo2bYr8/HxERUXh2LFjkGXZ5xMRERE1GiHYHTNhwgS8//77mD9/vnuW1dzcXDz55JM4ffo0li1b5nOZXiUh6enp6Nu3L2JjYyFJEm688cZLPtvl6NGjPgdBRERE9dvq1auxZs0a3H777e51Xbp0QUJCAu67777Ll4S8+uqrGDp0KA4fPoyJEydi7NixiIyM9PlkREREjUIItoTo9fpqc4QAQHJyMnQ6nV9len13zG233QbA+aS+hx9+mEkIERHRJYTimJDx48fj6aefRlZWlvuBtRaLBc888wzGjx/vV5k+36KblZXl14mIiIgajRBsCdm1axeys7MRHx+Pa6+9FgCwZ88eWK1W9O/fH0OHDnXv+/7773tVps9JCBERETU+TZs2RXp6use6hISEgMpkEkJERKS0EGwJWbp0KWRZdk9SeuzYMWzYsAEdOnRAWlqaX2X69OwYIiIiql3VmJBAlvpm8ODB+N///gcAKC0tRffu3bFgwQIMGTLErztjACYhRERE5IUffvgBvXv3BgC8++67iI6OxvHjx7Fq1Sq8+OKLfpXJ7hgiIiKlhWB3TGVlpfvO2M8//xxDhw6FSqVC9+7dcfz4cb/KZEsIERGRwkKxO6Z169bYsGEDCgsL8dlnn2HAgAEAgJKSEhiNRr/KZBJCREREtZo1axamTp2KVq1aoVu3bu6p2z///HNcf/31fpXJ7hgiIiKlhWB3zN/+9jf06tULp06dcs8TAgD9+/fHXXfd5VeZTEKIiIiUFoJJCADExMQgJibGY93NN9/sd3nsjiEiIqKgYEsIERGRwiTXEsjxjQGTECIiIqWFaHeM0piEEBERKSwUn6J7OXBMCBEREQUFW0KIiIiUxu4YrzAJISIiuhwaSSIRCHbHEBERUVCwJYSIiEhhHJjqHSYhRERESuOYEK+wO4aIiIiCgkkIERGRwqq6YwJZfLFs2TJ06dIFRqMRRqMRKSkp+PTTT93bzWYzMjIy0KJFC0RERCA9PR3FxcUK19p3TEKIiIiUJhRYfBAfH4958+Zh586d+P7779GvXz8MHjwYP/74IwBg8uTJ+Oijj7Bu3Trk5OTg5MmTGDp0qAIVDQzHhBAREdVT5eXlHj/r9Xro9fpq+w0aNMjj52eeeQbLli3Dtm3bEB8fjxUrVmD16tXo168fACArKwsdOnTAtm3b0L1798tXgVqwJYSIiEhhSnXHJCQkwGQyuZfMzMxaz+1wOLBmzRpUVFQgJSUFO3fuhM1mQ2pqqnuf9u3bIzExEbm5uZfrJfAKW0KIiIiUptDdMYWFhTAaje7VNbWCVNm3bx9SUlJgNpsRERGB9evXo2PHjti9ezd0Oh2aNm3qsX90dDSKiooCCDJwTEKIiIiUplASUjXQ1Bvt2rXD7t27UVZWhnfffRcjR45ETk5OAEFcfkxCiIiIQoBOp0Pr1q0BAF27dsWOHTvwwgsv4J577oHVakVpaalHa0hxcTFiYmKCFK0Tx4QQEREprK5v0a2JLMuwWCzo2rUrtFotsrOz3dvy8vJQUFCAlJSUwE8UALaEEBERKa2OZ0ydPn06br/9diQmJuLs2bNYvXo1Nm/ejM8++wwmkwljxozBlClT0Lx5cxiNRkyYMAEpKSlBvTMGYBJCRETU4JWUlGDEiBE4deoUTCYTunTpgs8++wx/+ctfAACLFi2CSqVCeno6LBYL0tLSsHTp0iBHzSSEiIhIcZIQkIT/TSG+HrtixYo/3W4wGLBkyRIsWbLE75guByYhRERESuMD7LzCgalEREQUFGwJISIiUligd7gocXdMQ8AkhIiISGnsjvEKu2OIiIgoKNgSQkREpDB2x3iHSQgREZHS2B3jFSYhRERECmNLiHc4JoSIiIiCgi0hRERESmN3jFeYhBAREV0GjaVLJRDsjiEiIqKgYEsIERGR0oRwLoEc3wgwCSEiIlIY747xDrtjiIiIKCjYEkJERKQ03h3jFSYhRERECpNk5xLI8Y0Bu2OIiIgoKNgSQkREpDR2x3iFSQgREZHCeHeMd4LaHZOZmYmbbroJkZGRiIqKwpAhQ5CXlxfMkIiIiAJXNU9IIEsjENQkJCcnBxkZGdi2bRu++OIL2Gw2DBgwABUVFcEMi4iIiOpAULtjNm7c6PHzypUrERUVhZ07d6JPnz7V9rdYLLBYLO6fy8vLL3uMREREvmJ3jHfq1d0xZWVlAIDmzZvXuD0zMxMmk8m9JCQk1GV4RERE3hEKLI1AvUlCZFnGpEmT0LNnT3Tu3LnGfaZPn46ysjL3UlhYWMdREhERkVLqzd0xGRkZ2L9/P7Zs2XLJffR6PfR6fR1GRURE5Dt2x3inXiQh48ePx8cff4yvv/4a8fHxwQ6HiIgoMHyKrleCmoQIITBhwgSsX78emzdvRnJycjDDISIiojoU1CQkIyMDq1evxgcffIDIyEgUFRUBAEwmE8LCwoIZGhERkd/YHeOdoA5MXbZsGcrKynDLLbcgNjbWvaxduzaYYREREQWGd8d4JahJiBCixmXUqFHBDIuIiKhB8WYGcrPZjIyMDLRo0QIRERFIT09HcXFxkCJ2qje36BIREYWKqu6YQBZfeDMD+eTJk/HRRx9h3bp1yMnJwcmTJzF06FCFa+6benF3DBERUUiRhXMJ5Hgf1DYDeVlZGVasWIHVq1ejX79+AICsrCx06NAB27ZtQ/fu3f2PNQBsCSEiIlKaQmNCysvLPZaLH13yZ/44A/nOnTths9mQmprq3qd9+/ZITExEbm5uYHUNAJMQIiKieiohIcHjcSWZmZm1HlPTDORFRUXQ6XRo2rSpx77R0dHuO1ODgd0xRERECpMQ4C26rn8LCwthNBrd672ZNdybGcjrCyYhRERESlNoxlSj0eiRhNTmUjOQx8TEwGq1orS01KM1pLi4GDExMf7HGSB2xxARETVwQgiMHz8e69evx1dffVVtBvKuXbtCq9UiOzvbvS4vLw8FBQVISUmp63Dd2BJCRESksLqeMbW2GchNJhPGjBmDKVOmoHnz5jAajZgwYQJSUlKCdmcMwCSEiIhIeYHOeurjscuWLQMA3HLLLR7rs7Ky3BOALlq0CCqVCunp6bBYLEhLS8PSpUsDCDJwTEKIiIgaOOHF+BODwYAlS5ZgyZIldRCRd5iEEBERKUwSAlIAA1MDObYhYRJCRESkNNm1BHJ8I8C7Y4iIiCgo2BJCRESkMHbHeIdJCBERkdLq+O6YhopJCBERkdIUmjE11HFMCBEREQUFW0KIiIgUVtczpjZUTEKIiIiUxu4Yr7A7hoiIiIKCLSFEREQKk2TnEsjxjQGTECIiIqWxO8Yr7I4hIiKioGBLCBERkdI4WZlXmIQQEREpjNO2e4fdMURERBQUbAkhIiJSGgemeoVJCBERkdIEgEBus20cOQiTECIiIqVxTIh3OCaEiIiIgoItIUREREoTCHBMiGKR1GtMQoiIiJTGgaleYXcMERERBQVbQoiIiJQmA5ACPL4RYBJCRESkMN4d4x12xxAREVFQsCWEiIhIaRyY6hUmIUREREpjEuIVdscQERFRULAlhIiISGlsCfEKW0KIiIiUJiuw+Ojrr7/GoEGDEBcXB0mSsGHDBo/tQgjMmjULsbGxCAsLQ2pqKg4dOuRf/RTCJISIiEhhVbfoBrL4qqKiAtdeey2WLFlS4/b58+fjxRdfxPLly7F9+3aEh4cjLS0NZrM50Or6jd0xREREIeD222/H7bffXuM2IQQWL16MGTNmYPDgwQCAVatWITo6Ghs2bMC9995bl6G6sSWEiIhIaVVjQgJZAJSXl3ssFovFr3Dy8/NRVFSE1NRU9zqTyYRu3bohNzdXkSr7g0kIERGR0mQR+AIgISEBJpPJvWRmZvoVTlFREQAgOjraY310dLR7WzCwO4aIiKieKiwshNFodP+s1+uDGI3y2BJCRESkNIW6Y4xGo8fibxISExMDACguLvZYX1xc7N4WDExCiIiIFBdoAqLsPCHJycmIiYlBdna2e115eTm2b9+OlJQURc/lC3bHEBERhYBz587h8OHD7p/z8/Oxe/duNG/eHImJiZg0aRLmzp2LNm3aIDk5GTNnzkRcXByGDBkStJiZhBARESktCDOmfv/997j11lvdP0+ZMgUAMHLkSKxcuRKPPfYYKioqMG7cOJSWlqJXr17YuHEjDAaD/3EGiEkIERGR0uQAu1Rk34+95ZZbIP4keZEkCXPmzMGcOXP8j0thHBNCREREQcGWECIiIqUJ2bkEcnwjwCSEiIhIaXyKrleYhBARESktCGNCGiKOCSEiIqKgYEsIERGR0tgd4xUmIUREREoTCDAJUSySeo3dMURERBQUbAkhIiJSGrtjvMIkhIiISGmyDCCAuT7kxjFPCLtjiIiIKCjYEkJERKQ0dsd4pV60hCxZsgStWrWCwWBAt27d8N133wU7JCIiIv9VJSGBLI1A0JOQtWvXYsqUKZg9ezZ++OEHXHvttUhLS0NJSUmwQyMiIqLLKOhJyMKFCzF27Fg8+OCD6NixI5YvX44mTZrg9ddfr7avxWJBeXm5x0JERFTvyCLwpREIahJitVqxc+dOpKamutepVCqkpqYiNze32v6ZmZkwmUzuJSEhoS7DJSIi8ooQcsBLYxDUJOS3336Dw+FAdHS0x/ro6GgUFRVV23/69OkoKytzL4WFhXUVKhERkfdEgK0gjWRMSIO6O0av10Ov1wc7DCIiIlJAUJOQK664Amq1GsXFxR7ri4uLERMTE6SoiIiIAiQEAnoATCNpCQlqd4xOp0PXrl2RnZ3tXifLMrKzs5GSkhLEyIiIiAIgy4EvjUDQu2OmTJmCkSNH4sYbb8TNN9+MxYsXo6KiAg8++GCwQyMiIqLLKOhJyD333INff/0Vs2bNQlFREa677jps3Lix2mBVIiKiBoPdMV4JehICAOPHj8f48eODHQYREZEihCxDSP53qfAWXSIiIqLLqF60hBAREYUUdsd4hUkIERGR0mQBSExCasPuGCIiIgoKtoQQEREpTQgAAQwubSQtIUxCiIiIFCZkARFAd4xgEkJERER+ETICawnhLbpERERElw1bQoiIiBTG7hjvMAkhIiJSGrtjvNKgk5CqTNHusEBlV0MlbJCFDQCgEmqPW7Ql2QK73ez6v4DDKkPYXcfb7BCQINlcB9gdECrJtU0Dh0UNu90KAHBYHZBsApLN+QGxyxbIDme5KtkCIazuGIRsBYSAcFhcAVshu2JQOWyQZAsgO8uVHRY4rM5tDoszJrvrOKFSQxY2Z3kAhMPiPBYAHBJkh3zRsRIcVlyoq0NAOFyvicMKOByQHSpX3bSQbMJ9Hkm2uD/4wrWP5HC46m2GwyxBdr1E8nkzrOdcr0mlBQ67GvJ550aHbIdKK7sHdztkCQ6HHa4XCZZzNtgrXOeUBBzmC/WWz8uA1fnay7KAw6Jy18VukwG73VWM1Xl9y874ZGGDSra691XZ7RCu10gWNkgXvy/CBuGwwGF39UbKVthd26r+737PVGpIsgWyQ+uMV1gvem2d77fK9b7AYXGWU/Wz7ABcMdjtZjisDtgver/tNrXrMAccVgGHRXK91gKQALvdGZNdtsBR9bmWrYCQIcmuY+1m2G1wv4d2uwTZ1cvqsMrOz5HrPHa7GcIVs7MsrbtcIVsBWXLXDXY7HBYVVFa4j7W7rg+hkuCwqlH1EkECZLOArLO7Pw/yeddXi1kAVgnyeec22ax219Nuk2G3W2G3Ofe1Oyyw2zSQXB8yh0oFR9V16HB+xhxWjasc10uskl2voerCvFASYLfZ3PsKe1Xdq64DCyBJ7npLFz2xVDgskB0XrllnvZ2fMckOV7zOfSWbDLvDDMn1ela9loDz+wcOs/OaA2C3mZ0xAnBona9XVbwOqwT5vBnC9T5JdgfEeec55EozJLMawnX5OCotOH/OjnKVM6bKCgfMrmsCAOwVFti0znNWnnXgvMOOCq1z34uvO7nSDIewQT4vuY+rcO0PANYKK2TJ4d5XliXntQkAsgyH2gL5vOtH2N3lOip1kM9r4bC4jjULyA5nRaVKC6CWL3z/VFggJBnyedebaZM8vrNlh4Cj0vU+qCywSlbYzVXn0cJyznahLrINstX1GTsvQcgyZLPr/bfC/fqpXN+TddHKYIctoLnK7LDVvlMIkEQDbvM5ceIEEhISgh0GERE1IIWFhYiPj78sZZvNZiQnJ6OoqCjgsmJiYpCfnw+DwaBAZPVTg05CZFlGXl4eOnbsiMLCQhiNxmCH5Jfy8nIkJCQ06DoArEd9Egp1AEKjHqFQByA06iGEwNmzZxEXFweV6vLdl2E2m2G1WgMuR6fThXQCAjTw7hiVSoUrr7wSAGA0GhvshVElFOoAsB71SSjUAQiNeoRCHYCGXw+TyXTZz2EwGEI+eVAKb9ElIiKioGASQkREREHR4JMQvV6P2bNnQ6/XBzsUv4VCHQDWoz4JhToAoVGPUKgDEDr1oPqlQQ9MJSIiooarwbeEEBERUcPEJISIiIiCgkkIERERBQWTECIiIgqKOk9CRo0ahSFDhlz282zevBk33HAD9Ho9WrdujZUrV3psz8zMxE033YTIyEhERUVhyJAhyMvL8+tcS5YsQatWrWAwGNCtWzd89913Httzc3PRr18/hIeHw2g0ok+fPjh//nxA8XtzXl98/fXXGDRoEOLi4iBJEjZs2ODeZrPZ8Pjjj+Oaa65BeHg44uLiMGLECJw8ebLWcuuyHn9WBwA4d+4cxo8fj/j4eISFhaFjx45Yvnx5reXu3bsXvXv3hsFgQEJCAubPn19tn3Xr1qF9+/YwGAy45ppr8H//938+x19fro1ly5ahS5cu7kmpUlJS8Omnn/p1roZ+bYTCdVFbPYD6f21QCBN1bOTIkWLw4MGX9RxHjx4VTZo0EVOmTBE//fSTeOmll4RarRYbN25075OWliaysrLE/v37xe7du8Udd9whEhMTxblz53w615o1a4ROpxOvv/66+PHHH8XYsWNF06ZNRXFxsRBCiK1btwqj0SgyMzPF/v37xc8//yzWrl0rzGZzQPHXdl5f/d///Z944oknxPvvvy8AiPXr17u3lZaWitTUVLF27Vrx888/i9zcXHHzzTeLrl27/mmZdV2PP6uDEEKMHTtWXH311WLTpk0iPz9fvPLKK0KtVosPPvjgkmWWlZWJ6Oho8cADD4j9+/eLt99+W4SFhYlXXnnFvc+3334r1Gq1mD9/vvjpp5/EjBkzhFarFfv27fMp/vpybXz44Yfik08+EQcPHhR5eXni3//+t9BqtWL//v0+nSsUro1QuC5qq4cQ9f/aoNAV1CTk008/FT179hQmk0k0b95cDBw4UBw+fNi9b35+vgAg3nvvPXHLLbeIsLAw0aVLF7F169Y/Pcdjjz0mOnXq5LHunnvuEWlpaZc8pqSkRAAQOTk5PtXn5ptvFhkZGe6fHQ6HiIuLE5mZmUIIIbp16yZmzJjhU5nexF/beQNR05fUH3333XcCgDh+/Pgl9wlmPWqqQ6dOncScOXM81t1www3iiSeeuGQ5S5cuFc2aNRMWi8W97vHHHxft2rVz/3z33XeLgQMHehzXrVs38Y9//MOnmOvrtSGEEM2aNRP//e9/fapPqF0boXBdCNEwrw0KXUEdE1JRUYEpU6bg+++/R3Z2NlQqFe666y7IrsdqV3niiScwdepU7N69G23btsV9990H+0WPr/6j3NxcpKameqxLS0tDbm7uJY8pKysDADRv3tzr+K1WK3bu3OlxLpVKhdTUVOTm5qKkpATbt29HVFQUevTogejoaPTt2xdbtmzxKOeWW27BqFGjvI6/tvPWhbKyMkiShKZNm7rX1fd69OjRAx9++CF++eUXCCGwadMmHDx4EAMGDHDvM2rUKNxyyy0edejTpw90Op1HHfLy8nDmzBmv6umP+nJtOBwOrFmzBhUVFUhJSfE6/sZ6bTTE6wJoWNcGhZagPsAuPT3d4+fXX38dLVu2xE8//YTOnTu710+dOhUDBw4EADz11FPo1KkTDh8+jPbt29dYblFREaKjoz3WRUdHo7y8HOfPn0dYWJjHNlmWMWnSJPTs2dPjvLX57bff4HA4ajzXzz//jKNHjwIAnnzySTz//PO47rrrsGrVKvTv3x/79+9HmzZtAACJiYmIjY31Ov4zZ8786XkvN7PZjMcffxz33Xefx4Os6ns9XnrpJYwbNw7x8fHQaDRQqVR47bXX0KdPH/c+sbGxHr/oi4qKkJycXC2+qm3NmjW7ZD0DeZR3sK+Nffv2ISUlBWazGREREVi/fj06duzodfyN8dpoqNcF0LCuDQotQU1CDh06hFmzZmH79u347bff3B/wgoICjy/aLl26uP9fdTGXlJSgffv2iIiIcG8bNmyYV4Op/igjIwP79++v9ldYoKrq849//AMPPvggAOD6669HdnY2Xn/9dWRmZgIAVq1apeh5LyebzYa7774bQggsW7bMY1t9r8dLL72Ebdu24cMPP0RSUhK+/vprZGRkIC4uzv3XWtV7EmzBvjbatWuH3bt3o6ysDO+++y5GjhyJnJwcnxKRPxNq10ZDvi6AhnVtUGgJahIyaNAgJCUl4bXXXkNcXBxkWUbnzp1htVo99tNqte7/S5IE4MKX2O7du93bqv76iImJQXFxsUcZxcXFMBqN1VpBxo8fj48//hhff/014uPjfYr/iiuugFqtrvFcMTEx7l8Kf/zi7tChAwoKCi5Zbm3xq9XqPz3v5VL1RXv8+HF89dVXtT7Ouz7V4/z58/j3v/+N9evXu1sOunTpgt27d+P555+v1mRcWx2qtv3ZPoHUIdjXhk6nQ+vWrQEAXbt2xY4dO/DCCy/glVde8Sr+xnRtNOTrAmh41waFlqCNCTl9+jTy8vIwY8YM9O/fHx06dHD3I/qidevW7iUqKgoAkJKSguzsbI/9vvjiC48+bSEExo8fj/Xr1+Orr76q1qzoDZ1Oh65du3qcS5ZlZGdnIyUlBa1atUJcXFy1W38PHjyIpKSkS5ZbW/y1nfdyqPqiPXToEL788ku0aNGi1mPqUz1sNhtsNhtUKs+PvFqtrjbO4mIpKSn4+uuvYbPZPOrQrl07NGvWzL1PbZ83XwT72qiJLMuwWCxen7uxXBsN/boAGta1QSGorkfCVt0B4HA4RIsWLcSwYcPEoUOHRHZ2trjppps8Rm5X3QGwa9cu9/FnzpwRAMSmTZsueY6qW+AeffRRceDAAbFkyZJqt8A99NBDwmQyic2bN4tTp065l8rKSp/qs2bNGqHX68XKlSvFTz/9JMaNGyeaNm0qioqKhBBCLFq0SBiNRrFu3Tpx6NAhMWPGDGEwGDzudBg+fLiYNm2aT/HXdl5fnT17VuzatUvs2rVLABALFy4Uu3btEsePHxdWq1XceeedIj4+Xuzevdvj9bp4ZHyw6/FndRBCiL59+4pOnTqJTZs2iaNHj4qsrCxhMBjE0qVL3WVMmzZNDB8+3P1zaWmpiI6OFsOHDxf79+8Xa9asEU2aNKl2G6JGoxHPP/+8OHDggJg9e3ZAt+gG+9qYNm2ayMnJEfn5+WLv3r1i2rRpQpIk8fnnn/tUn1C4NkLhuqitHkLU/2uDQledJyHDhw8X6enpQgghvvjiC9GhQweh1+tFly5dxObNmxX5ohVCiE2bNonrrrtO6HQ6cdVVV4msrCyP7QBqXP64nzdeeuklkZiYKHQ6nbj55pvFtm3bPLZnZmaK+Ph40aRJE5GSkiK++eYbj+19+/YVI0eO9Cl+b87ri02bNtX4eowcOdL9PtS0XPw+BLsef1YHIYQ4deqUGDVqlIiLixMGg0G0a9dOLFiwQMiy7C5j5MiRom/fvh7l7tmzR/Tq1Uvo9Xpx5ZVXinnz5lU79zvvvCPatm0rdDqd6NSpk/jkk098jr++XBujR48WSUlJQqfTiZYtW4r+/fv7nIBUaejXRihcF7XVQ4j6f21Q6JKEEELJlpXa3HbbbWjdujVefvnlujwtUb3Ha4OIGps6GxNy5swZfPzxx9i8efMlBzoRNUa8Noiosaqzu2NGjx6NHTt24JFHHsHgwYPr6rRE9R6vDSJqrOq8O4aIiIgICOItukRERNS4MQkhIiKioGASQkREREHBJISIiIiCgkkIEVE9l5mZiZtuugmRkZGIiorCkCFDqk15bzabkZGRgRYtWiAiIgLp6ekez23Zs2cP7rvvPiQkJCAsLAwdOnTACy+8cMlzfvvtt9BoNLjuuuu8ilGSJGzYsMGf6vlECIFZs2YhNjYWYWFhSE1NxaFDhzz2ufPOO5GYmAiDwYDY2FgMHz4cJ0+evOyxke+YhBAFwS233IJJkyY1unOTf3JycpCRkYFt27bhiy++gM1mw4ABA1BRUeHeZ/Lkyfjoo4+wbt065OTk4OTJkxg6dKh7+86dOxEVFYU333wTP/74I5544glMnz69xsnxSktLMWLECPTv379O6ueL+fPn48UXX8Ty5cuxfft2hIeHIy0tDWaz2b3PrbfeinfeeQd5eXl47733cOTIEfztb38LYtR0SUGdr5Wokerbt694+OGHvdq3asrtM2fO+HSOSx13+vRpUV5e7lNZVL+UlJQIACInJ0cI4XyOi1arFevWrXPvc+DAAQFA5ObmXrKcf/3rX+LWW2+ttv6ee+4RM2bMELNnzxbXXnutVzHhoscKCCHEY489Jtq0aSPCwsJEcnKymDFjhrBare7tVWWvWrVKJCUlCaPRKO65554//WzKsixiYmLEf/7zH/e60tJSodfrxdtvv33J4z744AMhSZLH+al+YEsIUSPTvHlzREZGBjsMCkBZWRkA53sJOFs5bDabx4y77du3R2JiInJzc/+0nKoyqmRlZeHo0aOYPXt2QDFGRkZi5cqV+Omnn/DCCy/gtddew6JFizz2OXLkCDZs2ICPP/4YH3/8MXJycjBv3rxLlpmfn4+ioiKPeppMJnTr1u2S9fz999/x1ltvoUePHtBqtQHViZTHJIToMquoqMCIESMQERGB2NhYLFiwwGP7//73P9x4442IjIxETEwM7r//fpSUlAAAjh07hltvvRUA0KxZM0iShFGjRgFwPt49MzMTycnJCAsLw7XXXot333231uP+2B3TqlUrzJ071x1jUlISPvzwQ/z6668YPHgwIiIi0KVLF3z//fcecW/ZsgW9e/dGWFgYEhISMHHiRI/uAbo8ZFnGpEmT0LNnT3Tu3BkAUFRUBJ1Oh6ZNm3rsGx0djaKiohrL2bp1K9auXYtx48a51x06dAjTpk3Dm2++CY0msAm1Z8yYgR49eqBVq1YYNGgQpk6dinfeeadaXVauXInOnTujd+/eGD58OLKzsy9ZZlVdoqOjPdbXVM/HH38c4eHhaNGiBQoKCvDBBx8EVB+6PJiEEF1mjz76KHJycvDBBx/g888/x+bNm/HDDz+4t9tsNjz99NPYs2cPNmzYgGPHjrkThoSEBLz33nsAgLy8PJw6dco9mDAzMxOrVq3C8uXL8eOPP2Ly5MkYNmwYcnJy/vS4mixatAg9e/bErl27MHDgQAwfPhwjRozAsGHD8MMPP+Dqq6/GiBEjIFwTLB85cgS33XYb0tPTsXfvXqxduxZbtmzB+PHjL8dLSBfJyMjA/v37sWbNGr/L2L9/PwYPHozZs2djwIABAACHw4H7778fTz31FNq2bVvjcW+99RYiIiLcyzfffHPJc6xduxY9e/ZETEwMIiIiMGPGDBQUFHjs06pVK49WudjYWHcC7su5avLoo49i165d+Pzzz6FWqz0+v1SPBLs/iCiUnT17Vuh0OvHOO++4150+fVqEhYVdckzIjh07BABx9uxZIUTNYzvMZrNo0qSJ2Lp1q8exY8aMEffdd98ljxOi+niUpKQkMWzYMPfPp06dEgDEzJkz3etyc3MFAHHq1Cn3ecaNG+dR7jfffCNUKpU4f/78n78o5LeMjAwRHx8vjh496rE+Ozu7xvc6MTFRLFy40GPdjz/+KKKiosS///1vj/VnzpwRAIRarXYvkiS512VnZ4vy8nJx6NAh91JZWek+HheNCdm6datQq9Vi7ty5YseOHeLgwYNizpw5wmQyufevabzJokWLRFJSkhBC1HiuI0eOCABi165dHsf16dNHTJw48ZKvW2FhoQBQ7Xqh4KuzB9gRNUZHjhyB1WpFt27d3OuaN2+Odu3auX/euXMnnnzySezZswdnzpyBLMsAgIKCAnTs2LHGcg8fPozKykr85S9/8VhvtVpx/fXX+xxnly5d3P+vauq+5pprqq0rKSlBTEwM9uzZg7179+Ktt95y7yOEgCzLyM/PR4cOHXyOgS5NCIEJEyZg/fr12Lx5M5KTkz22d+3aFVqtFtnZ2UhPTwfgbAErKChASkqKe78ff/wR/fr1w8iRI/HMM894lGE0GrFv3z6PdUuXLsVXX32Fd999F8nJyQgPD/dqPNHWrVuRlJSEJ554wr3u+PHjPtU5MjKy2rmSk5MRExOD7Oxs963D5eXl2L59Ox566KFLllV1TVksFp9ioMuPSQhREFVUVCAtLQ1paWl466230LJlSxQUFCAtLQ1Wq/WSx507dw4A8Mknn+DKK6/02KbX632O4+IBe5IkXXJd1Zf5uXPn8I9//AMTJ06sVlZiYqLP56c/l5GRgdWrV+ODDz5AZGSke/yDyWRCWFgYTCYTxowZgylTpqB58+YwGo2YMGECUlJS0L17dwDOLph+/fohLS0NU6ZMcZehVqvRsmVLqFQq9xiTKlFRUTAYDNXW16ZNmzYoKCjAmjVrcNNNN+GTTz7B+vXrA34dJEnCpEmTMHfuXLRp0wbJycmYOXMm4uLiMGTIEADA9u3bsWPHDvTq1QvNmjXDkSNHMHPmTFx99dUeCRnVD0xCiC6jq6++GlqtFtu3b3f/cj5z5gwOHjyIvn374ueff8bp06cxb948JCQkAEC1AaA6nQ6As8++SseOHaHX61FQUIC+ffvWeO6ajlPKDTfcgJ9++gmtW7dWvGyqbtmyZQCcg4ovlpWV5R4/tGjRIqhUKqSnp8NisSAtLQ1Lly517/vuu+/i119/xZtvvok333zTvT4pKQnHjh0LKL6q5LRqMOudd96JyZMnY/z48bBYLBg4cCBmzpyJJ598MqDzAMBjjz2GiooKjBs3DqWlpejVqxc2btwIg8EAAGjSpAnef/99zJ49GxUVFYiNjcVtt92GGTNm+JWg02UW7P4golD3z3/+UyQlJYns7Gyxb98+ceedd4qIiAjx8MMPi5KSEqHT6cSjjz4qjhw5Ij744APRtm1bj37vEydOCEmSxMqVK0VJSYl7rMgTTzwhWrRoIVauXCkOHz4sdu7cKV588UWxcuXKPz2upjEhixYt8ogZf5jzIT8/3yOmPXv2iLCwMJGRkSF27dolDh48KDZs2CAyMjIuy2tI9VvVOKIdO3YEOxRqYHh3DNFl9p///Ae9e/fGoEGDkJqail69eqFr164AgJYtW2LlypVYt24dOnbsiHnz5uH555/3OP7KK6/EU089hWnTpiE6Otp9B8rTTz+NmTNnIjMzEx06dMBtt92GTz75xD1e4FLHKaFLly7IycnBwYMH0bt3b1x//fWYNWsW4uLiFDsH1X9CCBw7dgxz585FdHS0z902RJIQvGeJiIh8V1paiujoaHTo0AGLFy+u1l1EVBsmIURERBQU7I4hIiKioGASQkREREHBJISIiIiCgkkIERERBQWTECIiIgoKJiFEREQUFExCiIiIKCiYhBAREVFQMAkhIiKioGASQkREREHx/wFF/MpCQUtddgAAAABJRU5ErkJggg==",
|
|
40
|
-
"text/plain": [
|
|
41
|
-
"<Figure size 640x480 with 2 Axes>"
|
|
42
|
-
]
|
|
43
|
-
},
|
|
44
|
-
"metadata": {},
|
|
45
|
-
"output_type": "display_data"
|
|
46
|
-
}
|
|
47
|
-
],
|
|
48
|
-
"source": [
|
|
49
|
-
"dates = pd.date_range(\"2024-01-02\", freq='10min', periods=288)\n",
|
|
50
|
-
"data = np.abs(np.cumsum(np.random.normal(0, 8., len(dates))))\n",
|
|
51
|
-
"data = np.tile(data, (10, 1))\n",
|
|
52
|
-
"freqs = np.arange(10)\n",
|
|
53
|
-
"xrd = xr.Dataset({'spectrogram': xr.DataArray(data, coords=[freqs, dates],\n",
|
|
54
|
-
" dims=['frequency', 'datetime'])})\n",
|
|
55
|
-
"fig = xrd['spectrogram'].plot()"
|
|
56
|
-
]
|
|
57
|
-
},
|
|
58
|
-
{
|
|
59
|
-
"cell_type": "markdown",
|
|
60
|
-
"metadata": {},
|
|
61
|
-
"source": [
|
|
62
|
-
"Now we will store the data under two different sites of the same experiment using the same sensor and channel names for both."
|
|
63
|
-
]
|
|
64
|
-
},
|
|
65
|
-
{
|
|
66
|
-
"cell_type": "code",
|
|
67
|
-
"execution_count": 3,
|
|
68
|
-
"metadata": {},
|
|
69
|
-
"outputs": [
|
|
70
|
-
{
|
|
71
|
-
"data": {
|
|
72
|
-
"text/plain": [
|
|
73
|
-
"Group: experiment\n",
|
|
74
|
-
"/tmp/experiment\n",
|
|
75
|
-
" /tmp/experiment/NET1\n",
|
|
76
|
-
" /tmp/experiment/NET1/MDR1\n",
|
|
77
|
-
" /tmp/experiment/NET1/MDR1/00\n",
|
|
78
|
-
" /tmp/experiment/NET1/MDR1/00/HHZ\n",
|
|
79
|
-
" /tmp/experiment/NET1/MDR2\n",
|
|
80
|
-
" /tmp/experiment/NET1/MDR2/00\n",
|
|
81
|
-
" /tmp/experiment/NET1/MDR2/00/HHZ"
|
|
82
|
-
]
|
|
83
|
-
},
|
|
84
|
-
"execution_count": 3,
|
|
85
|
-
"metadata": {},
|
|
86
|
-
"output_type": "execute_result"
|
|
87
|
-
}
|
|
88
|
-
],
|
|
89
|
-
"source": [
|
|
90
|
-
"g = Storage('experiment', rootdir='/tmp')\n",
|
|
91
|
-
"st1 = g.get_substore('NET1', 'MDR1', '00', 'HHZ')\n",
|
|
92
|
-
"st2 = g.get_substore('NET1', 'MDR2', '00', 'HHZ')\n",
|
|
93
|
-
"st1.save(xrd, mode='w')\n",
|
|
94
|
-
"st2.save(xrd, mode='w')\n",
|
|
95
|
-
"g"
|
|
96
|
-
]
|
|
97
|
-
},
|
|
98
|
-
{
|
|
99
|
-
"cell_type": "markdown",
|
|
100
|
-
"metadata": {},
|
|
101
|
-
"source": [
|
|
102
|
-
"Next we want to retrieve the data we just saved. Before retrieving data we have to set the timespan over which we want to retrieve data."
|
|
103
|
-
]
|
|
104
|
-
},
|
|
105
|
-
{
|
|
106
|
-
"cell_type": "code",
|
|
107
|
-
"execution_count": 4,
|
|
108
|
-
"metadata": {},
|
|
109
|
-
"outputs": [
|
|
110
|
-
{
|
|
111
|
-
"data": {
|
|
112
|
-
"text/plain": [
|
|
113
|
-
"<matplotlib.collections.QuadMesh at 0x7f813303e920>"
|
|
114
|
-
]
|
|
115
|
-
},
|
|
116
|
-
"execution_count": 4,
|
|
117
|
-
"metadata": {},
|
|
118
|
-
"output_type": "execute_result"
|
|
119
|
-
},
|
|
120
|
-
{
|
|
121
|
-
"data": {
|
|
122
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAGwCAYAAAB/xbX8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUWlJREFUeJzt3Xd4VFX+P/D3nR6SzFAkzRSidBALKoSqkCUqiyDZtdKEH+y6AQREhZWiiAZZKRaKuhhkFUFUsH3FEiGKBESkKoYWSBCSKJIEEqbe8/tjJgNjgplyySST9+t57gO55dzPmZk7+eScc8+VhBACRERERHVMFewAiIiIqHFiEkJERERBwSSEiIiIgoJJCBEREQUFkxAiIiIKCiYhREREFBRMQoiIiCgoNMEOIBCyLOPkyZOIjIyEJEnBDoeIiOoxIQTOnj2LuLg4qFSX729ws9kMq9UacDk6nQ4Gg0GBiOqvBp2EnDx5EgkJCcEOg4iIGpDCwkLEx8dflrLNZjOSkyJQVOIIuKyYmBjk5+eHdCLSoJOQyMhIAECfLpOhMjSBavdByK7sUxVmgKTTufeVmppwvk1L5/9lgbPxOqjszsliw0rsEFoJks35s8bsgFA5W1YsTTUoba1Gyz3OcivitNCcF9BWyACA8D2/QI5u5jzn6XKIM2WQz1sAAOpmJkAIiJgrnEEcOwG5fSvnvudtkM5WAGZnuXJsC5y+zgQAqIwGrthnR/iRUgCA0Koh/3wEapNzu4i9wnksABgMkMO0ONPZCAA4Gy8hvAgwHTU76+oQUFfanOestAJ2B2RjGACgrE0EtJUC4cfKnfueOw8IZ71EuHMfyeq8kH7r0RLnrpQg652ntV9pRq/WhwEAe3+7Eja7GufPOV9vjd4OrVZG1Vy8DllCmN7ufE1UMnrHHMV3vyY6y5cEft0ZAwDQnwEqEmSorM7XXtYJNDmhQsx2Z12tJh00lc5ydAdOAAYdYHfGJ5eWQWUywtYmzllXix3qX8uc24p+hdQkDPK5Smfd7DaoO7SGw/U6aA79AvsZ52utiYmC/VQR1O1aO4PXqiGdrYTcPMIZ79FfYOuS7Nx0xgxxtACqCOc2REbAfvQ4NC1buF4kB2BybjMnt0BllBbNcwqcMUU1hbllEwDA6c5ahP0mUBnlrHd4kQAkoEmR830LO3AKjuJfnfUyRgKyDCnMGbvjyhawNDcg7OQ55ylNBsga5194FXE6GE7bYW+iBgA0OXUe6jIzRMEJZ1nh4XC46q02mYAwPcxtne+FptKO4hubQOv6mDX/qQLmK5xvvlBJqIxWw9LUuQ0SYG0mYDc635sWseU483u48xwleqisEqxXOLdpytVo8ouznhEnZRhOW2GLdH4NhZ2qREV8OCTZ+cFx6FVw6J37Nt/xKxzNmuB0Z+freTbZ9RI3cX5ejUdUQNXczxJgOmLD+ZbOclV2IOKE+cJ1UH4ecLWcit/PQNJoAIfrcx/dHHKYDupS52fFktgU56/QOou1A2GnraiMcn7OtZUywooqIR0udMZ79hyqqMIMQPtkqCqc1/eZa5ujMtr5vtgiAJtJuOONPCah/EYzhM35PklaB0SZ61q64jyk/HBIzpcPhmvP4P9d/S1GGYsAAB9XhOMXe3P3eb/8tT0itc5zDr3ie/zmiESi9jcAwKaznbC/1Pn+Hiu+AvowGyrLnL/c2iQWYUJ8Nkoczu+R7DMdoZGc19a2gmTIsgRHuev7VC9DF2GBxXWsJsyOq2Kcn8+SikiUFkegyTHna2ZtJiBrnRWVWligUsuQHc7XIa5lKdSSjON5sc7XzCZBumj+blkrEBbvfE1bRpxFYsQZlJid3/m/VkZgQNzPAIB1B26AzmCDzep8/RwlYRB6GZoy5/svWZ2fAQDQFptxYOUc9++Oy8FqtaKoxIHjO1vBGOl/a0v5WRlJXY/BarUyCamvqrpgNGo9VBoDVJIWsutTrJJ0kKSLkhCVHhqN842UZAG1TgeVypV0aF1JiOtbQWO/kIQ4tBqo9WpoXF/sap0WGruARuv80tKo9JDVznJVKguEpIMsObepVTpnEqJ2/eaWdJBdMajUKkgqu3tUjqzWQ61zblPrnTFpXMcJtRqypHWWB0Co9c5jXTvLau1Fx0pQ6wCNpuo1ElCrVa5zSoBwQHaVq9EaoNEKaNQW12skX0hCXPtIaoer3gaoDRLgqooqDNBFOONRV+oh29VQOZwb1QY71FqHOwmBrIJab3O9JjL0EVpoKvUX4jNcqLcqTIbK9dpDL6DWq6DRuBINrQ4ajeuXmUoHqPTubxdZ0kKl0kFUvb4OO9Qqs3ubJOkgS84YhASo1XpIrn01Kh0gaT3+r656z9RqSCqH+z2WpAvn0KgFhKSDyvW+QK0HJK2zDGcQzhgBaDQG52fHtU1W66HRVtVbC7VOQO36havWOZMQjUbtikkPyRWfSqUDhAzJVY6kMcChNUCjdtYNmgtJiFqng0ZrB7SucjQCalfMVWVVlat2vZ5V14hGY4dab4C7WI0DGu2FJEStU6PqJYIEqAwCqjBXotnEAtV51/tg0EOlktzbVFa1u54arQyNRgWh1bheTwc0WoM7CZG0KkB34RqXNAb351zl+k5WhbmuNb1nEqLRqqHWuZIQlfN6uHAdyBeSEJUOkkrj8bmX1XqoXZ97h8YAjdaVhEiARqOCRqu7EL9adn/PVL2WgPP7B2qD85qD81pT653nl/WAw3AhCVHrJKjCAKG5KAmxut6jJgKSweD+JapuokdYhAbGSFdiqVLDYLvwNa6p1MMVLppEqhFm1yBc59xXL7TQ2PSucg1Qh6mgsrre73A9wl37A4DOqoNG5XDvC1mCsF1IQtRNJPexqiZ2aMJd177QQxVmgFrv+rwaBKBzvZ9NJOdr70pCNOF6qCXZmbDB+f10cRICnYC6ic21rxW6CJ37O1ENPfQR2gt1MajgcH3piTADhF6GynLh/VfZql5ruN6ry999HxEpISLS//PIaBxDDBp0EkJERFQfOYQMRwBPZnO4EuNQxySEiIhIYTIEZPifhQRybEPCW3SJiIgoKNgSQkREpDAZMgLpUAns6IaDSQgREZHCHELAIfzvUgnk2IaE3TFEREQUFGwJISIiUhgHpnqHSQgREZHCZAg4mITUit0xREREFBRsCSEiIlIYu2O8wySEiIhIYbw7xjvsjiEiIqKgYEsIERGRwmTXEsjxjQGTECIiIoU5Arw7JpBjGxImIURERApzCAT4FF3lYqnPOCaEiIiIgoItIURERArjmBDvMAkhIiJSmAwJDkgBHd8YsDuGiIiIgoItIURERAqThXMJ5PjGgEkIERGRwhwBdscEcmxDwu4YIiIiCgq2hBARESmMLSHeYRJCRESkMFlIkEUAd8cEcGxDwu4YIiIiCgq2hBARESmM3THeYRJCRESkMAdUcATQ2eBQMJb6jEkIERGRwkSAY0IEx4QQERERXT5sCSEiIlIYx4R4h0kIERGRwhxCBYcIYExII5m2nd0xREREFBRsCSEiIlKYDAlyAH/ny2gcTSFMQoiIiBTGMSHeYXcMERFRA+dwODBz5kwkJycjLCwMV199NZ5++mkIcaFFRQiBWbNmITY2FmFhYUhNTcWhQ4eCGDWTECIiIsVVDUwNZPHFc889h2XLluHll1/GgQMH8Nxzz2H+/Pl46aWX3PvMnz8fL774IpYvX47t27cjPDwcaWlpMJvNSlffa+yOISIiUphzTEgAD7BzHVteXu6xXq/XQ6/XV9t/69atGDx4MAYOHAgAaNWqFd5++2189913AJytIIsXL8aMGTMwePBgAMCqVasQHR2NDRs24N577/U71kCwJYSIiKieSkhIgMlkci+ZmZk17tejRw9kZ2fj4MGDAIA9e/Zgy5YtuP322wEA+fn5KCoqQmpqqvsYk8mEbt26ITc39/JX5BLYEkJERKQwOcBnx1TdHVNYWAij0eheX1MrCABMmzYN5eXlaN++PdRqNRwOB5555hk88MADAICioiIAQHR0tMdx0dHR7m3BwCSEiIhIYYFPVuZMQoxGo0cScinvvPMO3nrrLaxevRqdOnXC7t27MWnSJMTFxWHkyJF+x3G5MQkhIiJSmAxVnc4T8uijj2LatGnusR3XXHMNjh8/jszMTIwcORIxMTEAgOLiYsTGxrqPKy4uxnXXXed3nIHimBAiIqIGrrKyEiqV5690tVoNWZYBAMnJyYiJiUF2drZ7e3l5ObZv346UlJQ6jfVibAkhIiJSmENIcIgAJivz8dhBgwbhmWeeQWJiIjp16oRdu3Zh4cKFGD16NABAkiRMmjQJc+fORZs2bZCcnIyZM2ciLi4OQ4YM8TvOQDEJISIiUpgjwIGpDh+7Y1566SXMnDkT//rXv1BSUoK4uDj84x//wKxZs9z7PPbYY6ioqMC4ceNQWlqKXr16YePGjTAYDH7HGSgmIURERA1cZGQkFi9ejMWLF19yH0mSMGfOHMyZM6fuAqsFkxAiIiKFyUIFOYC7Y2TBB9gRERGRH+q6O6ah4t0xREREFBRsCSEiIlKYDN/vcPnj8Y1BUFtCvHn0MBERUUNTNVlZIEtjENSWkKpHD7/xxhvo1KkTvv/+ezz44IMwmUyYOHFiMEMjIiKiyyyoSUhtjx4mIiJqiAJ/dkzjaAkJai1re/TwH1ksFpSXl3ssRERE9Y0MKeClMQhqS0htjx7+o8zMTDz11FN1HCUREZFv2BLinaDW8uJHD//www9444038Pzzz+ONN96ocf/p06ejrKzMvRQWFtZxxERERKSUoLaE1Pbo4T/S6/XQ6/V1HSYREZFPAp+srHG0hAQ1Cant0cNEREQNkSwkyIHMExLAsQ1JUJOQ2h49TERERKErqEmIN48eJiIiamjkALtjOFlZHfDm0cNEREQNTeBP0W0cSUjjqCURERHVO3yAHRERkcIckOAIYMKxQI5tSJiEEBERKYzdMd5pHLUkIiKieoctIURERApzILAuFYdyodRrTEKIiIgUxu4Y7zAJISIiUhgfYOedxlFLIiIiqnfYEkJERKQwAQlyAGNCBG/RJSIiIn+wO8Y7jaOWREREVO+wJYSIiEhhspAgC/+7VAI5tiFhEkJERKQwR4BP0Q3k2IakcdSSiIiI6h22hBARESmM3THeYUsIERGRwmSoAl580apVK0iSVG3JyMgAAJjNZmRkZKBFixaIiIhAeno6iouLL0fVfcIkhIiIqIHbsWMHTp065V6++OILAMDf//53AMDkyZPx0UcfYd26dcjJycHJkycxdOjQYIYMgN0xREREinMICY4AulSqji0vL/dYr9frodfrq+3fsmVLj5/nzZuHq6++Gn379kVZWRlWrFiB1atXo1+/fgCArKwsdOjQAdu2bUP37t39jjNQbAkhIiJSWNWYkEAWAEhISIDJZHIvmZmZtZ7barXizTffxOjRoyFJEnbu3AmbzYbU1FT3Pu3bt0diYiJyc3Mv22vgDbaEEBERKUwE+BRd4Tq2sLAQRqPRvb6mVpA/2rBhA0pLSzFq1CgAQFFREXQ6HZo2beqxX3R0NIqKivyOUQlMQoiIiOopo9HokYR4Y8WKFbj99tsRFxd3maJSDpMQIiIihTkgwRHAQ+j8Pfb48eP48ssv8f7777vXxcTEwGq1orS01KM1pLi4GDExMX7HqASOCSEiIlKYLAIdF+LfebOyshAVFYWBAwe613Xt2hVarRbZ2dnudXl5eSgoKEBKSkqgVQ0IW0KIiIhCgCzLyMrKwsiRI6HRXPj1bjKZMGbMGEyZMgXNmzeH0WjEhAkTkJKSEtQ7YwAmIURERIqTAxyY6s+xX375JQoKCjB69Ohq2xYtWgSVSoX09HRYLBakpaVh6dKlfsenFCYhRERECpMhQQ5gTIg/xw4YMABC1NyPYzAYsGTJEixZssTvmC4HjgkhIiKioGBLCBERkcKUmjE11DEJISIiUlgwxoQ0RI2jlkRERFTvsCWEiIhIYTIuPP/F3+MbAyYhREREChMB3h0jmIQQERGRPy5+Eq6/xzcGHBNCREREQcGWECIiIoXx7hjvMAkhIiJSGLtjvNM4Ui0iIiKqd9gSQkREpLBgPDumIWISQkREpDB2x3iH3TFEREQUFGwJISIiUhhbQrzDJISIiEhhTEK8w+4YIiIiCgq2hBARESmMLSHeYRJCRESkMIHAbrMVyoVSrzEJISIiUhhbQrzDMSFEREQUFGwJISIiUhhbQrzDJISIiEhhTEK8w+4YIiIiCgq2hBARESmMLSHeYRJCRESkMCEkiAASiUCObUjYHUNERERBwZYQIiIihcmQApqsLJBjGxImIURERArjmBDvsDuGiIiIgoJJCBERkcKqBqYGsvjql19+wbBhw9CiRQuEhYXhmmuuwffff39RTAKzZs1CbGwswsLCkJqaikOHDilZbZ8xCSEiIlJYVXdMIIsvzpw5g549e0Kr1eLTTz/FTz/9hAULFqBZs2bufebPn48XX3wRy5cvx/bt2xEeHo60tDSYzWalq+81jgkhIiJSWF3fovvcc88hISEBWVlZ7nXJyckXlSewePFizJgxA4MHDwYArFq1CtHR0diwYQPuvfdev2MNBFtCiIiI6qny8nKPxWKx1Ljfhx9+iBtvvBF///vfERUVheuvvx6vvfaae3t+fj6KioqQmprqXmcymdCtWzfk5uZe9npcCpMQIiIihYkAu2KqWkISEhJgMpncS2ZmZo3nO3r0KJYtW4Y2bdrgs88+w0MPPYSJEyfijTfeAAAUFRUBAKKjoz2Oi46Odm8LBnbHEBERKUwAECKw4wGgsLAQRqPRvV6v19e4vyzLuPHGG/Hss88CAK6//nrs378fy5cvx8iRI/0P5DJjSwgREVE9ZTQaPZZLJSGxsbHo2LGjx7oOHTqgoKAAABATEwMAKC4u9tinuLjYvS0Ygp6E1HZLERERUUNTNWNqIIsvevbsiby8PI91Bw8eRFJSEgDnINWYmBhkZ2e7t5eXl2P79u1ISUkJvMJ+Cmp3TNUtRbfeeis+/fRTtGzZEocOHfK4pYiIiKihqeu7YyZPnowePXrg2Wefxd13343vvvsOr776Kl599VUAgCRJmDRpEubOnYs2bdogOTkZM2fORFxcHIYMGeJ3nIEKahJS2y1Ff2SxWDxGBpeXl1/W+IiIiBqCm266CevXr8f06dMxZ84cJCcnY/HixXjggQfc+zz22GOoqKjAuHHjUFpail69emHjxo0wGAxBizuo3TG13VL0R5mZmR6jhBMSEuowWiIiIu/U9WRlAPDXv/4V+/btg9lsxoEDBzB27FiP7ZIkYc6cOSgqKoLZbMaXX36Jtm3bKlVlvwQ1CantlqI/mj59OsrKytxLYWFhHUdMRERUOyECXxqDoHbH+HpLkV6vv+TIYCIiImpYgtoSUtstRURERA1RMB5g1xAFtSWktluKiIiIGqK6vjumoQpqElLbLUVEREQNkSwkSAEkEv4MTG2IgtodU3VL0dtvv43OnTvj6aefrnZLEREREYWmoD875q9//Sv++te/BjsMIiIixQR6hwvvjiEiIiK/OJOQQMaEKBhMPRb0Z8cQERFR48SWECIiIoXx7hjvMAkhIiJSmHAtgRzfGLA7hoiIiIKCLSFEREQKY3eMd5iEEBERKY39MV5hEkJERKS0QJ//Uo9bQkpKSlBSUgJZlj3Wd+nSxeeymIQQERFRrXbu3ImRI0fiwIEDEK6JTCRJghACkiTB4XD4XCaTECIiIoWF4oypo0ePRtu2bbFixQpER0dDkgJvrWESQkREpLBQHJh69OhRvPfee2jdurViZfIWXSIiIqpV//79sWfPHkXLZEsIERGR0oQU2ODSetgS8t///hcjR47E/v370blzZ2i1Wo/td955p89lMgkhIiJSWCiOCcnNzcW3336LTz/9tNo2fwemsjuGiIiIajVhwgQMGzYMp06dgizLHos/CQjAlhAiIiLlheBkZadPn8bkyZMRHR2tWJk+t4QcPXpUsZMTERGFoqq7YwJZ6puhQ4di06ZNipbpc0tI69at0bdvX4wZMwZ/+9vfYDAYFA2IiIiI6p+2bdti+vTp2LJlC6655ppqA1MnTpzoc5k+JyE//PADsrKyMGXKFIwfPx733HMPxowZg5tvvtnnkxMREYWsetilEoj//ve/iIiIQE5ODnJycjy2SZJUN0nIddddhxdeeAELFizAhx9+iJUrV6JXr15o27YtRo8ejeHDh6Nly5Y+B0JERBQqQnGysvz8fMXL9PvuGI1Gg6FDh2LdunV47rnncPjwYUydOhUJCQkYMWIETp06pWScREREDYdQYGkE/L475vvvv8frr7+ONWvWIDw8HFOnTsWYMWNw4sQJPPXUUxg8eDC+++47JWMlIiKiIDpx4gQ+/PBDFBQUwGq1emxbuHChz+X5nIQsXLgQWVlZyMvLwx133IFVq1bhjjvugErlbFRJTk7GypUr0apVK5+DISIiCg2Sawnk+PolOzsbd955J6666ir8/PPP6Ny5M44dOwYhBG644Qa/yvS5O2bZsmW4//77cfz4cWzYsAF//etf3QlIlaioKKxYscKvgIiIiBq8Ou6OefLJJyFJksfSvn1793az2YyMjAy0aNECERERSE9PR3FxsU/nmD59OqZOnYp9+/bBYDDgvffeQ2FhIfr27Yu///3vvgXs4nNLyKFDh2rdR6fTYeTIkX4FRERERL7r1KkTvvzyS/fPGs2FX/GTJ0/GJ598gnXr1sFkMmH8+PEYOnQovv32W6/LP3DgAN5++2132efPn0dERATmzJmDwYMH46GHHvI5Zp+TkKysLERERFTLetatW4fKykomH0REREGYMVWj0SAmJqba+rKyMqxYsQKrV69Gv379ADh/l3fo0AHbtm1D9+7dvSo/PDzcPQ4kNjYWR44cQadOnQAAv/32m+8Bw4/umMzMTFxxxRXV1kdFReHZZ5/1KwgiIqKQUvUU3UAWAOXl5R6LxWK55CkPHTqEuLg4XHXVVXjggQdQUFAAANi5cydsNhtSU1Pd+7Zv3x6JiYnIzc31ukrdu3fHli1bAAB33HEHHnnkETzzzDMYPXq014nMH/mchBQUFCA5Obna+qSkJHeFiYiIKHAJCQkwmUzuJTMzs8b9unXrhpUrV2Ljxo1YtmwZ8vPz0bt3b5w9exZFRUXQ6XRo2rSpxzHR0dEoKiryOpaFCxeiW7duAICnnnoK/fv3x9q1a9GqVSu/x4H63B0TFRWFvXv3Vrv7Zc+ePWjRooVfQRAREYUSIZxLIMcDQGFhIYxGo3u9Xq+vcf/bb7/d/f8uXbqgW7duSEpKwjvvvIOwsDD/A3FxOBw4ceIEunTpAsDZNbN8+fKAy/W5JeS+++7DxIkTsWnTJjgcDjgcDnz11Vd4+OGHce+99wYcEBERUYOn0N0xRqPRY7lUEvJHTZs2Rdu2bXH48GHExMTAarWitLTUY5/i4uIax5DURK1WY8CAAThz5oxX+3vL5yTk6aefRrdu3dC/f3+EhYUhLCwMAwYMQL9+/TgmhIiIqB44d+4cjhw5gtjYWHTt2hVarRbZ2dnu7Xl5eSgoKEBKSorXZXbu3BlHjx5VNE6fu2N0Oh3Wrl2Lp59+Gnv27EFYWBiuueYaJCUlKRoYERFRg3XR4FK/j/fB1KlTMWjQICQlJeHkyZOYPXs21Go17rvvPphMJowZMwZTpkxB8+bNYTQaMWHCBKSkpPg0oHTu3LmYOnUqnn76aXTt2hXh4eEe2y/uNvKW39O2t23bFm3btvX3cCIiopAlCecSyPG+OHHiBO677z6cPn0aLVu2RK9evbBt2zb3A2UXLVoElUqF9PR0WCwWpKWlYenSpT6d44477gAA3HnnnZCkC0mSEAKSJMHhcPgWNPxIQhwOB1auXIns7GyUlJRAlmWP7V999ZXPQRAREYWUOp4nZM2aNX+63WAwYMmSJViyZInfIW3atMnvYy/F5yTk4YcfxsqVKzFw4EB07tzZIxsiIiKi0NS3b1/Fy/Q5CVmzZg3eeecdd7MMERER/UEdjwmpC3v37q1xvSRJMBgMSExM9PrunSp+DUxt3bq1r4cRERE1HkGYtv1yu+666/6090Or1eKee+7BK6+8AoPB4FWZPt+i+8gjj+CFF16ACGQWFiIiImpQ1q9fjzZt2uDVV1/F7t27sXv3brz66qto164dVq9ejRUrVuCrr77CjBkzvC7T55aQLVu2YNOmTfj000/RqVMnaLVaj+3vv/++r0USERGFlhBsCXnmmWfwwgsvIC0tzb3ummuuQXx8PGbOnInvvvsO4eHheOSRR/D88897VabPSUjTpk1x1113+XoYERFR4xGCSci+fftqnBMsKSkJ+/btA+Dssjl16pTXZfqchGRlZfl6CBERETVw7du3x7x58/Dqq69Cp9MBAGw2G+bNm4f27dsDAH755RdER0d7XaZfk5XZ7XZs3rwZR44cwf3334/IyEicPHkSRqMRERER/hRJREQUOkLw7pglS5bgzjvvRHx8vPtBdvv27YPD4cDHH38MADh69Cj+9a9/eV2mz0nI8ePHcdttt6GgoAAWiwV/+ctfEBkZieeeew4Wi0WRp+oRERE1ZHU9Y2pd6NGjB/Lz8/HWW2/h4MGDAIC///3v7sYIABg+fLhPZfo1WdmNN96IPXv2oEWLFu71d911F8aOHetrcURERNRAREZG4p///Kdi5fmchHzzzTfYunWruz+oSqtWrfDLL78oFhgREVGDFYIDUwHgyJEjWLx4MQ4cOAAA6NSpEyZOnIirr77ar/J8nidEluUaH1Jz4sQJd3MMERERhZbPPvsMHTt2xHfffYcuXbqgS5cu2LZtGzp16oQvvvjCrzJ9bgkZMGAAFi9ejFdffRWAc7rWc+fOYfbs2ZzKnYiICICEAMeEKBaJcqZNm4bJkydj3rx51dY//vjj+Mtf/uJzmT63hCxYsADffvstOnbsCLPZjPvvv9/dFfPcc8/5HAARERHVfwcOHMCYMWOqrR89ejR++uknv8r0uSUkPj4ee/bswZo1a7B3716cO3cOY8aMwQMPPICwsDC/giAiIgopIXiLbsuWLbF79260adPGY/3u3bsRFRXlV5l+zROi0WgwbNgwv05IREQU8kJwYOrYsWMxbtw4HD16FD169AAAfPvtt3juuecwZcoUv8r0OQlZtWrVn24fMWKEX4EQERFR/TVz5kxERkZiwYIFmD59OgAgLi4OTz75JCZOnOhXmX7NE3Ixm82GyspK6HQ6NGnShEkIERFRiLWE2O12rF69Gvfffz8mT56Ms2fPAkDAd8X6PDD1zJkzHsu5c+eQl5eHXr164e233w4oGCIiolBQNWNqIEt9otFo8M9//hNmsxmAM/lQYloOn5OQmrRp0wbz5s2r1kpCREREoeHmm2/Grl27FC3Tr4GpNRak0eDkyZNKFUdERNRwhVh3DAD861//wiOPPIITJ06ga9euCA8P99he9VA7X/ichHz44YcePwshcOrUKbz88svo2bOnzwEQERGFnBBMQu69914A8BiEKkkShBCQJKnG2dRr43MSMmTIEI+fJUlCy5Yt0a9fPyxYsMDnAIiIiKj+y8/PV7xMn5MQWZYVD4KIiCiUBDq4tL4NTAWA48ePo0ePHtBoPFMHu92OrVu3IikpyecyFRmYSkRERBepmjE1kKWeufXWW/H7779XW19WVoZbb73VrzJ9bgnxZVa0hQsX+lo8ERFRwxeCY0Kqxn780enTp6sNUvWWz0nIrl27sGvXLthsNrRr1w4AcPDgQajVatxwww3u/WoKlIiIiBqWoUOHAnD+Xh81ahT0er17m8PhwN69e93TuPvK5yRk0KBBiIyMxBtvvIFmzZoBcE5g9uCDD6J379545JFH/AqEiIgoVITSmBCTyQTA2RISGRnp8bBanU6H7t27Y+zYsX6V7XMSsmDBAnz++efuBAQAmjVrhrlz52LAgAFMQoiIiEKoOyYrKwsA0KpVKzz66KNo0qSJYmX7PDC1vLwcv/76a7X1v/76q3sueX/MmzcPkiRh0qRJfpdBREREl8eIESPwyy+/VFt/6NAhHDt2zK8yfU5C7rrrLjz44IN4//33ceLECZw4cQLvvfcexowZ4+438tWOHTvwyiuv+DXbGhERUb0T6HNjAmwJqekPe7PZjIyMDLRo0QIRERFIT09HcXGx12WOGjUKW7durbZ++/btGDVqlF9x+pyELF++HLfffjvuv/9+JCUlISkpCffffz9uu+02LF261OcAzp07hwceeACvvfaaRxdPTSwWC8rLyz0WIiKiekcosPjpUn/YT548GR999BHWrVuHnJwcnDx50qfGg127dtU4M3r37t2xe/duv2L1OQlp0qQJli5ditOnT7vvlPn999+xdOlSv27RycjIwMCBA5GamlrrvpmZmTCZTO4lISHB5/MRERGFqkv9YV9WVoYVK1Zg4cKF6NevH7p27YqsrCxs3boV27Zt86psSZJqHHZRVlbm15TtQACTlZ06dQqnTp1CmzZtEB4eDiF8T9vWrFmDH374AZmZmV7tP336dJSVlbmXwsJCn89JRER02SnUEvLH1n+LxfKnp73UH/Y7d+6EzWbzWN++fXskJiYiNzfXqyr16dMHmZmZHgmHw+FAZmYmevXq5VUZf+Tz3TGnT5/G3XffjU2bNkGSJBw6dAhXXXUVxowZg2bNmnn9/JjCwkI8/PDD+OKLL2AwGLw6Rq/Xe9yfTEREVB8pdYvuH1v8Z8+ejSeffLLGY6r+sN+xY0e1bUVFRdDpdGjatKnH+ujoaBQVFXkV03PPPYc+ffqgXbt26N27NwDgm2++QXl5Ob766iuvyvgjn1tCJk+eDK1Wi4KCAo/bdO655x5s3LjR63J27tyJkpIS3HDDDdBoNNBoNMjJycGLL74IjUbjd9MOERFRqCgsLPToAZg+ffol93v44Yfx1ltvef2Hva86duyIvXv34u6770ZJSQnOnj2LESNG4Oeff0bnzp39KtPnlpDPP/8cn332GeLj4z3Wt2nTBsePH/e6nP79+2Pfvn0e6x588EG0b98ejz/+ONRqta+hERERhRSj0Qij0Vjrfhf/YV/F4XDg66+/xssvv4zPPvsMVqsVpaWlHq0hxcXFiImJ8TqeuLg4PPvssz7V4c/4nIRUVFTUOFHJ77//7lNXSWRkZLXMKTw8HC1atPA7oyIiIqoX6niystr+sE9ISIBWq0V2djbS09MBAHl5eSgoKEBKSorX5/nmm2/wyiuv4OjRo1i3bh2uvPJK/O9//0NycrJf40J87o7p3bs3Vq1a5f5ZkiTIsoz58+f7/RQ9IiKiUBLIHCH+jCep+sP+4uXiP+xNJhPGjBmDKVOmYNOmTdi5cycefPBBpKSkoHv37l6d47333kNaWhrCwsLwww8/uAfJlpWV+d064nNLyPz589G/f398//33sFqteOyxx/Djjz/i999/x7fffutXEFU2b94c0PFERERUs0WLFkGlUiE9PR0WiwVpaWk+ze81d+5cLF++HCNGjMCaNWvc63v27Im5c+f6FZPPSUjnzp1x8OBBvPzyy4iMjMS5c+cwdOhQZGRkIDY21q8giIiIQk6Qn//yxz/sDQYDlixZgiVLlvhVXl5eHvr06VNtvclkQmlpqV9l+pSE2Gw23HbbbVi+fDmeeOIJv05IREQU8kLoAXZVYmJicPjwYbRq1cpj/ZYtW3DVVVf5VaZPY0K0Wi327t3r14mIiIio4Ro7diwefvhhbN++HZIk4eTJk3jrrbcwdepUPPTQQ36V6XN3zLBhw7BixQrMmzfPrxMSERGFOqUmK6tPpk2bBlmW0b9/f1RWVqJPnz7Q6/WYOnUqJkyY4FeZPichdrsdr7/+Or788kt07dq12vNiFi5c6FcgREREISMEu2MkScITTzyBRx99FIcPH8a5c+fQsWNHRERE+F2mV0nI3r170blzZ6hUKuzfv989GcrBgwerBUhEREShS6fTITIyEpGRkQElIICXScj111+PU6dOISoqCsePH8eOHTvQokWLgE5MREQUqkKxO8Zut+Opp57Ciy++iHPnzgEAIiIiMGHCBMyePRtardbnMr1KQpo2bYr8/HxERUXh2LFjkGXZ5xMRERE1GiHYHTNhwgS8//77mD9/vnuW1dzcXDz55JM4ffo0li1b5nOZXiUh6enp6Nu3L2JjYyFJEm688cZLPtvl6NGjPgdBRERE9dvq1auxZs0a3H777e51Xbp0QUJCAu67777Ll4S8+uqrGDp0KA4fPoyJEydi7NixiIyM9PlkREREjUIItoTo9fpqc4QAQHJyMnQ6nV9len13zG233QbA+aS+hx9+mEkIERHRJYTimJDx48fj6aefRlZWlvuBtRaLBc888wzGjx/vV5k+36KblZXl14mIiIgajRBsCdm1axeys7MRHx+Pa6+9FgCwZ88eWK1W9O/fH0OHDnXv+/7773tVps9JCBERETU+TZs2RXp6use6hISEgMpkEkJERKS0EGwJWbp0KWRZdk9SeuzYMWzYsAEdOnRAWlqaX2X69OwYIiIiql3VmJBAlvpm8ODB+N///gcAKC0tRffu3bFgwQIMGTLErztjACYhRERE5IUffvgBvXv3BgC8++67iI6OxvHjx7Fq1Sq8+OKLfpXJ7hgiIiKlhWB3TGVlpfvO2M8//xxDhw6FSqVC9+7dcfz4cb/KZEsIERGRwkKxO6Z169bYsGEDCgsL8dlnn2HAgAEAgJKSEhiNRr/KZBJCREREtZo1axamTp2KVq1aoVu3bu6p2z///HNcf/31fpXJ7hgiIiKlhWB3zN/+9jf06tULp06dcs8TAgD9+/fHXXfd5VeZTEKIiIiUFoJJCADExMQgJibGY93NN9/sd3nsjiEiIqKgYEsIERGRwiTXEsjxjQGTECIiIqWFaHeM0piEEBERKSwUn6J7OXBMCBEREQUFW0KIiIiUxu4YrzAJISIiuhwaSSIRCHbHEBERUVCwJYSIiEhhHJjqHSYhRERESuOYEK+wO4aIiIiCgkkIERGRwqq6YwJZfLFs2TJ06dIFRqMRRqMRKSkp+PTTT93bzWYzMjIy0KJFC0RERCA9PR3FxcUK19p3TEKIiIiUJhRYfBAfH4958+Zh586d+P7779GvXz8MHjwYP/74IwBg8uTJ+Oijj7Bu3Trk5OTg5MmTGDp0qAIVDQzHhBAREdVT5eXlHj/r9Xro9fpq+w0aNMjj52eeeQbLli3Dtm3bEB8fjxUrVmD16tXo168fACArKwsdOnTAtm3b0L1798tXgVqwJYSIiEhhSnXHJCQkwGQyuZfMzMxaz+1wOLBmzRpUVFQgJSUFO3fuhM1mQ2pqqnuf9u3bIzExEbm5uZfrJfAKW0KIiIiUptDdMYWFhTAaje7VNbWCVNm3bx9SUlJgNpsRERGB9evXo2PHjti9ezd0Oh2aNm3qsX90dDSKiooCCDJwTEKIiIiUplASUjXQ1Bvt2rXD7t27UVZWhnfffRcjR45ETk5OAEFcfkxCiIiIQoBOp0Pr1q0BAF27dsWOHTvwwgsv4J577oHVakVpaalHa0hxcTFiYmKCFK0Tx4QQEREprK5v0a2JLMuwWCzo2rUrtFotsrOz3dvy8vJQUFCAlJSUwE8UALaEEBERKa2OZ0ydPn06br/9diQmJuLs2bNYvXo1Nm/ejM8++wwmkwljxozBlClT0Lx5cxiNRkyYMAEpKSlBvTMGYBJCRETU4JWUlGDEiBE4deoUTCYTunTpgs8++wx/+ctfAACLFi2CSqVCeno6LBYL0tLSsHTp0iBHzSSEiIhIcZIQkIT/TSG+HrtixYo/3W4wGLBkyRIsWbLE75guByYhRERESuMD7LzCgalEREQUFGwJISIiUligd7gocXdMQ8AkhIiISGnsjvEKu2OIiIgoKNgSQkREpDB2x3iHSQgREZHS2B3jFSYhRERECmNLiHc4JoSIiIiCgi0hRERESmN3jFeYhBAREV0GjaVLJRDsjiEiIqKgYEsIERGR0oRwLoEc3wgwCSEiIlIY747xDrtjiIiIKCjYEkJERKQ03h3jFSYhRERECpNk5xLI8Y0Bu2OIiIgoKNgSQkREpDR2x3iFSQgREZHCeHeMd4LaHZOZmYmbbroJkZGRiIqKwpAhQ5CXlxfMkIiIiAJXNU9IIEsjENQkJCcnBxkZGdi2bRu++OIL2Gw2DBgwABUVFcEMi4iIiOpAULtjNm7c6PHzypUrERUVhZ07d6JPnz7V9rdYLLBYLO6fy8vLL3uMREREvmJ3jHfq1d0xZWVlAIDmzZvXuD0zMxMmk8m9JCQk1GV4RERE3hEKLI1AvUlCZFnGpEmT0LNnT3Tu3LnGfaZPn46ysjL3UlhYWMdREhERkVLqzd0xGRkZ2L9/P7Zs2XLJffR6PfR6fR1GRURE5Dt2x3inXiQh48ePx8cff4yvv/4a8fHxwQ6HiIgoMHyKrleCmoQIITBhwgSsX78emzdvRnJycjDDISIiojoU1CQkIyMDq1evxgcffIDIyEgUFRUBAEwmE8LCwoIZGhERkd/YHeOdoA5MXbZsGcrKynDLLbcgNjbWvaxduzaYYREREQWGd8d4JahJiBCixmXUqFHBDIuIiKhB8WYGcrPZjIyMDLRo0QIRERFIT09HcXFxkCJ2qje36BIREYWKqu6YQBZfeDMD+eTJk/HRRx9h3bp1yMnJwcmTJzF06FCFa+6benF3DBERUUiRhXMJ5Hgf1DYDeVlZGVasWIHVq1ejX79+AICsrCx06NAB27ZtQ/fu3f2PNQBsCSEiIlKaQmNCysvLPZaLH13yZ/44A/nOnTths9mQmprq3qd9+/ZITExEbm5uYHUNAJMQIiKieiohIcHjcSWZmZm1HlPTDORFRUXQ6XRo2rSpx77R0dHuO1ODgd0xRERECpMQ4C26rn8LCwthNBrd672ZNdybGcjrCyYhRERESlNoxlSj0eiRhNTmUjOQx8TEwGq1orS01KM1pLi4GDExMf7HGSB2xxARETVwQgiMHz8e69evx1dffVVtBvKuXbtCq9UiOzvbvS4vLw8FBQVISUmp63Dd2BJCRESksLqeMbW2GchNJhPGjBmDKVOmoHnz5jAajZgwYQJSUlKCdmcMwCSEiIhIeYHOeurjscuWLQMA3HLLLR7rs7Ky3BOALlq0CCqVCunp6bBYLEhLS8PSpUsDCDJwTEKIiIgaOOHF+BODwYAlS5ZgyZIldRCRd5iEEBERKUwSAlIAA1MDObYhYRJCRESkNNm1BHJ8I8C7Y4iIiCgo2BJCRESkMHbHeIdJCBERkdLq+O6YhopJCBERkdIUmjE11HFMCBEREQUFW0KIiIgUVtczpjZUTEKIiIiUxu4Yr7A7hoiIiIKCLSFEREQKk2TnEsjxjQGTECIiIqWxO8Yr7I4hIiKioGBLCBERkdI4WZlXmIQQEREpjNO2e4fdMURERBQUbAkhIiJSGgemeoVJCBERkdIEgEBus20cOQiTECIiIqVxTIh3OCaEiIiIgoItIUREREoTCHBMiGKR1GtMQoiIiJTGgaleYXcMERERBQVbQoiIiJQmA5ACPL4RYBJCRESkMN4d4x12xxAREVFQsCWEiIhIaRyY6hUmIUREREpjEuIVdscQERFRULAlhIiISGlsCfEKW0KIiIiUJiuw+Ojrr7/GoEGDEBcXB0mSsGHDBo/tQgjMmjULsbGxCAsLQ2pqKg4dOuRf/RTCJISIiEhhVbfoBrL4qqKiAtdeey2WLFlS4/b58+fjxRdfxPLly7F9+3aEh4cjLS0NZrM50Or6jd0xREREIeD222/H7bffXuM2IQQWL16MGTNmYPDgwQCAVatWITo6Ghs2bMC9995bl6G6sSWEiIhIaVVjQgJZAJSXl3ssFovFr3Dy8/NRVFSE1NRU9zqTyYRu3bohNzdXkSr7g0kIERGR0mQR+AIgISEBJpPJvWRmZvoVTlFREQAgOjraY310dLR7WzCwO4aIiKieKiwshNFodP+s1+uDGI3y2BJCRESkNIW6Y4xGo8fibxISExMDACguLvZYX1xc7N4WDExCiIiIFBdoAqLsPCHJycmIiYlBdna2e115eTm2b9+OlJQURc/lC3bHEBERhYBz587h8OHD7p/z8/Oxe/duNG/eHImJiZg0aRLmzp2LNm3aIDk5GTNnzkRcXByGDBkStJiZhBARESktCDOmfv/997j11lvdP0+ZMgUAMHLkSKxcuRKPPfYYKioqMG7cOJSWlqJXr17YuHEjDAaD/3EGiEkIERGR0uQAu1Rk34+95ZZbIP4keZEkCXPmzMGcOXP8j0thHBNCREREQcGWECIiIqUJ2bkEcnwjwCSEiIhIaXyKrleYhBARESktCGNCGiKOCSEiIqKgYEsIERGR0tgd4xUmIUREREoTCDAJUSySeo3dMURERBQUbAkhIiJSGrtjvMIkhIiISGmyDCCAuT7kxjFPCLtjiIiIKCjYEkJERKQ0dsd4pV60hCxZsgStWrWCwWBAt27d8N133wU7JCIiIv9VJSGBLI1A0JOQtWvXYsqUKZg9ezZ++OEHXHvttUhLS0NJSUmwQyMiIqLLKOhJyMKFCzF27Fg8+OCD6NixI5YvX44mTZrg9ddfr7avxWJBeXm5x0JERFTvyCLwpREIahJitVqxc+dOpKamutepVCqkpqYiNze32v6ZmZkwmUzuJSEhoS7DJSIi8ooQcsBLYxDUJOS3336Dw+FAdHS0x/ro6GgUFRVV23/69OkoKytzL4WFhXUVKhERkfdEgK0gjWRMSIO6O0av10Ov1wc7DCIiIlJAUJOQK664Amq1GsXFxR7ri4uLERMTE6SoiIiIAiQEAnoATCNpCQlqd4xOp0PXrl2RnZ3tXifLMrKzs5GSkhLEyIiIiAIgy4EvjUDQu2OmTJmCkSNH4sYbb8TNN9+MxYsXo6KiAg8++GCwQyMiIqLLKOhJyD333INff/0Vs2bNQlFREa677jps3Lix2mBVIiKiBoPdMV4JehICAOPHj8f48eODHQYREZEihCxDSP53qfAWXSIiIqLLqF60hBAREYUUdsd4hUkIERGR0mQBSExCasPuGCIiIgoKtoQQEREpTQgAAQwubSQtIUxCiIiIFCZkARFAd4xgEkJERER+ETICawnhLbpERERElw1bQoiIiBTG7hjvMAkhIiJSGrtjvNKgk5CqTNHusEBlV0MlbJCFDQCgEmqPW7Ql2QK73ez6v4DDKkPYXcfb7BCQINlcB9gdECrJtU0Dh0UNu90KAHBYHZBsApLN+QGxyxbIDme5KtkCIazuGIRsBYSAcFhcAVshu2JQOWyQZAsgO8uVHRY4rM5tDoszJrvrOKFSQxY2Z3kAhMPiPBYAHBJkh3zRsRIcVlyoq0NAOFyvicMKOByQHSpX3bSQbMJ9Hkm2uD/4wrWP5HC46m2GwyxBdr1E8nkzrOdcr0mlBQ67GvJ550aHbIdKK7sHdztkCQ6HHa4XCZZzNtgrXOeUBBzmC/WWz8uA1fnay7KAw6Jy18VukwG73VWM1Xl9y874ZGGDSra691XZ7RCu10gWNkgXvy/CBuGwwGF39UbKVthd26r+737PVGpIsgWyQ+uMV1gvem2d77fK9b7AYXGWU/Wz7ABcMdjtZjisDtgver/tNrXrMAccVgGHRXK91gKQALvdGZNdtsBR9bmWrYCQIcmuY+1m2G1wv4d2uwTZ1cvqsMrOz5HrPHa7GcIVs7MsrbtcIVsBWXLXDXY7HBYVVFa4j7W7rg+hkuCwqlH1EkECZLOArLO7Pw/yeddXi1kAVgnyeec22ax219Nuk2G3W2G3Ofe1Oyyw2zSQXB8yh0oFR9V16HB+xhxWjasc10uskl2voerCvFASYLfZ3PsKe1Xdq64DCyBJ7npLFz2xVDgskB0XrllnvZ2fMckOV7zOfSWbDLvDDMn1ela9loDz+wcOs/OaA2C3mZ0xAnBona9XVbwOqwT5vBnC9T5JdgfEeec55EozJLMawnX5OCotOH/OjnKVM6bKCgfMrmsCAOwVFti0znNWnnXgvMOOCq1z34uvO7nSDIewQT4vuY+rcO0PANYKK2TJ4d5XliXntQkAsgyH2gL5vOtH2N3lOip1kM9r4bC4jjULyA5nRaVKC6CWL3z/VFggJBnyedebaZM8vrNlh4Cj0vU+qCywSlbYzVXn0cJyznahLrINstX1GTsvQcgyZLPr/bfC/fqpXN+TddHKYIctoLnK7LDVvlMIkEQDbvM5ceIEEhISgh0GERE1IIWFhYiPj78sZZvNZiQnJ6OoqCjgsmJiYpCfnw+DwaBAZPVTg05CZFlGXl4eOnbsiMLCQhiNxmCH5Jfy8nIkJCQ06DoArEd9Egp1AEKjHqFQByA06iGEwNmzZxEXFweV6vLdl2E2m2G1WgMuR6fThXQCAjTw7hiVSoUrr7wSAGA0GhvshVElFOoAsB71SSjUAQiNeoRCHYCGXw+TyXTZz2EwGEI+eVAKb9ElIiKioGASQkREREHR4JMQvV6P2bNnQ6/XBzsUv4VCHQDWoz4JhToAoVGPUKgDEDr1oPqlQQ9MJSIiooarwbeEEBERUcPEJISIiIiCgkkIERERBQWTECIiIgqKOk9CRo0ahSFDhlz282zevBk33HAD9Ho9WrdujZUrV3psz8zMxE033YTIyEhERUVhyJAhyMvL8+tcS5YsQatWrWAwGNCtWzd89913Httzc3PRr18/hIeHw2g0ok+fPjh//nxA8XtzXl98/fXXGDRoEOLi4iBJEjZs2ODeZrPZ8Pjjj+Oaa65BeHg44uLiMGLECJw8ebLWcuuyHn9WBwA4d+4cxo8fj/j4eISFhaFjx45Yvnx5reXu3bsXvXv3hsFgQEJCAubPn19tn3Xr1qF9+/YwGAy45ppr8H//938+x19fro1ly5ahS5cu7kmpUlJS8Omnn/p1roZ+bYTCdVFbPYD6f21QCBN1bOTIkWLw4MGX9RxHjx4VTZo0EVOmTBE//fSTeOmll4RarRYbN25075OWliaysrLE/v37xe7du8Udd9whEhMTxblz53w615o1a4ROpxOvv/66+PHHH8XYsWNF06ZNRXFxsRBCiK1btwqj0SgyMzPF/v37xc8//yzWrl0rzGZzQPHXdl5f/d///Z944oknxPvvvy8AiPXr17u3lZaWitTUVLF27Vrx888/i9zcXHHzzTeLrl27/mmZdV2PP6uDEEKMHTtWXH311WLTpk0iPz9fvPLKK0KtVosPPvjgkmWWlZWJ6Oho8cADD4j9+/eLt99+W4SFhYlXXnnFvc+3334r1Gq1mD9/vvjpp5/EjBkzhFarFfv27fMp/vpybXz44Yfik08+EQcPHhR5eXni3//+t9BqtWL//v0+nSsUro1QuC5qq4cQ9f/aoNAV1CTk008/FT179hQmk0k0b95cDBw4UBw+fNi9b35+vgAg3nvvPXHLLbeIsLAw0aVLF7F169Y/Pcdjjz0mOnXq5LHunnvuEWlpaZc8pqSkRAAQOTk5PtXn5ptvFhkZGe6fHQ6HiIuLE5mZmUIIIbp16yZmzJjhU5nexF/beQNR05fUH3333XcCgDh+/Pgl9wlmPWqqQ6dOncScOXM81t1www3iiSeeuGQ5S5cuFc2aNRMWi8W97vHHHxft2rVz/3z33XeLgQMHehzXrVs38Y9//MOnmOvrtSGEEM2aNRP//e9/fapPqF0boXBdCNEwrw0KXUEdE1JRUYEpU6bg+++/R3Z2NlQqFe666y7IrsdqV3niiScwdepU7N69G23btsV9990H+0WPr/6j3NxcpKameqxLS0tDbm7uJY8pKysDADRv3tzr+K1WK3bu3OlxLpVKhdTUVOTm5qKkpATbt29HVFQUevTogejoaPTt2xdbtmzxKOeWW27BqFGjvI6/tvPWhbKyMkiShKZNm7rX1fd69OjRAx9++CF++eUXCCGwadMmHDx4EAMGDHDvM2rUKNxyyy0edejTpw90Op1HHfLy8nDmzBmv6umP+nJtOBwOrFmzBhUVFUhJSfE6/sZ6bTTE6wJoWNcGhZagPsAuPT3d4+fXX38dLVu2xE8//YTOnTu710+dOhUDBw4EADz11FPo1KkTDh8+jPbt29dYblFREaKjoz3WRUdHo7y8HOfPn0dYWJjHNlmWMWnSJPTs2dPjvLX57bff4HA4ajzXzz//jKNHjwIAnnzySTz//PO47rrrsGrVKvTv3x/79+9HmzZtAACJiYmIjY31Ov4zZ8786XkvN7PZjMcffxz33Xefx4Os6ns9XnrpJYwbNw7x8fHQaDRQqVR47bXX0KdPH/c+sbGxHr/oi4qKkJycXC2+qm3NmjW7ZD0DeZR3sK+Nffv2ISUlBWazGREREVi/fj06duzodfyN8dpoqNcF0LCuDQotQU1CDh06hFmzZmH79u347bff3B/wgoICjy/aLl26uP9fdTGXlJSgffv2iIiIcG8bNmyYV4Op/igjIwP79++v9ldYoKrq849//AMPPvggAOD6669HdnY2Xn/9dWRmZgIAVq1apeh5LyebzYa7774bQggsW7bMY1t9r8dLL72Ebdu24cMPP0RSUhK+/vprZGRkIC4uzv3XWtV7EmzBvjbatWuH3bt3o6ysDO+++y5GjhyJnJwcnxKRPxNq10ZDvi6AhnVtUGgJahIyaNAgJCUl4bXXXkNcXBxkWUbnzp1htVo99tNqte7/S5IE4MKX2O7du93bqv76iImJQXFxsUcZxcXFMBqN1VpBxo8fj48//hhff/014uPjfYr/iiuugFqtrvFcMTEx7l8Kf/zi7tChAwoKCi5Zbm3xq9XqPz3v5VL1RXv8+HF89dVXtT7Ouz7V4/z58/j3v/+N9evXu1sOunTpgt27d+P555+v1mRcWx2qtv3ZPoHUIdjXhk6nQ+vWrQEAXbt2xY4dO/DCCy/glVde8Sr+xnRtNOTrAmh41waFlqCNCTl9+jTy8vIwY8YM9O/fHx06dHD3I/qidevW7iUqKgoAkJKSguzsbI/9vvjiC48+bSEExo8fj/Xr1+Orr76q1qzoDZ1Oh65du3qcS5ZlZGdnIyUlBa1atUJcXFy1W38PHjyIpKSkS5ZbW/y1nfdyqPqiPXToEL788ku0aNGi1mPqUz1sNhtsNhtUKs+PvFqtrjbO4mIpKSn4+uuvYbPZPOrQrl07NGvWzL1PbZ83XwT72qiJLMuwWCxen7uxXBsN/boAGta1QSGorkfCVt0B4HA4RIsWLcSwYcPEoUOHRHZ2trjppps8Rm5X3QGwa9cu9/FnzpwRAMSmTZsueY6qW+AeffRRceDAAbFkyZJqt8A99NBDwmQyic2bN4tTp065l8rKSp/qs2bNGqHX68XKlSvFTz/9JMaNGyeaNm0qioqKhBBCLFq0SBiNRrFu3Tpx6NAhMWPGDGEwGDzudBg+fLiYNm2aT/HXdl5fnT17VuzatUvs2rVLABALFy4Uu3btEsePHxdWq1XceeedIj4+Xuzevdvj9bp4ZHyw6/FndRBCiL59+4pOnTqJTZs2iaNHj4qsrCxhMBjE0qVL3WVMmzZNDB8+3P1zaWmpiI6OFsOHDxf79+8Xa9asEU2aNKl2G6JGoxHPP/+8OHDggJg9e3ZAt+gG+9qYNm2ayMnJEfn5+WLv3r1i2rRpQpIk8fnnn/tUn1C4NkLhuqitHkLU/2uDQledJyHDhw8X6enpQgghvvjiC9GhQweh1+tFly5dxObNmxX5ohVCiE2bNonrrrtO6HQ6cdVVV4msrCyP7QBqXP64nzdeeuklkZiYKHQ6nbj55pvFtm3bPLZnZmaK+Ph40aRJE5GSkiK++eYbj+19+/YVI0eO9Cl+b87ri02bNtX4eowcOdL9PtS0XPw+BLsef1YHIYQ4deqUGDVqlIiLixMGg0G0a9dOLFiwQMiy7C5j5MiRom/fvh7l7tmzR/Tq1Uvo9Xpx5ZVXinnz5lU79zvvvCPatm0rdDqd6NSpk/jkk098jr++XBujR48WSUlJQqfTiZYtW4r+/fv7nIBUaejXRihcF7XVQ4j6f21Q6JKEEELJlpXa3HbbbWjdujVefvnlujwtUb3Ha4OIGps6GxNy5swZfPzxx9i8efMlBzoRNUa8Noiosaqzu2NGjx6NHTt24JFHHsHgwYPr6rRE9R6vDSJqrOq8O4aIiIgICOItukRERNS4MQkhIiKioGASQkREREHBJISIiIiCgkkIEVE9l5mZiZtuugmRkZGIiorCkCFDqk15bzabkZGRgRYtWiAiIgLp6ekez23Zs2cP7rvvPiQkJCAsLAwdOnTACy+8cMlzfvvtt9BoNLjuuuu8ilGSJGzYsMGf6vlECIFZs2YhNjYWYWFhSE1NxaFDhzz2ufPOO5GYmAiDwYDY2FgMHz4cJ0+evOyxke+YhBAFwS233IJJkyY1unOTf3JycpCRkYFt27bhiy++gM1mw4ABA1BRUeHeZ/Lkyfjoo4+wbt065OTk4OTJkxg6dKh7+86dOxEVFYU333wTP/74I5544glMnz69xsnxSktLMWLECPTv379O6ueL+fPn48UXX8Ty5cuxfft2hIeHIy0tDWaz2b3PrbfeinfeeQd5eXl47733cOTIEfztb38LYtR0SUGdr5Wokerbt694+OGHvdq3asrtM2fO+HSOSx13+vRpUV5e7lNZVL+UlJQIACInJ0cI4XyOi1arFevWrXPvc+DAAQFA5ObmXrKcf/3rX+LWW2+ttv6ee+4RM2bMELNnzxbXXnutVzHhoscKCCHEY489Jtq0aSPCwsJEcnKymDFjhrBare7tVWWvWrVKJCUlCaPRKO65554//WzKsixiYmLEf/7zH/e60tJSodfrxdtvv33J4z744AMhSZLH+al+YEsIUSPTvHlzREZGBjsMCkBZWRkA53sJOFs5bDabx4y77du3R2JiInJzc/+0nKoyqmRlZeHo0aOYPXt2QDFGRkZi5cqV+Omnn/DCCy/gtddew6JFizz2OXLkCDZs2ICPP/4YH3/8MXJycjBv3rxLlpmfn4+ioiKPeppMJnTr1u2S9fz999/x1ltvoUePHtBqtQHViZTHJIToMquoqMCIESMQERGB2NhYLFiwwGP7//73P9x4442IjIxETEwM7r//fpSUlAAAjh07hltvvRUA0KxZM0iShFGjRgFwPt49MzMTycnJCAsLw7XXXot333231uP+2B3TqlUrzJ071x1jUlISPvzwQ/z6668YPHgwIiIi0KVLF3z//fcecW/ZsgW9e/dGWFgYEhISMHHiRI/uAbo8ZFnGpEmT0LNnT3Tu3BkAUFRUBJ1Oh6ZNm3rsGx0djaKiohrL2bp1K9auXYtx48a51x06dAjTpk3Dm2++CY0msAm1Z8yYgR49eqBVq1YYNGgQpk6dinfeeadaXVauXInOnTujd+/eGD58OLKzsy9ZZlVdoqOjPdbXVM/HH38c4eHhaNGiBQoKCvDBBx8EVB+6PJiEEF1mjz76KHJycvDBBx/g888/x+bNm/HDDz+4t9tsNjz99NPYs2cPNmzYgGPHjrkThoSEBLz33nsAgLy8PJw6dco9mDAzMxOrVq3C8uXL8eOPP2Ly5MkYNmwYcnJy/vS4mixatAg9e/bErl27MHDgQAwfPhwjRozAsGHD8MMPP+Dqq6/GiBEjIFwTLB85cgS33XYb0tPTsXfvXqxduxZbtmzB+PHjL8dLSBfJyMjA/v37sWbNGr/L2L9/PwYPHozZs2djwIABAACHw4H7778fTz31FNq2bVvjcW+99RYiIiLcyzfffHPJc6xduxY9e/ZETEwMIiIiMGPGDBQUFHjs06pVK49WudjYWHcC7su5avLoo49i165d+Pzzz6FWqz0+v1SPBLs/iCiUnT17Vuh0OvHOO++4150+fVqEhYVdckzIjh07BABx9uxZIUTNYzvMZrNo0qSJ2Lp1q8exY8aMEffdd98ljxOi+niUpKQkMWzYMPfPp06dEgDEzJkz3etyc3MFAHHq1Cn3ecaNG+dR7jfffCNUKpU4f/78n78o5LeMjAwRHx8vjh496rE+Ozu7xvc6MTFRLFy40GPdjz/+KKKiosS///1vj/VnzpwRAIRarXYvkiS512VnZ4vy8nJx6NAh91JZWek+HheNCdm6datQq9Vi7ty5YseOHeLgwYNizpw5wmQyufevabzJokWLRFJSkhBC1HiuI0eOCABi165dHsf16dNHTJw48ZKvW2FhoQBQ7Xqh4KuzB9gRNUZHjhyB1WpFt27d3OuaN2+Odu3auX/euXMnnnzySezZswdnzpyBLMsAgIKCAnTs2LHGcg8fPozKykr85S9/8VhvtVpx/fXX+xxnly5d3P+vauq+5pprqq0rKSlBTEwM9uzZg7179+Ktt95y7yOEgCzLyM/PR4cOHXyOgS5NCIEJEyZg/fr12Lx5M5KTkz22d+3aFVqtFtnZ2UhPTwfgbAErKChASkqKe78ff/wR/fr1w8iRI/HMM894lGE0GrFv3z6PdUuXLsVXX32Fd999F8nJyQgPD/dqPNHWrVuRlJSEJ554wr3u+PHjPtU5MjKy2rmSk5MRExOD7Oxs963D5eXl2L59Ox566KFLllV1TVksFp9ioMuPSQhREFVUVCAtLQ1paWl466230LJlSxQUFCAtLQ1Wq/WSx507dw4A8Mknn+DKK6/02KbX632O4+IBe5IkXXJd1Zf5uXPn8I9//AMTJ06sVlZiYqLP56c/l5GRgdWrV+ODDz5AZGSke/yDyWRCWFgYTCYTxowZgylTpqB58+YwGo2YMGECUlJS0L17dwDOLph+/fohLS0NU6ZMcZehVqvRsmVLqFQq9xiTKlFRUTAYDNXW16ZNmzYoKCjAmjVrcNNNN+GTTz7B+vXrA34dJEnCpEmTMHfuXLRp0wbJycmYOXMm4uLiMGTIEADA9u3bsWPHDvTq1QvNmjXDkSNHMHPmTFx99dUeCRnVD0xCiC6jq6++GlqtFtu3b3f/cj5z5gwOHjyIvn374ueff8bp06cxb948JCQkAEC1AaA6nQ6As8++SseOHaHX61FQUIC+ffvWeO6ajlPKDTfcgJ9++gmtW7dWvGyqbtmyZQCcg4ovlpWV5R4/tGjRIqhUKqSnp8NisSAtLQ1Lly517/vuu+/i119/xZtvvok333zTvT4pKQnHjh0LKL6q5LRqMOudd96JyZMnY/z48bBYLBg4cCBmzpyJJ598MqDzAMBjjz2GiooKjBs3DqWlpejVqxc2btwIg8EAAGjSpAnef/99zJ49GxUVFYiNjcVtt92GGTNm+JWg02UW7P4golD3z3/+UyQlJYns7Gyxb98+ceedd4qIiAjx8MMPi5KSEqHT6cSjjz4qjhw5Ij744APRtm1bj37vEydOCEmSxMqVK0VJSYl7rMgTTzwhWrRoIVauXCkOHz4sdu7cKV588UWxcuXKPz2upjEhixYt8ogZf5jzIT8/3yOmPXv2iLCwMJGRkSF27dolDh48KDZs2CAyMjIuy2tI9VvVOKIdO3YEOxRqYHh3DNFl9p///Ae9e/fGoEGDkJqail69eqFr164AgJYtW2LlypVYt24dOnbsiHnz5uH555/3OP7KK6/EU089hWnTpiE6Otp9B8rTTz+NmTNnIjMzEx06dMBtt92GTz75xD1e4FLHKaFLly7IycnBwYMH0bt3b1x//fWYNWsW4uLiFDsH1X9CCBw7dgxz585FdHS0z902RJIQvGeJiIh8V1paiujoaHTo0AGLFy+u1l1EVBsmIURERBQU7I4hIiKioGASQkREREHBJISIiIiCgkkIERERBQWTECIiIgoKJiFEREQUFExCiIiIKCiYhBAREVFQMAkhIiKioGASQkREREHx/wFF/MpCQUtddgAAAABJRU5ErkJggg==",
|
|
123
|
-
"text/plain": [
|
|
124
|
-
"<Figure size 640x480 with 2 Axes>"
|
|
125
|
-
]
|
|
126
|
-
},
|
|
127
|
-
"metadata": {},
|
|
128
|
-
"output_type": "display_data"
|
|
129
|
-
}
|
|
130
|
-
],
|
|
131
|
-
"source": [
|
|
132
|
-
"g.starttime = datetime(2024, 1, 2, 0, 0, 0)\n",
|
|
133
|
-
"g.endtime = datetime(2024, 1, 4, 0, 0, 0)\n",
|
|
134
|
-
"st = g.get_substore('NET1', 'MDR2', '00', 'HHZ')\n",
|
|
135
|
-
"st('spectrogram').plot()"
|
|
136
|
-
]
|
|
137
|
-
},
|
|
138
|
-
{
|
|
139
|
-
"cell_type": "code",
|
|
140
|
-
"execution_count": 5,
|
|
141
|
-
"metadata": {},
|
|
142
|
-
"outputs": [],
|
|
143
|
-
"source": [
|
|
144
|
-
"# Now start the API server by running the following command in a terminal\n",
|
|
145
|
-
"# tonik_api --rootdir /tmp"
|
|
146
|
-
]
|
|
147
|
-
},
|
|
148
|
-
{
|
|
149
|
-
"cell_type": "markdown",
|
|
150
|
-
"metadata": {},
|
|
151
|
-
"source": [
|
|
152
|
-
"Let's first have a look what is available."
|
|
153
|
-
]
|
|
154
|
-
},
|
|
155
|
-
{
|
|
156
|
-
"cell_type": "code",
|
|
157
|
-
"execution_count": 6,
|
|
158
|
-
"metadata": {},
|
|
159
|
-
"outputs": [
|
|
160
|
-
{
|
|
161
|
-
"data": {
|
|
162
|
-
"text/plain": [
|
|
163
|
-
"{'experiment': [{'NET1': [{'MDR1': [{'00': [{'HHZ': ['spectrogram']}]}]},\n",
|
|
164
|
-
" {'MDR2': [{'00': [{'HHZ': ['spectrogram']}]}]}]}]}"
|
|
165
|
-
]
|
|
166
|
-
},
|
|
167
|
-
"execution_count": 6,
|
|
168
|
-
"metadata": {},
|
|
169
|
-
"output_type": "execute_result"
|
|
170
|
-
}
|
|
171
|
-
],
|
|
172
|
-
"source": [
|
|
173
|
-
"url = f\"http://localhost:8003/inventory?group={g.name}\"\n",
|
|
174
|
-
"requests.get(url).json()"
|
|
175
|
-
]
|
|
176
|
-
},
|
|
177
|
-
{
|
|
178
|
-
"cell_type": "markdown",
|
|
179
|
-
"metadata": {},
|
|
180
|
-
"source": [
|
|
181
|
-
"Now let's request the data we just stored."
|
|
182
|
-
]
|
|
183
|
-
},
|
|
184
|
-
{
|
|
185
|
-
"cell_type": "code",
|
|
186
|
-
"execution_count": 7,
|
|
187
|
-
"metadata": {},
|
|
188
|
-
"outputs": [
|
|
189
|
-
{
|
|
190
|
-
"data": {
|
|
191
|
-
"text/plain": [
|
|
192
|
-
"<matplotlib.collections.QuadMesh at 0x7f8132ff3f10>"
|
|
193
|
-
]
|
|
194
|
-
},
|
|
195
|
-
"execution_count": 7,
|
|
196
|
-
"metadata": {},
|
|
197
|
-
"output_type": "execute_result"
|
|
198
|
-
},
|
|
199
|
-
{
|
|
200
|
-
"data": {
|
|
201
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAGwCAYAAAB/xbX8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASfBJREFUeJzt3Xd8VFX+P/7XnT4pM5BImiQQBaliAcUAIiVrZFkWJN9VsVDkp64GFFhQWCmKaFwsYKGoHwyyK6Logm3BEiGsEhAQFNClQ6KQoEgSCEy95/fHTC6MJGbKTW7K6/l43IfOLee+z8zc4Z1T7pWEEAJERERE9UyndQBERETUPDEJISIiIk0wCSEiIiJNMAkhIiIiTTAJISIiIk0wCSEiIiJNMAkhIiIiTRi0DiASsizj6NGjiI2NhSRJWodDREQNmBACp06dQkpKCnS6uvsb3OFwwOVyRVyOyWSCxWJRIaKGq1EnIUePHkVqaqrWYRARUSNSXFyM1q1b10nZDocD6W1iUHLcG3FZSUlJOHToUJNORBp1EhIbGwsA6NttInSWKOh27IXszz51Vgskk0nZV2phx9n2rXz/Lwucam2CzuO7Waz1uAfCKEFy+14bHF4Ina9lxdnCgLJ2erT61lduZYoRhrMCxkoZABD97U+QE1v6znmiAuJkOeSzTgCAvqUdEAIi6SJfEId/hNyxrW/fs25IpyoBh69cOTkeJ660AwDOJAIX7fQg+kAZAEAY9ZD/dwB6u2+7SL7IdywAWCyQrUac7GoDAJxqLSG6BLAfdPjq6hXQn3H7znnGBXi8kG1WAEB5+xgYzwhEH67w7Xv6LCB89RLRvn0kl+9C+qVXK5y+WIJs9p3Wc7EDfdrtBwB898vFcHv0OHva934bzB4YjTKq7sXrlSVYzR7fe6KTcX3SQXz9c5qvfEng521JAADzSaAyVYbO5XvvZZNA1I86JG321dVlN8FwxleO6YcfAYsJ8Pjik8vKobPb4G6f4qur0wP9z+W+bSU/Q4qyQj59xlc3jxv6Tu3g9b8Phn0/wXPS914bkhLgOVYCfYd2vuCNekinzkCOi/HFe/AnuLul+zaddEAcLIIuxrcNsTHwHDwCQ6t4/5vkBey+bY70eJxJMCKuoMgXU0ILOFpFAQBOdDXC+ovAmQRfvaNLBCABUSW+z836wzF4S3/21csWC8gyJKsvdu/F8XDGWWA9etp3SrsFssH3F15ligmWEx54ovQAgKhjZ6Evd0AU/egrKzoaXn+99XY7YDXDcZnvszCc8aC0RxSM/q9Z3PeVcFzk+/CFTsKZRD2cLXzbIAGulgIem++ziU+uwMlfo33nOG6GziXBdZFvm6FCj6iffPWMOSrDcsIFd6zvZ8h67AwqW0dDkn1fHK9ZB6/Zt2/clp/hbRmFE1197+epdP9bHOX7vtoO6ICqez9LgP2AG2db+crVeYCYHx3nroOKs4C/5VT8ehKSwQB4/d/7xDjIVhP0Zb7vijOtBc5eZPQV6wGsJ1w4k+D7nhvPyLCWnIG0v9gX76nTqKKzWoCO6dBV+q7vk1fE4Uyi73NxxwBuu1DijT0soaKHA8Lt+5wkoxei3H8tXXQW0qFoSL63D5YrTuL/u/QrjLaVAAA+qozGT5445byf/9wRsUbfOYdftBW/eGORZvwFALDuVBfsKvN9vodLL4LZ6saZct8/bu3TSjC+dT6Oe32/I/knO8Mg+a6tTUXpkGUJ3gr/76lZhinGCaf/WIPVg0uSfN/P45WxKCuNQdRh33vmaikgG30VleKd0OllyF7f+5DSqgx6ScaRPcm+98wtQTrv/t2yUcDa2veetoo5hbSYkzju8P3m/3wmBjem/A8AsPKHq2GyuOF2+d4/73ErhFmGodz3+Usu33cAAIylDvywdLbyb0ddcLlcKDnuxZFtbWGLDb+1peKUjDbdD8PlcjEJaaiqumAMejN0Bgt0khGy/1usk0yQpPOSEJ0ZBoPvg5RkAb3JBJ3On3QY/UmI/1fB4DmXhHiNBujNehj8P+x6kxEGj4DB6PvRMujMkPW+cnU6J4Rkgiz5tul1Jl8Sovf/yy2ZIPtj0Ol1kHQeZVSOrDdDb/Jt05t9MRn8xwm9HrJk9JUHQOjNvmP9O8t643nHStCbAIOh6j0S0Ot1/nNKgPBC9pdrMFpgMAoY9E7/eySfS0L8+0h6r7/eFugtEuCvis4KmGJ88ejPmCF79NB5fRv1Fg/0Rq+ShEDWQW92+98TGeYYIwxnzOfis5yrt84qQ+d/72EW0Jt1MBj8iYbRBIPB/4+ZzgTozMqviywZodOZIKreX68Hep1D2SZJJsiSLwYhAXq9GZJ/X4POBEjGgP/XV31mej0knVf5jCXp3DkMegEhmaDzfy7QmwHJ6CvDF4QvRgAGg8X33fFvk/VmGIxV9TZCbxLQ+//B1Zt8SYjBoPfHZIbkj0+nMwFChuQvRzJY4DVaYND76gbDuSREbzLBYPQARn85BgG9P+aqsqrK1fvfz6prxGDwQG+2QCnW4IXBeC4J0Zv0qHqLIAE6i4DO6k80o5zQnfV/DhYzdDpJ2aZz6ZV6GowyDAYdhNHgfz+9MBgtShIiGXWA6dw1Lhksyvdc5/9N1ln915o5MAkxGPXQm/xJiM53PZy7DuRzSYjOBElnCPjey3oz9P7vvddggcHoT0IkwGDQwWA0nYtfLyu/M1XvJeD7/YHe4rvm4LvW9Gbf+WUz4LWcS0L0Jgk6KyAM5yUhLv9nFCUgWSzKP6L6KDOsMQbYYv2JpU4Pi/vcz7jhjBn+cBEVq4fVY0C0ybevWRhhcJv95Vqgt+qgc/k/72gzov37A4DJZYJB51X2hSxBuM8lIfooSTlWF+WBIdp/7QszdFYL9Gb/99UiAJP/84ySfO+9PwkxRJuhl2Rfwgbf79P5SQhMAvoot39fF0wxJuU3UQ8zzDHGc3Wx6OD1/+gJqwXCLEPnPPf569xV7zX8n1Xdd9/HxEqIiQ3/PDKaxxCDRp2EEBERNUReIcMbwZPZvP7EuKljEkJERKQyGQIyws9CIjm2MeEUXSIiItIEW0KIiIhUJkNGJB0qkR3deDAJISIiUplXCHhF+F0qkRzbmLA7hoiIiDTBlhAiIiKVcWBqcJiEEBERqUyGgJdJSK3YHUNERESaYEsIERGRytgdExwmIURERCrj7JjgsDuGiIiINMGWECIiIpXJ/iWS45sDJiFEREQq80Y4OyaSYxsTJiFEREQq8wpE+BRd9WJpyDgmhIiIiDTBlhAiIiKVcUxIcJiEEBERqUyGBC+kiI5vDtgdQ0RERJpgSwgREZHKZOFbIjm+OWASQkREpDJvhN0xkRzbmLA7hoiIiDTBlhAiIiKVsSUkOExCiIiIVCYLCbKIYHZMBMc2JuyOISIiIk2wJYSIiEhl7I4JDpMQIiIilXmhgzeCzgavirE0ZExCiIiIVCYiHBMiOCaEiIiIqO6wJYSIiEhlHBMSHCYhREREKvMKHbwigjEhzeS27eyOISIiIk2wJYSIiEhlMiTIEfydL6N5NIUwCSEiIlIZx4QEh90xREREjZzX68WMGTOQnp4Oq9WKSy+9FE888QSEONeiIoTAzJkzkZycDKvViszMTOzbt0/DqJmEEBERqa5qYGokSyj+8Y9/YNGiRXj55Zfxww8/4B//+Afmzp2Ll156Sdln7ty5ePHFF7F48WJs3rwZ0dHRyMrKgsPhULv6QWN3DBERkcp8Y0IieICd/9iKioqA9WazGWaz+YL9N27ciKFDh2Lw4MEAgLZt2+Ktt97C119/DcDXCjJ//nxMnz4dQ4cOBQAsW7YMiYmJWL16NW677bawY40EW0KIiIgaqNTUVNjtdmXJzc2tdr9evXohPz8fe/fuBQB8++23+PLLLzFo0CAAwKFDh1BSUoLMzEzlGLvdjp49e6KwsLDuK1IDtoQQERGpTI7w2TFVs2OKi4ths9mU9dW1ggDA1KlTUVFRgY4dO0Kv18Pr9eLJJ5/EHXfcAQAoKSkBACQmJgYcl5iYqGzTApMQIiIilUV+szJfEmKz2QKSkJq88847ePPNN7F8+XJ06dIFO3bswIQJE5CSkoJRo0aFHUddYxJCRESkMhm6er1PyJQpUzB16lRlbMfll1+OI0eOIDc3F6NGjUJSUhIAoLS0FMnJycpxpaWluPLKK8OOM1IcE0JERNTInTlzBjpd4D/per0esiwDANLT05GUlIT8/Hxle0VFBTZv3oyMjIx6jfV8bAkhIiJSmVdI8IoIblYW4rFDhgzBk08+ibS0NHTp0gXbt2/H888/j7vvvhsAIEkSJkyYgDlz5qB9+/ZIT0/HjBkzkJKSgmHDhoUdZ6SYhBAREanMG+HAVG+I3TEvvfQSZsyYgQceeADHjx9HSkoK7rvvPsycOVPZ5+GHH0ZlZSXuvfdelJWVoU+fPli7di0sFkvYcUaKSQgREVEjFxsbi/nz52P+/Pk17iNJEmbPno3Zs2fXX2C1YBJCRESkMlnoIEcwO0YWfIAdERERhaG+u2MaK86OISIiIk2wJYSIiEhlMkKf4fLb45sDTVtCgnn0MBERUWNTdbOySJbmQNOWkKpHD7/xxhvo0qULtm7dijFjxsBut+PBBx/UMjQiIiKqY5omIbU9epiIiKgxivzZMc2jJUTTWtb26OHfcjqdqKioCFiIiIgaGhlSxEtzoGlLSG2PHv6t3NxcPP744/UcJRERUWjYEhIcTWt5/qOHv/nmG7zxxht49tln8cYbb1S7/7Rp01BeXq4sxcXF9RwxERERqUXTlpDaHj38W2azGWazub7DJCIiCknkNytrHi0hmiYhtT16mIiIqDGShQQ5kvuERHBsY6JpElLbo4eJiIio6dI0CQnm0cNERESNjRxhdwxvVlYPgnn0MBERUWMT+VN0m0cS0jxqSURERA0OH2BHRESkMi8keCO44VgkxzYmTEKIiIhUxu6Y4DSPWhIREVGDw5YQIiIilXkRWZeKV71QGjQmIURERCpjd0xwmIQQERGpjA+wC07zqCURERE1OGwJISIiUpmABDmCMSGCU3SJiIgoHOyOCU7zqCURERE1OGwJISIiUpksJMgi/C6VSI5tTJiEEBERqcwb4VN0Izm2MWketSQiIqIGhy0hREREKmN3THDYEkJERKQyGbqIl1C0bdsWkiRdsOTk5AAAHA4HcnJyEB8fj5iYGGRnZ6O0tLQuqh4SJiFERESN3JYtW3Ds2DFl+eyzzwAAf/nLXwAAEydOxIcffoiVK1eioKAAR48exfDhw7UMGQC7Y4iIiFTnFRK8EXSpVB1bUVERsN5sNsNsNl+wf6tWrQJeP/3007j00ktxww03oLy8HEuWLMHy5csxYMAAAEBeXh46deqETZs24brrrgs7zkixJYSIiEhlVWNCIlkAIDU1FXa7XVlyc3NrPbfL5cK//vUv3H333ZAkCdu2bYPb7UZmZqayT8eOHZGWlobCwsI6ew+CwZYQIiIilYkIn6Ir/McWFxfDZrMp66trBfmt1atXo6ysDKNHjwYAlJSUwGQyoUWLFgH7JSYmoqSkJOwY1cAkhIiIqIGy2WwBSUgwlixZgkGDBiElJaWOolIPkxAiIiKVeSHBG8FD6MI99siRI/j888/x73//W1mXlJQEl8uFsrKygNaQ0tJSJCUlhR2jGjgmhIiISGWyiHRcSHjnzcvLQ0JCAgYPHqys6969O4xGI/Lz85V1e/bsQVFRETIyMiKtakTYEkJERNQEyLKMvLw8jBo1CgbDuX/e7XY7xo4di0mTJiEuLg42mw3jx49HRkaGpjNjACYhREREqpMjHJgazrGff/45ioqKcPfdd1+wbd68edDpdMjOzobT6URWVhYWLlwYdnxqYRJCRESkMhkS5AjGhIRz7I033gghqu/HsVgsWLBgARYsWBB2THWBY0KIiIhIE2wJISIiUplad0xt6piEEBERqUyLMSGNUfOoJRERETU4bAkhIiJSmYxzz38J9/jmgEkIERGRykSEs2MEkxAiIiIKx/lPwg33+OaAY0KIiIhIE2wJISIiUhlnxwSHSQgREZHK2B0TnOaRahEREVGDw5YQIiIilWnx7JjGiEkIERGRytgdExx2xxAREZEm2BJCRESkMraEBIdJCBERkcqYhASH3TFERESkCbaEEBERqYwtIcFhEkJERKQygcim2Qr1QmnQmIQQERGpjC0hweGYECIiItIEW0KIiIhUxpaQ4DAJISIiUhmTkOCwO4aIiIg0wZYQIiIilbElJDhMQoiIiFQmhAQRQSIRybGNCbtjiIiISBNsCSEiIlKZDCmim5VFcmxjwiSEiIhIZRwTEhx2xxAREZEmmIQQERGprGpgaiRLqH766SfceeediI+Ph9VqxeWXX46tW7eeF5PAzJkzkZycDKvViszMTOzbt0/NaoeMSQgREZHKqrpjIllCcfLkSfTu3RtGoxFr1qzB999/j+eeew4tW7ZU9pk7dy5efPFFLF68GJs3b0Z0dDSysrLgcDjUrn7QOCaEiIhIZfU9Rfcf//gHUlNTkZeXp6xLT08/rzyB+fPnY/r06Rg6dCgAYNmyZUhMTMTq1atx2223hR1rJNgSQkRE1EBVVFQELE6ns9r9PvjgA/To0QN/+ctfkJCQgKuuugqvvfaasv3QoUMoKSlBZmamss5ut6Nnz54oLCys83rUhEkIERGRykSEXTFVLSGpqamw2+3KkpubW+35Dh48iEWLFqF9+/b45JNPcP/99+PBBx/EG2+8AQAoKSkBACQmJgYcl5iYqGzTArtjiIiIVCYACBHZ8QBQXFwMm82mrDebzdXuL8syevTogaeeegoAcNVVV2HXrl1YvHgxRo0aFX4gdYwtIURERA2UzWYLWGpKQpKTk9G5c+eAdZ06dUJRUREAICkpCQBQWloasE9paamyTQuaJyG1TSkiIiJqbKrumBrJEorevXtjz549Aev27t2LNm3aAPANUk1KSkJ+fr6yvaKiAps3b0ZGRkbkFQ6Tpt0xVVOK+vfvjzVr1qBVq1bYt29fwJQiIiKixqa+Z8dMnDgRvXr1wlNPPYVbbrkFX3/9NV599VW8+uqrAABJkjBhwgTMmTMH7du3R3p6OmbMmIGUlBQMGzYs7DgjpWkSUtuUot9yOp0BI4MrKirqND4iIqLG4JprrsGqVaswbdo0zJ49G+np6Zg/fz7uuOMOZZ+HH34YlZWVuPfee1FWVoY+ffpg7dq1sFgsmsWtaXdMbVOKfis3NzdglHBqamo9RktERBSc+r5ZGQD86U9/ws6dO+FwOPDDDz/gnnvuCdguSRJmz56NkpISOBwOfP7557jsssvUqnJYNE1CaptS9FvTpk1DeXm5shQXF9dzxERERLUTIvKlOdC0OybUKUVms7nGkcFERETUuGjaElLblCIiIqLGSIsH2DVGmraE1DaliIiIqDGq79kxjZWmSUhtU4qIiIgaI1lIkCJIJMIZmNoYadodUzWl6K233kLXrl3xxBNPXDCliIiIiJomzZ8d86c//Ql/+tOftA6DiIhINZHOcOHsGCIiIgqLLwmJZEyIisE0YJo/O4aIiIiaJ7aEEBERqYyzY4LDJISIiEhlwr9EcnxzwO4YIiIi0gRbQoiIiFTG7pjgMAkhIiJSG/tjgsIkhIiISG2RPv+lmbSEcEwIERERaYItIURERCrjHVODwySEiIhIZRyYGhx2xxAREZEm2BJCRESkNiFFNri0mbSEMAkhIiJSGceEBIfdMURERKQJtoQQERGpjTcrCwqTECIiIpVxdkxw2B1DREREmmBLCBERUV1oJl0qkWASQkREpDJ2xwSHSQgREZHaODA1KBwTQkRERJpgSwgREZHqJP8SyfFNH1tCiIiI1CZUWELw2GOPQZKkgKVjx47KdofDgZycHMTHxyMmJgbZ2dkoLS2NsJKRYxJCRETUBHTp0gXHjh1Tli+//FLZNnHiRHz44YdYuXIlCgoKcPToUQwfPlzDaH3YHUNERKQ2DQamGgwGJCUlXbC+vLwcS5YswfLlyzFgwAAAQF5eHjp16oRNmzbhuuuuiyDQyLAlhIiISG1VT9GNZAFQUVERsDidzhpPuW/fPqSkpOCSSy7BHXfcgaKiIgDAtm3b4Ha7kZmZqezbsWNHpKWlobCwMKRqHThwANOnT8eIESNw/PhxAMCaNWuwe/fuUN8hAExCiIiIGqzU1FTY7XZlyc3NrXa/nj17YunSpVi7di0WLVqEQ4cO4frrr8epU6dQUlICk8mEFi1aBByTmJiIkpKSoGMpKCjA5Zdfjs2bN+Pf//43Tp8+DQD49ttvMWvWrLDqx+4YIiIilQnhWyI5HgCKi4ths9mU9Wazudr9Bw0apPx/t27d0LNnT7Rp0wbvvPMOrFZr+IGcZ+rUqZgzZw4mTZqE2NhYZf2AAQPw8ssvh1UmW0KIiIjUptLsGJvNFrDUlIT8VosWLXDZZZdh//79SEpKgsvlQllZWcA+paWl1Y4hqcnOnTtx8803X7A+ISEBv/zyS9DlnI9JCBERURNz+vRpHDhwAMnJyejevTuMRiPy8/OV7Xv27EFRUREyMjKCLrNFixY4duzYBeu3b9+Oiy++OKw4mYQQERGpTaWBqcGaPHkyCgoKcPjwYWzcuBE333wz9Ho9RowYAbvdjrFjx2LSpElYt24dtm3bhjFjxiAjIyOkmTG33XYbHnnkEZSUlECSJMiyjK+++gqTJ0/GyJEjQ32HAHBMCBERkeok4VsiOT4UP/74I0aMGIETJ06gVatW6NOnDzZt2oRWrVoBAObNmwedTofs7Gw4nU5kZWVh4cKFIZ3jqaeeQk5ODlJTU+H1etG5c2d4vV7cfvvtmD59emgB+0WchFRUVOCLL75Ahw4d0KlTp0iLIyIiavzq+T4hK1as+N3tFosFCxYswIIFC8ILRwiUlJTgxRdfxMyZM7Fz506cPn0aV111Fdq3bx9WmUAYScgtt9yCvn37Yty4cTh79ix69OiBw4cPQwiBFStWIDs7O+xgiIiIqOERQqBdu3bYvXs32rdvj9TUVFXKDXlMyIYNG3D99dcDAFatWgUhBMrKyvDiiy9izpw5qgRFRETUqNXzmJC6ptPp0L59e5w4cULdckM9oLy8HHFxcQCAtWvXIjs7G1FRURg8eDD27dunanBERESNUj0/wK4+PP3005gyZQp27dqlWpkhd8ekpqaisLAQcXFxWLt2rdIPdfLkSVgsFtUCIyIiooZj5MiROHPmDK644gqYTKYLboL266+/hlxmyEnIhAkTcMcddyAmJgZt2rRBv379APi6aS6//PKQAyAiImpyNHiAXV2bP3++6mWGnIQ88MADuPbaa1FcXIw//OEP0Ol8PTqXXHIJx4QQEREBTTIJGTVqlOplhjVFt0ePHujRo0fAusGDB6sSEBERETU8VU/lrUlaWlrIZYachEyaNCnofZ9//vlQiyciImr8Ip3h0sBmxwBA27ZtIUk1x+X1ekMuM+QkZPv27fjmm2/g8XjQoUMHAMDevXuh1+tx9dVXK/v9XqBERERNWX3fMbU+bN++PeC12+3G9u3b8fzzz+PJJ58Mq8yQk5AhQ4YgNjYWb7zxBlq2bAnANzNmzJgxuP766/G3v/0trECIiIio4briiisuWNejRw+kpKTgmWeewfDhw0MuM+T7hDz33HPIzc1VEhAAaNmyJebMmYPnnnsu5ACIiIianCZ4n5CadOjQAVu2bAnr2JBbQioqKvDzzz9fsP7nn3/GqVOnwgqCiIiIGraKioqA10IIHDt2DI899ljYz48JOQm5+eabMWbMGDz33HO49tprAQCbN2/GlClTwmqKISIiamokRDgmRLVI1NOiRYsLxnsKIZCamlrrA/RqEnISsnjxYkyePBm333473G63rxCDAWPHjsUzzzwTVhBERETUsK1bty7gtU6nQ6tWrdCuXTsYDGHd8SP0JCQqKgoLFy7EM888gwMHDgAALr30UkRHR4cVABERUZPTBKfoSpKEXr16XZBweDwebNiwAX379g25zJAHplY5duwYjh07hvbt2yM6OhpCNKJRNERERHWpCQ5M7d+/f7XPhykvL0f//v3DKjPkJOTEiRMYOHAgLrvsMvzxj3/EsWPHAABjx47l9FwiIqImSghR7T3ATpw4EXZvSMjdMRMnToTRaERRURE6deqkrL/11lsxadIkTtMlIiJqQs+OqZp0IkkSRo8eDbPZrGzzer347rvv0KtXr7DKDjkJ+fTTT/HJJ5+gdevWAevbt2+PI0eOhBUEERFRU9KU7phqt9sB+FpCYmNjYbValW0mkwnXXXcd7rnnnrDKDjkJqaysRFRU1AXrf/3114DsiIiIiBq/vLw8AL5nx0yePFnViSghjwm5/vrrsWzZMuW1JEmQZRlz584Ne2AKERFRk9IEB6bOmjVL9ZmwIbeEzJ07FwMHDsTWrVvhcrnw8MMPY/fu3fj111/x1VdfqRocERFRo9SExoSc791338U777yDoqIiuFyugG3ffPNNyOWF3BLStWtX7N27F3369MHQoUNRWVmJ4cOHY/v27bj00ktDDoCIiIgavhdffBFjxoxBYmIitm/fjmuvvRbx8fE4ePAgBg0aFFaZIbWEuN1u3HTTTVi8eDEeffTRsE5IRETU1DWlgalVFi5ciFdffRUjRozA0qVL8fDDD+OSSy7BzJkzq71/SDBCagkxGo347rvvwjoRERFRs1F1x9RIlgamqKhImYprtVqVh9beddddeOutt8IqM+TumDvvvBNLliwJ62RERETNQhMcmJqUlKS0eKSlpWHTpk0AgEOHDoV91/SQB6Z6PB68/vrr+Pzzz9G9e/cLRso+//zzYQVCREREDdeAAQPwwQcf4KqrrsKYMWMwceJEvPvuu9i6datyQ7NQBZWEfPfdd+jatSt0Oh127dqFq6++GgCwd+/egP2qu50rERFRc9MUx4S8+uqrkGUZAJCTk4P4+Hhs3LgRf/7zn3HfffeFVWZQSchVV12FY8eOISEhAUeOHMGWLVsQHx8f1gmJiIiavCY4RVen00GnOzeK47bbbsNtt90WWZnB7NSiRQscOnQIAHD48GElE1LT008/DUmSMGHCBNXLJiIiosj997//xZ133omMjAz89NNPAIB//vOf+PLLL8MqL6gkJDs7GzfccAPS09MhSRJ69OiBSy65pNolHFu2bMErr7yCbt26hXU8ERFRgyLOdcmEs0TaElLdH/YOh0PpRomJiUF2djZKS0uDLvO9995DVlYWrFYrtm/fDqfTCQAoLy/HU089FVacQXXHvPrqqxg+fDj279+PBx98EPfccw9iY2PDOuFvnT59GnfccQdee+01zJkz53f3dTqdSqUBoKKiQpUYiIiIVKVhd0xNf9hPnDgRH3/8MVauXAm73Y5x48Zh+PDhQd/tfM6cOVi8eDFGjhyJFStWKOt79+5d67/fNQl6dsxNN90EANi2bRseeugh1ZKQnJwcDB48GJmZmbVWIjc3F48//rgq5yUiImpqavrDvry8HEuWLMHy5csxYMAAAL4H03Xq1AmbNm3CddddV2vZe/bsQd++fS9Yb7fbUVZWFla8Id8nJC8vT7UEZMWKFfjmm2+Qm5sb1P7Tpk1DeXm5shQXF6sSBxERkapUuk9IRUVFwHJ+b0B1zv/D/nzbtm2D2+0OWN+xY0ekpaWhsLAwqColJSVh//79F6z/8ssvwx6OEfJ9QtRSXFyMhx56CJ999hksFktQx5jNZpjN5jqOjIiIKDJqTdFNTU0NWD9r1iw89thj1R5T9Yf9li1bLthWUlICk8mEFi1aBKxPTExESUlJUDHdc889eOihh/D6669DkiQcPXoUhYWFmDx5MmbMmBFUGb+lWRKybds2HD9+XLnnCAB4vV5s2LABL7/8MpxOJ/R6vVbhERERaa64uBg2m015XdMf4uH8YR+M8+8TNm3aNMiyjIEDB+LMmTPo27cvzGYzJk+ejPHjx4dVvmZJyMCBA7Fz586AdWPGjEHHjh3xyCOPMAEhIqJmz2azBSQhNantD/tPPvkELpcLZWVlAa0hpaWlSEpKqrHc8+8Tdskll2DLli2YMmUK9u/fj9OnT6Nz586IiYkJu36aJSGxsbHo2rVrwLro6GjEx8dfsJ6IiKhRqefZMbX9YZ+amgqj0Yj8/HxkZ2cD8A00LSoqQkZGRo3lVt0nLCEhQblPmMlkQufOnUOuUnU0S0KIiIiaqvq+bXswf9iPHTsWkyZNQlxcHGw2G8aPH4+MjIzfnRlTdZ+w5ORk5T5hNfVUHDx4MLSg0cCSkPXr12sdAhERUZM0b9486HQ6ZGdnw+l0IisrCwsXLvzdY+ryPmFAA0tCiIiImgyNn//y2z/sLRYLFixYgAULFoRUTl3dJwxgEkJERKS+JvgAu7y8PNXLDPlmZURERERqYEsIERGRyup7YGpjxSSEiIhIbU2wO6YusDuGiIiINMGWECIiIpWxOyY4TEKIiIjUxu6YoLA7hoiIiDTBlhAiIiK1sSUkKExCiIiIVMYxIcFhEkJERKQ2toQEhWNCiIiISBNsCSEiIlIbW0KCwiSEiIhIZRwTEhx2xxAREZEm2BJCRESkNnbHBIVJCBERkcrYHRMcdscQERGRJtgSQkREpDZ2xwSFSQgREZHamIQEhd0xREREpAm2hBAREalM8i+RHN8cMAkhIiJSG7tjgsIkhIiISGWcohscjgkhIiIiTbAlhIiISG3sjgkKkxAiIqK60EwSiUiwO4aIiIg0wZYQIiIilXFganCYhBAREamNY0KCwu4YIiIi0gSTECIiIpVVdcdEsoRi0aJF6NatG2w2G2w2GzIyMrBmzRplu8PhQE5ODuLj4xETE4Ps7GyUlpaqXOvQMQkhIiJSm1BhCUHr1q3x9NNPY9u2bdi6dSsGDBiAoUOHYvfu3QCAiRMn4sMPP8TKlStRUFCAo0ePYvjw4SpUNDIcE0JERNRAVVRUBLw2m80wm80X7DdkyJCA108++SQWLVqETZs2oXXr1liyZAmWL1+OAQMGAADy8vLQqVMnbNq0Cdddd13dVaAWbAkhIiJSmVrdMampqbDb7cqSm5tb67m9Xi9WrFiByspKZGRkYNu2bXC73cjMzFT26dixI9LS0lBYWFhXb0FQ2BJCRESkNpVmxxQXF8Nmsymrq2sFqbJz505kZGTA4XAgJiYGq1atQufOnbFjxw6YTCa0aNEiYP/ExESUlJREEGTkmIQQERGpTaUkpGqgaTA6dOiAHTt2oLy8HO+++y5GjRqFgoKCCIKoe0xCiIiImgCTyYR27doBALp3744tW7bghRdewK233gqXy4WysrKA1pDS0lIkJSVpFK0Px4QQERGprL6n6FZHlmU4nU50794dRqMR+fn5yrY9e/agqKgIGRkZkZ8oAmwJISIiUls93zF12rRpGDRoENLS0nDq1CksX74c69evxyeffAK73Y6xY8di0qRJiIuLg81mw/jx45GRkaHpzBiASQgREVGjd/z4cYwcORLHjh2D3W5Ht27d8Mknn+APf/gDAGDevHnQ6XTIzs6G0+lEVlYWFi5cqHHUTEKIiIhUJwkBSYTfFBLqsUuWLPnd7RaLBQsWLMCCBQvCjqkuMAkhIiJSGx9gFxQOTCUiIiJNsCWEiIhIZZHOcFFjdkxjwCSEiIhIbeyOCQq7Y4iIiEgTbAkhIiJSGbtjgsMkhIiISG3sjgkKkxAiIiKVsSUkOBwTQkRERJpgSwgREZHa2B0TFCYhREREdaC5dKlEgt0xREREpAm2hBAREalNCN8SyfHNAJMQIiIilXF2THDYHUNERESaYEsIERGR2jg7JihMQoiIiFQmyb4lkuObA3bHEBERkSbYEkJERKQ2dscEhUkIERGRyjg7Jjiadsfk5ubimmuuQWxsLBISEjBs2DDs2bNHy5CIiIgiV3WfkEiWZkDTJKSgoAA5OTnYtGkTPvvsM7jdbtx4442orKzUMiwiIiKqB5p2x6xduzbg9dKlS5GQkIBt27ahb9++F+zvdDrhdDqV1xUVFXUeIxERUajYHROcBjU7pry8HAAQFxdX7fbc3FzY7XZlSU1Nrc/wiIiIgiNUWJqBBpOEyLKMCRMmoHfv3ujatWu1+0ybNg3l5eXKUlxcXM9REhERkVoazOyYnJwc7Nq1C19++WWN+5jNZpjN5nqMioiIKHTsjglOg0hCxo0bh48++ggbNmxA69attQ6HiIgoMnyKblA0TUKEEBg/fjxWrVqF9evXIz09XctwiIiIqB5pmoTk5ORg+fLleP/99xEbG4uSkhIAgN1uh9Vq1TI0IiKisLE7JjiaDkxdtGgRysvL0a9fPyQnJyvL22+/rWVYREREkeHsmKBomoQIIapdRo8erWVYREREjUowdyB3OBzIyclBfHw8YmJikJ2djdLSUo0i9mkwU3SJiIiaiqrumEiWUARzB/KJEyfiww8/xMqVK1FQUICjR49i+PDhKtc8NA1idgwREVGTIgvfEsnxIajtDuTl5eVYsmQJli9fjgEDBgAA8vLy0KlTJ2zatAnXXXdd+LFGgC0hREREalNpTEhFRUXAcv6jS37Pb+9Avm3bNrjdbmRmZir7dOzYEWlpaSgsLIysrhFgEkJERNRApaamBjyuJDc3t9ZjqrsDeUlJCUwmE1q0aBGwb2JiojIzVQvsjiEiIlKZhAin6Pr/W1xcDJvNpqwP5q7hwdyBvKFgEkJERKQ2le6YarPZApKQ2tR0B/KkpCS4XC6UlZUFtIaUlpYiKSkp/DgjxO4YIiKiRk4IgXHjxmHVqlX44osvLrgDeffu3WE0GpGfn6+s27NnD4qKipCRkVHf4SrYEkJERKSy+r5jam13ILfb7Rg7diwmTZqEuLg42Gw2jB8/HhkZGZrNjAGYhBAREakv0ruehnjsokWLAAD9+vULWJ+Xl6fcAHTevHnQ6XTIzs6G0+lEVlYWFi5cGEGQkWMSQkRE1MiJIMafWCwWLFiwAAsWLKiHiILDJISIiEhlkhCQIhiYGsmxjQmTECIiIrXJ/iWS45sBzo4hIiIiTbAlhIiISGXsjgkOkxAiIiK11fPsmMaKSQgREZHaVLpjalPHMSFERESkCbaEEBERqay+75jaWDEJISIiUhu7Y4LC7hgiIiLSBFtCiIiIVCbJviWS45sDJiFERERqY3dMUNgdQ0RERJpgSwgREZHaeLOyoDAJISIiUhlv2x4cdscQERGRJtgSQkREpDYOTA0KkxAiIiK1CQCRTLNtHjkIkxAiIiK1cUxIcDgmhIiIiDTBlhAiIiK1CUQ4JkS1SBo0JiFERERq48DUoLA7hoiIiDTBlhAiIiK1yQCkCI9vBpiEEBERqYyzY4LD7hgiIiLSBFtCiIiI1MaBqUFhEkJERKQ2JiFBYXcMERERaYItIURERGpjS0hQ2BJCRESkNlmFJUQbNmzAkCFDkJKSAkmSsHr16oDtQgjMnDkTycnJsFqtyMzMxL59+8Krn0qYhBAREamsaopuJEuoKisrccUVV2DBggXVbp87dy5efPFFLF68GJs3b0Z0dDSysrLgcDgirW7Y2B1DRETUBAwaNAiDBg2qdpsQAvPnz8f06dMxdOhQAMCyZcuQmJiI1atX47bbbqvPUBVsCSEiIlJb1ZiQSBYAFRUVAYvT6QwrnEOHDqGkpASZmZnKOrvdjp49e6KwsFCVKoeDSQgREZHaZBH5AiA1NRV2u11ZcnNzwwqnpKQEAJCYmBiwPjExUdmmBXbHEBERNVDFxcWw2WzKa7PZrGE06mNLCBERkdpU6o6x2WwBS7hJSFJSEgCgtLQ0YH1paamyTQtMQoiIiFQXaQKi7n1C0tPTkZSUhPz8fGVdRUUFNm/ejIyMDFXPFQp2xxARETUBp0+fxv79+5XXhw4dwo4dOxAXF4e0tDRMmDABc+bMQfv27ZGeno4ZM2YgJSUFw4YN0yxmJiFERERq0+COqVu3bkX//v2V15MmTQIAjBo1CkuXLsXDDz+MyspK3HvvvSgrK0OfPn2wdu1aWCyW8OOMEJMQIiIitckRdqnIoR/br18/iN9JXiRJwuzZszF79uzw41IZx4QQERGRJtgSQkREpDYh+5ZIjm8GmIQQERGpjU/RDQqTECIiIrVpMCakMeKYECIiItIEW0KIiIjUxu6YoDAJISIiUptAhEmIapE0aOyOISIiIk2wJYSIiEht7I4JCpMQIiIitckygAju9SE3j/uEsDuGiIiINMGWECIiIrWxOyYoDaIlZMGCBWjbti0sFgt69uyJr7/+WuuQiIiIwleVhESyNAOaJyFvv/02Jk2ahFmzZuGbb77BFVdcgaysLBw/flzr0IiIiKgOaZ6EPP/887jnnnswZswYdO7cGYsXL0ZUVBRef/31C/Z1Op2oqKgIWIiIiBocWUS+NAOaJiEulwvbtm1DZmamsk6n0yEzMxOFhYUX7J+bmwu73a4sqamp9RkuERFRUISQI16aA02TkF9++QVerxeJiYkB6xMTE1FSUnLB/tOmTUN5ebmyFBcX11eoREREwRMRtoI0kzEhjWp2jNlshtls1joMIiIiUoGmSchFF10EvV6P0tLSgPWlpaVISkrSKCoiIqIICYGIHgDTTFpCNO2OMZlM6N69O/Lz85V1siwjPz8fGRkZGkZGREQUAVmOfGkGNO+OmTRpEkaNGoUePXrg2muvxfz581FZWYkxY8ZoHRoRERHVIc2TkFtvvRU///wzZs6ciZKSElx55ZVYu3btBYNViYiIGg12xwRF8yQEAMaNG4dx48ZpHQYREZEqhCxDSOF3qXCKLhEREVEdahAtIURERE0Ku2OCwiSEiIhIbbIAJCYhtWF3DBEREWmCLSFERERqEwJABINLm0lLCJMQIiIilQlZQETQHSOYhBAREVFYhIzIWkI4RZeIiIiozrAlhIiISGXsjgkOkxAiIiK1sTsmKI06CanKFD1eJ3QePXTCDVm4AQA6oQ+Yoi3JTng8Dv//C3hdMoTHf7zbAwEJktt/gMcLoZP82wzwOvXweFwAAK/LC8ktILl9XxCP7ITs9ZWrk50QwqXEIGQXIASE1+kP2AXZH4PO64YkOwHZV67sdcLr8m3zOn0xefzHCZ0esnD7ygMgvE7fsQDglSB75fOOleB14VxdvQLC639PvC7A64Xs1fnrZoTkFsp5JNmpfPGFfx/J6/XX2wGvQ4Lsf4vksw64TvvfkzNOeD16yGd9G72yBzqjrAzu9soSvF4P/G8SnKfd8FT6zykJeB3n6i2flQGX772XZQGvU6fUxeOWAY/HX4zLd33Lvvhk4YZOdin76jweCP97JAs3pPM/F+GG8Drh9fh7I2UXPP5tVf+vfGY6PSTZCdlr9MUrXOe9t77PW+f/XOB1+sqpei17AX8MHo8DXpcXnvM+b49b7z/MC69LwOuU/O+1ACTA4/HF5JGd8FZ9r2UXIGRIsv9YjwMeN5TP0OORIPt7Wb0u2fc98p/H43FA+GP2lWVUyhWyC5AlpW7weOB16qBzQTnW478+hE6C16VH1VsECZAdArLJo3wf5LP+nxaHAFwS5LO+bbJDr9TT45bh8bjgcfv29Xid8LgNkPxfMq9OB2/Vdej1fce8LoO/HP9brJP976Hu3H2hJMDjdiv7Ck9V3auuAycgSUq9pfOeWCq8Tsjec9esr96+75jkgT9e376SW4bH64Dkfz+r3kvA9/sDr8N3zQHwuB2+GAF4jb73qyper0uCfNYB4f+cJI8X4qzvHPIZBySHHsJ/+XjPOHH2tAcVOl9MZyq9cPivCQDwVDrhNvrOeeaUF2e9HlQaffuef93JZxzwCjfks5JyXKV/fwBwVbogS15lX1mWfNcmAMgyvHon5LP+l/Ao5XrPmCCfNcLr9B/rEJC9vopKZ5yAXj73+1PphJBkyGf9H6ZbCvjNlr0C3jP+z0HnhEtyweOoOo8RztPuc3WR3ZBd/u/YWQlCliE7/J+/C8r7p/P/TtZHK4MH7ojuVeaBu/admgBJNOI2nx9//BGpqalah0FERI1IcXExWrduXSdlOxwOpKeno6SkJOKykpKScOjQIVgsFhUia5gadRIiyzL27NmDzp07o7i4GDabTeuQwlJRUYHU1NRGXQeA9WhImkIdgKZRj6ZQB6Bp1EMIgVOnTiElJQU6Xd3Ny3A4HHC5XBGXYzKZmnQCAjTy7hidToeLL74YAGCz2RrthVGlKdQBYD0akqZQB6Bp1KMp1AFo/PWw2+11fg6LxdLkkwe1cIouERERaYJJCBEREWmi0SchZrMZs2bNgtls1jqUsDWFOgCsR0PSFOoANI16NIU6AE2nHtSwNOqBqURERNR4NfqWECIiImqcmIQQERGRJpiEEBERkSaYhBAREZEm6j0JGT16NIYNG1bn51m/fj2uvvpqmM1mtGvXDkuXLg3Ynpubi2uuuQaxsbFISEjAsGHDsGfPnrDOtWDBArRt2xYWiwU9e/bE119/HbC9sLAQAwYMQHR0NGw2G/r27YuzZ89GFH8w5w3Fhg0bMGTIEKSkpECSJKxevVrZ5na78cgjj+Dyyy9HdHQ0UlJSMHLkSBw9erTWcuuzHr9XBwA4ffo0xo0bh9atW8NqtaJz585YvHhxreV+9913uP7662GxWJCamoq5c+desM/KlSvRsWNHWCwWXH755fjPf/4TcvwN5dpYtGgRunXrptyUKiMjA2vWrAnrXI392mgK10Vt9QAa/rVBTZioZ6NGjRJDhw6t03McPHhQREVFiUmTJonvv/9evPTSS0Kv14u1a9cq+2RlZYm8vDyxa9cusWPHDvHHP/5RpKWlidOnT4d0rhUrVgiTySRef/11sXv3bnHPPfeIFi1aiNLSUiGEEBs3bhQ2m03k5uaKXbt2if/973/i7bffFg6HI6L4aztvqP7zn/+IRx99VPz73/8WAMSqVauUbWVlZSIzM1O8/fbb4n//+58oLCwU1157rejevfvvllnf9fi9OgghxD333CMuvfRSsW7dOnHo0CHxyiuvCL1eL95///0ayywvLxeJiYnijjvuELt27RJvvfWWsFqt4pVXXlH2+eqrr4Rerxdz584V33//vZg+fbowGo1i586dIcXfUK6NDz74QHz88cdi7969Ys+ePeLvf/+7MBqNYteuXSGdqylcG03huqitHkI0/GuDmi5Nk5A1a9aI3r17C7vdLuLi4sTgwYPF/v37lX0PHTokAIj33ntP9OvXT1itVtGtWzexcePG3z3Hww8/LLp06RKw7tZbbxVZWVk1HnP8+HEBQBQUFIRUn2uvvVbk5OQor71er0hJSRG5ublCCCF69uwppk+fHlKZwcRf23kjUd2P1G99/fXXAoA4cuRIjftoWY/q6tClSxcxe/bsgHVXX321ePTRR2ssZ+HChaJly5bC6XQq6x555BHRoUMH5fUtt9wiBg8eHHBcz549xX333RdSzA312hBCiJYtW4r/+7//C6k+Te3aaArXhRCN89qgpkvTMSGVlZWYNGkStm7divz8fOh0Otx8882Q/Y/VrvLoo49i8uTJ2LFjBy677DKMGDECnvMeX/1bhYWFyMzMDFiXlZWFwsLCGo8pLy8HAMTFxQUdv8vlwrZt2wLOpdPpkJmZicLCQhw/fhybN29GQkICevXqhcTERNxwww348ssvA8rp168fRo8eHXT8tZ23PpSXl0OSJLRo0UJZ19Dr0atXL3zwwQf46aefIITAunXrsHfvXtx4443KPqNHj0a/fv0C6tC3b1+YTKaAOuzZswcnT54Mqp7haCjXhtfrxYoVK1BZWYmMjIyg42+u10ZjvC6AxnVtUNOi6QPssrOzA16//vrraNWqFb7//nt07dpVWT958mQMHjwYAPD444+jS5cu2L9/Pzp27FhtuSUlJUhMTAxYl5iYiIqKCpw9exZWqzVgmyzLmDBhAnr37h1w3tr88ssv8Hq91Z7rf//7Hw4ePAgAeOyxx/Dss8/iyiuvxLJlyzBw4EDs2rUL7du3BwCkpaUhOTk56PhPnjz5u+etaw6HA4888ghGjBgR8CCrhl6Pl156Cffeey9at24Ng8EAnU6H1157DX379lX2SU5ODviHvqSkBOnp6RfEV7WtZcuWNdYzkkd5a31t7Ny5ExkZGXA4HIiJicGqVavQuXPnoONvjtdGY70ugMZ1bVDTomkSsm/fPsycORObN2/GL7/8onzBi4qKAn5ou3Xrpvx/1cV8/PhxdOzYETExMcq2O++8M6jBVL+Vk5ODXbt2XfBXWKSq6nPfffdhzJgxAICrrroK+fn5eP3115GbmwsAWLZsmarnrUtutxu33HILhBBYtGhRwLaGXo+XXnoJmzZtwgcffIA2bdpgw4YNyMnJQUpKivLXWtVnojWtr40OHTpgx44dKC8vx7vvvotRo0ahoKAgpETk9zS1a6MxXxdA47o2qGnRNAkZMmQI2rRpg9deew0pKSmQZRldu3aFy+UK2M9oNCr/L0kSgHM/Yjt27FC2Vf31kZSUhNLS0oAySktLYbPZLmgFGTduHD766CNs2LABrVu3Din+iy66CHq9vtpzJSUlKf8o/PaHu1OnTigqKqqx3Nri1+v1v3veulL1Q3vkyBF88cUXtT7OuyHV4+zZs/j73/+OVatWKS0H3bp1w44dO/Dss89e0GRcWx2qtv3ePpHUQetrw2QyoV27dgCA7t27Y8uWLXjhhRfwyiuvBBV/c7o2GvN1ATS+a4OaFs3GhJw4cQJ79uzB9OnTMXDgQHTq1EnpRwxFu3btlCUhIQEAkJGRgfz8/ID9Pvvss4A+bSEExo0bh1WrVuGLL764oFkxGCaTCd27dw84lyzLyM/PR0ZGBtq2bYuUlJQLpv7u3bsXbdq0qbHc2uKv7bx1oeqHdt++ffj8888RHx9f6zENqR5utxtutxs6XeBXXq/XXzDO4nwZGRnYsGED3G53QB06dOiAli1bKvvU9n0LhdbXRnVkWYbT6Qz63M3l2mjs1wXQuK4NaoLqeyRs1QwAr9cr4uPjxZ133in27dsn8vPzxTXXXBMwcrtqBsD27duV40+ePCkAiHXr1tV4jqopcFOmTBE//PCDWLBgwQVT4O6//35ht9vF+vXrxbFjx5TlzJkzIdVnxYoVwmw2i6VLl4rvv/9e3HvvvaJFixaipKRECCHEvHnzhM1mEytXrhT79u0T06dPFxaLJWCmw1133SWmTp0aUvy1nTdUp06dEtu3bxfbt28XAMTzzz8vtm/fLo4cOSJcLpf485//LFq3bi127NgR8H6dPzJe63r8Xh2EEOKGG24QXbp0EevWrRMHDx4UeXl5wmKxiIULFyplTJ06Vdx1113K67KyMpGYmCjuuususWvXLrFixQoRFRV1wTREg8Egnn32WfHDDz+IWbNmRTRFV+trY+rUqaKgoEAcOnRIfPfdd2Lq1KlCkiTx6aefhlSfpnBtNIXrorZ6CNHwrw1quuo9CbnrrrtEdna2EEKIzz77THTq1EmYzWbRrVs3sX79elV+aIUQYt26deLKK68UJpNJXHLJJSIvLy9gO4Bql9/uF4yXXnpJpKWlCZPJJK699lqxadOmgO25ubmidevWIioqSmRkZIj//ve/AdtvuOEGMWrUqJDiD+a8oVi3bl2178eoUaOUz6G65fzPQet6/F4dhBDi2LFjYvTo0SIlJUVYLBbRoUMH8dxzzwlZlpUyRo0aJW644YaAcr/99lvRp08fYTabxcUXXyyefvrpC879zjvviMsuu0yYTCbRpUsX8fHHH4ccf0O5Nu6++27Rpk0bYTKZRKtWrcTAgQNDTkCqNPZroylcF7XVQ4iGf21Q0yUJIYSaLSu1uemmm9CuXTu8/PLL9XlaogaP1wYRNTf1Nibk5MmT+Oijj7B+/foaBzoRNUe8Noiouaq32TF33303tmzZgr/97W8YOnRofZ2WqMHjtUFEzVW9d8cQERERARpO0SUiIqLmjUkIERERaYJJCBEREWmCSQgRERFpgkkIEVEDl5ubi2uuuQaxsbFISEjAsGHDLrjlvcPhQE5ODuLj4xETE4Ps7OyA57Z8++23GDFiBFJTU2G1WtGpUye88MILNZ7zq6++gsFgwJVXXhlUjJIkYfXq1eFULyRCCMycORPJycmwWq3IzMzEvn37Avb585//jLS0NFgsFiQnJ+Ouu+7C0aNH6zw2Ch2TEKJGoF+/fpgwYYLWYZBGCgoKkJOTg02bNuGzzz6D2+3GjTfeiMrKSmWfiRMn4sMPP8TKlStRUFCAo0ePYvjw4cr2bdu2ISEhAf/617+we/duPProo5g2bVq1N8crKyvDyJEjMXDgwHqpXyjmzp2LF198EYsXL8bmzZsRHR2NrKwsOBwOZZ/+/fvjnXfewZ49e/Dee+/hwIED+H//7/9pGDXVSNP7tRJRUG644Qbx0EMPBbVv1S26T548WacxkXaOHz8uAIiCggIhhO85LkajUaxcuVLZ54cffhAARGFhYY3lPPDAA6J///4XrL/11lvF9OnTxaxZs8QVV1wRVEw477ECQgjx8MMPi/bt2wur1SrS09PF9OnThcvlUrZXlb1s2TLRpk0bYbPZxK233ioqKipqPIcsyyIpKUk888wzyrqysjJhNpvFW2+9VeNx77//vpAkKeD81DCwJYSIqJEpLy8HAMTFxQHwtXK43e6AO+527NgRaWlpKCws/N1yqsqokpeXh4MHD2LWrFkRxRgbG4ulS5fi+++/xwsvvIDXXnsN8+bNC9jnwIEDWL16NT766CN89NFHKCgowNNPP11jmYcOHUJJSUlAPe12O3r27FljPX/99Ve8+eab6NWrF4xGY0R1IvUxCSFqYCorKzFy5EjExMQgOTkZzz33XMD2f/7zn+jRowdiY2ORlJSE22+/HcePHwcAHD58GP379wcAtGzZEpIkYfTo0QB8j4PPzc1Feno6rFYrrrjiCrz77rtKuSdPnsQdd9yBVq1awWq1on379sjLy6ufSlPQZFnGhAkT0Lt3b3Tt2hUAUFJSApPJhBYtWgTsm5iYiJKSkmrL2bhxI95++23ce++9yrp9+/Zh6tSp+Ne//gWDIbIbak+fPh29evVC27ZtMWTIEEyePBnvvPPOBXVZunQpunbtiuuvvx533XUX8vPzayyzqi6JiYkB66ur5yOPPILo6GjEx8ejqKgI77//fkT1obrBJISogZkyZQoKCgrw/vvv49NPP8X69evxzTffKNvdbjeeeOIJfPvtt1i9ejUOHz6sJBqpqal47733AAB79uzBsWPHlMGHubm5WLZsGRYvXozdu3dj4sSJuPPOO1FQUAAAmDFjBr7//nusWbMGP/zwAxYtWoSLLrqofitPtcrJycGuXbuwYsWKsMvYtWsXhg4dilmzZuHGG28EAHi9Xtx+++14/PHHcdlll1V73JtvvomYmBhl+e9//1vjOd5++2307t0bSUlJiImJwfTp01FUVBSwT9u2bREbG6u8Tk5OVhLqUM5VnSlTpmD79u349NNPodfrMXLkSAjeILzh0bo/iIjOOXXqlDCZTOKdd95R1p04cUJYrdYax4Rs2bJFABCnTp0SQlQ/JsThcIioqCixcePGgGPHjh0rRowYIYQQYsiQIWLMmDHqVohUlZOTI1q3bi0OHjwYsD4/P7/acUBpaWni+eefD1i3e/dukZCQIP7+978HrD958qQAIPR6vbJIkqSsy8/PFxUVFWLfvn3KcubMGeV4nDcmZOPGjUKv14s5c+aILVu2iL1794rZs2cLu92u7F/deJN58+aJNm3aCCFEtec6cOCAACC2b98ecFzfvn3Fgw8+WOP7VlxcLABc8P0n7dXbA+yIqHYHDhyAy+VCz549lXVxcXHo0KGD8nrbtm147LHH8O233+LkyZOQZRkAUFRUhM6dO1db7v79+3HmzBn84Q9/CFjvcrlw1VVXAQDuv/9+ZGdn45tvvsGNN96IYcOGoVevXmpXkcIghMD48eOxatUqrF+/Hunp6QHbu3fvDqPRiPz8fGRnZwPwtYQVFRUhIyND2W/37t0YMGAARo0ahSeffDKgDJvNhp07dwasW7hwIb744gu8++67SE9PR3R0dEDLRU02btyINm3a4NFHH1XWHTlyJKQ6x8bGXnCu9PR0JCUlIT8/X5k6XFFRgc2bN+P++++vsayqa8TpdIYUA9U9JiFEjUhlZSWysrKQlZWFN998E61atUJRURGysrLgcrlqPO706dMAgI8//hgXX3xxwDaz2QwAGDRoEI4cOYL//Oc/+OyzzzBw4EDk5OTg2WefrbsKUVBycnKwfPlyvP/++4iNjVXGP9jtdlitVtjtdowdOxaTJk1CXFwcbDYbxo8fj4yMDFx33XUAfF0wAwYMQFZWFiZNmqSUodfr0apVK+h0OmWMSZWEhARYLJYL1temffv2KCoqwooVK3DNNdfg448/xqpVqyJ+HyRJwoQJEzBnzhy0b98e6enpmDFjBlJSUjBs2DAAwObNm7Flyxb06dMHLVu2xIEDBzBjxgxceumlAQkZNRBaN8UQ0TmnTp0SRqMxoDvm119/FVFRUeKhhx4SW7duFQBEUVGRsv2f//xnQBP1V199JQCIX375RdmnoqJCmM1msWzZsqBjWbx4sYiNjY28UhQxANUueXl5yj5nz54VDzzwgGjZsqWIiooSN998szh27JiyfdasWdWWUdX9UZ1gp+h6vV4BQHz44YfKuilTpoj4+HgRExMjbr31VjFv3ryQumNqIsuymDFjhkhMTBRms1kMHDhQ7NmzR9n+3Xffif79+4u4uDhhNptF27ZtxV//+lfx448/1loPqn+SEBypQ9SQ3H///VizZg1ef/11JCQk4NFHH8UXX3yBsWPH4tFHH0Xr1q3x0EMP4a9//St27dqFKVOmYO/evdi+fTuuvPJK/PTTT0hNTUVeXh7++Mc/wmq1KgMDFy9ejOeeew59+vRBeXk5vvrqK9hsNowaNQozZ85E9+7d0aVLFzidTkydOhXHjx/H5s2btX5LqIErKSlBcnIytmzZgh49emgdDjUinB1D1MA888wzuP766zFkyBBkZmaiT58+6N69OwCgVatWWLp0KVauXInOnTvj6aefvqC75OKLL8bjjz+OqVOnIjExEePGjQMAPPHEE5gxYwZyc3PRqVMn3HTTTfj444+V8QUmkwnTpk1Dt27d0LdvX+j1+ohmYFDTJ4TA4cOHMWfOHCQmJobcbUPElhAiIgpLWVkZEhMT0alTJ8yfPx/9+vXTOiRqZJiEEBERkSbYHUNERESaYBJCREREmmASQkRERJpgEkJERESaYBJCREREmmASQkRERJpgEkJERESaYBJCREREmmASQkRERJpgEkJERESa+P8Bhkb+ZXgCnDAAAAAASUVORK5CYII=",
|
|
202
|
-
"text/plain": [
|
|
203
|
-
"<Figure size 640x480 with 2 Axes>"
|
|
204
|
-
]
|
|
205
|
-
},
|
|
206
|
-
"metadata": {},
|
|
207
|
-
"output_type": "display_data"
|
|
208
|
-
}
|
|
209
|
-
],
|
|
210
|
-
"source": [
|
|
211
|
-
"url = \"http://localhost:8003/feature?\"\n",
|
|
212
|
-
"url += f\"group={g.name}&subdir=NET1&subdir=MDR2&subdir=00&subdir=HHZ&name=spectrogram\"\n",
|
|
213
|
-
"url += f\"&starttime={g.starttime.isoformat()}&endtime={g.endtime.isoformat()}\" \n",
|
|
214
|
-
"spec = pd.read_csv(url)\n",
|
|
215
|
-
"# The API returns timezone aware timestamps which are not supported by xarray yet\n",
|
|
216
|
-
"spec['dates'] = pd.to_datetime(spec['dates'], format='ISO8601').dt.tz_localize(None)\n",
|
|
217
|
-
"spec.set_index(['dates', 'freqs'], inplace=True)\n",
|
|
218
|
-
"spec = spec.to_xarray()\n",
|
|
219
|
-
"spec.transpose('freqs', 'dates')['feature'].plot()"
|
|
220
|
-
]
|
|
221
|
-
},
|
|
222
|
-
{
|
|
223
|
-
"cell_type": "markdown",
|
|
224
|
-
"metadata": {},
|
|
225
|
-
"source": [
|
|
226
|
-
"Note that we repeated the `subdir` parameter multiple times. It is important that you pass the subdirs in the order of your directory structure."
|
|
227
|
-
]
|
|
228
|
-
},
|
|
229
|
-
{
|
|
230
|
-
"cell_type": "markdown",
|
|
231
|
-
"metadata": {},
|
|
232
|
-
"source": [
|
|
233
|
-
"## Using pandas instead of xarray"
|
|
234
|
-
]
|
|
235
|
-
},
|
|
236
|
-
{
|
|
237
|
-
"cell_type": "markdown",
|
|
238
|
-
"metadata": {},
|
|
239
|
-
"source": [
|
|
240
|
-
"First we'll create some fake data again. Note that we name the feature in the DataFrame and also that we name the index `datetime`. The `save` function uses this information when creating the files on disk. If the dataframe contains multiple features they will be stored in separate files."
|
|
241
|
-
]
|
|
242
|
-
},
|
|
243
|
-
{
|
|
244
|
-
"cell_type": "code",
|
|
245
|
-
"execution_count": 8,
|
|
246
|
-
"metadata": {},
|
|
247
|
-
"outputs": [
|
|
248
|
-
{
|
|
249
|
-
"data": {
|
|
250
|
-
"text/plain": [
|
|
251
|
-
"<Axes: xlabel='datetime'>"
|
|
252
|
-
]
|
|
253
|
-
},
|
|
254
|
-
"execution_count": 8,
|
|
255
|
-
"metadata": {},
|
|
256
|
-
"output_type": "execute_result"
|
|
257
|
-
},
|
|
258
|
-
{
|
|
259
|
-
"data": {
|
|
260
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHRCAYAAABAeELJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqk5JREFUeJztvXmYFOX19n/3vsy+MDMMzLCLgIICgrhHiRiN0WhiNCZR46tZIEb5fk3iG3eTYIxRo3FJ8ktcokajb9yiMSoiLoAoIIjIIvs2MzD7TO/d9fuj6nnqqerqbab3Pp/r8pLpbap7up46z33uc45JkiQJBEEQBEEQeYQ51wdAEARBEAShhwIUgiAIgiDyDgpQCIIgCILIOyhAIQiCIAgi76AAhSAIgiCIvIMCFIIgCIIg8g4KUAiCIAiCyDsoQCEIgiAIIu+w5voAhkIkEsGBAwdQUVEBk8mU68MhCIIgCCIJJElCf38/mpubYTbH10gKMkA5cOAAWlpacn0YBEEQBEEMgb1792L06NFxH5NygPLuu+/id7/7HdasWYODBw/ihRdewPnnn8/vlyQJt9xyC/7yl7+gp6cHJ554Ih5++GFMmjSJP6arqws/+clP8Morr8BsNuPCCy/EH/7wB5SXlyd1DBUVFfwNVlZWpvoWCIIgCILIAX19fWhpaeHX8XikHKAMDg5ixowZ+P73v48LLrgg6v677roL999/Px5//HGMGzcON910ExYsWIBNmzbB6XQCAC699FIcPHgQb775JoLBIK644gpcffXVePrpp5M6BpbWqayspACFIAiCIAqMZOwZpuEMCzSZTBoFRZIkNDc343/+53/wv//7vwCA3t5eNDY24rHHHsPFF1+Mzz//HFOnTsVHH32E2bNnAwBef/11nH322di3bx+am5sT/t6+vj5UVVWht7eXAhSCIAiCKBBSuX6ntYpn586daGtrw/z58/ltVVVVmDt3LlauXAkAWLlyJaqrq3lwAgDz58+H2WzGhx9+aPi6fr8ffX19mv8IgiAIgihe0hqgtLW1AQAaGxs1tzc2NvL72tra0NDQoLnfarWitraWP0bPkiVLUFVVxf8jgyxBEARBFDcFUcVzww03YPHixfxnZrIhCIIgiHQgSRJCoRDC4XCuD6WgsVgssFqtaWkBktYApampCQDQ3t6OkSNH8tvb29txzDHH8Md0dHRonhcKhdDV1cWfr8fhcMDhcKTzUAmCIAgCABAIBHDw4EF4PJ5cH0pR4Ha7MXLkSNjt9mG9TloDlHHjxqGpqQlLly7lAUlfXx8+/PBD/OhHPwIAzJs3Dz09PVizZg1mzZoFAHj77bcRiUQwd+7cdB4OQRAEQcQlEolg586dsFgsaG5uht1upwagQ0SSJAQCARw6dAg7d+7EpEmTEjZji0fKAcrAwAC++OIL/vPOnTvxySefoLa2Fq2trbj22mvxq1/9CpMmTeJlxs3NzbzSZ8qUKTjrrLNw1VVX4ZFHHkEwGMSiRYtw8cUXJ1XBQxAEQRDpIhAIIBKJoKWlBW63O9eHU/C4XC7YbDbs3r0bgUCAtxcZCikHKB9//DG+9KUv8Z+ZN+Syyy7DY489hp/97GcYHBzE1VdfjZ6eHpx00kl4/fXXNQf51FNPYdGiRTjjjDN4o7b7779/yG+CIAiCIIbDcHb6hJZ0fZbD6oOSK6gPCkEQBJEOfD4fdu7ciXHjxg1rt0+oxPtMc9YHhSAIgiAIIh1QgEIQBEEQRN5BAQpBEARBEHkHBSgEQWhYs7sbL32yP9eHQRBEigQCgVwfQlqhAIUgCA2Lnl6Lnz7zCfZ1U9MqojSRJAmeQCjr/6Vas3Laaadh0aJFuPbaa1FfX48FCxbg1ltvRWtrKxwOB5qbm3HNNdfwx//973/H7NmzUVFRgaamJnz729/WNE595513YDKZ8N///hfHHnssXC4XTj/9dHR0dOA///kPpkyZgsrKSnz729/OSlO7gmh1TxBEdvCHwjjY6wMA9HqDGF2T4wMiiBzgDYYx9eb/Zv33brp9Adz21C7Ljz/+OH70ox/hgw8+wIsvvojf/OY3eOaZZzBt2jS0tbVh/fr1/LHBYBB33HEHJk+ejI6ODixevBiXX345XnvtNc1r3nrrrfjjH/8It9uNiy66CBdddBEcDgeefvppDAwM4Otf/zoeeOAB/PznP0/L+44FBSgEQXA6+vz838FwwXUgIIiSY9KkSbjrrrsAADabDU1NTZg/fz5sNhtaW1sxZ84c/tjvf//7/N/jx4/H/fffj+OOOw4DAwMoLy/n9/3qV7/CiSeeCAC48sorccMNN2D79u0YP348AOAb3/gGli1bRgEKQRDZo73Px/8dCkdyeCQEkTtcNgs23b4gJ783VdjIGAD45je/ifvuuw/jx4/HWWedhbPPPhvnnnsurFb5Ur9mzRrceuutWL9+Pbq7uxGJyOf4nj17MHXqVP4606dP5/9ubGyE2+3mwQm7bfXq1Skfa6pQgEIQBKddUFACFKAQJYrJZEo51ZIrysrK+L9bWlqwZcsWvPXWW3jzzTfx4x//GL/73e+wfPlyBAIBLFiwAAsWLMBTTz2FESNGYM+ePViwYEGUudZms/F/m0wmzc/sNhbcZJLC+AsQBJEV2gQFhVI8BFF4uFwunHvuuTj33HOxcOFCHHnkkfj0008hSRI6Oztx5513oqWlBYA8uiafoQCFIAhOB6V4CKJgeeyxxxAOhzF37ly43W48+eSTcLlcGDNmDCKRCOx2Ox544AH88Ic/xMaNG3HHHXfk+pDjQmXGBFGiGJU0tmsUFApQCKKQqK6uxl/+8heceOKJmD59Ot566y288sorqKurw4gRI/DYY4/hueeew9SpU3HnnXfi7rvvzvUhx4WGBRJECXLbK5/h1Q0H8eo1J2NEhYPffvGfV2LVji4AwAOXHItzZzTn6hAJIivQsMD0Q8MCCYIYMm981o6Ofj9W7ujU3K4tMyYFhSCI3EEBCkGUIF2Dsmv/i/Z+ze3aMuOCE1cJgigiKEAhiBLDGwjDGwwDALa2D/Db+31BDAbC/GcqMyYIIpdQgEIQJUaXR+15sK1DVVDEHigApXgIgsgtFKAQRInRNaAGKLs6PQiE5EBELDEGKMVDlBYFWC+St6Trs6QAhSBKjM5BVSkJRyTs6hwEoG3SBlCKhygNWJfUbEznLRXYZ6nvQJsq1KiNIEqMbo+2rfW29gEc0VgRleIhBYUoBSwWC6qrq9HR0QEAcLvdMJlMOT6qwkSSJHg8HnR0dKC6uhoWS+qzhUQoQCGIEqNzQBegdPQDGKmp4AHIg0KUDk1NTQDAgxRieFRXV/PPdDhQgEIQJQYrMbaaTQhFJGzrkCt5Dg3ICordYkYgHEEwC8PACCIfMJlMGDlyJBoaGhAMBnN9OAWNzWYbtnLCoACFIIqIQ/1+VDitcMYZ284ClOmjq7B2Tw+2Kb1QepTUT325HQd6fQiGKMVDlBYWiyVtF1di+JBJliCKgLZeH65/bj3m/uYtXPHoR3EfywKUOePqAAA7Dw9CkiT0eOSdI2t9TykegiByCSkoBFEEXPa31diiKCGbDvbFfSwLUI5sqgAABMMS+v2hqAAlRCkegiByCCkoBFEE7OtWSyT7fUFEIrHTMyxAGVnlhNsuy9ndgwH0erUBSoBSPARB5BAKUAiiCPCHVLUjIgEDgVDMx3YqAUptmR01bjsAoKPfjwG//Jz6clJQCILIPRSgEESBEwpHENIpJn1e40qEYDjClZLaMjtqy+QAZedhuVmbyQR+G3lQCILIJRSgEESBI3Z8LXfItrLeGAEK85mYTEC1244aXYBS6bTBYZXTPkFq1EYQRA6hAIUgChx/UA1QmH+kz2uc4mH+k2qXDRazCbVuuRX1zkNygFLttsFmkbtokoJCEEQuoQCFIAoc5j+xmk2oUQKOWAoKm8PD0jhMQdlxWG7WVu2ywW6VlwUKUAiCyCUUoBBEgcOmETusZlS65AAllgeFKSh1ZbLSUquYZHd1ylVA1W47rGYWoFCKhyCI3EEBCkEUOP5QGADgsFlQxQIUn3GA0i1U8ACqgsKCHErxEASRL1CAQhAFjl9UUJyJUjxygMICExaoMKpdNtgs8rJA04wJgsglFKAQRIHDFBS71awqKDECFFVBkR/H+qAwqtx2HqCQgkIQRC6hAIUgChxWxSN7UOKXGbPbq12xFRQrpXgIgsgDKEAhiALHH2YBiuhBMS4z7lECFPa4GkVJYcgeFDLJEgSReyhAIYgCR6OgJPCgsNur3MYpnhq3HXZK8RAEkQdQgEIQBY5axaN6UBIGKMrjbBYzKpzqUPMqt5jiIQWFIIjcQQEKQRQ4rIrHbkncB6XXow1QAK0PRaziIQWFIIhcQgEKQRQ4apmxJa6CIklSlIICyM3ZxH+zPighClAIgsghFKAQRIHDO8naVAXFH4rAFwxrHucJhPnU42q3oKAI/650WskkSxBEXkABCkEUONyDYjWjwmGFSRZAorrJsgoem8UEl83Cb2dN2yqcVlgtZtWDEolAkihIIQgiN1CAQhAFjlrFY4HZbEKFQza96icai/4TE4tioM7jYaoKq+KRJCAcoQCFIIjcQAEKQRQ4Yqt7ADzNo/ehGPlPAFVBYSXHLMUDgKeECIIgsg0FKARR4Iit7gHEHBjY6w1o7meMKJcnG7MAhaV4ACBARlmCIHKENfFDCILIZwJCFQ+AmPN4YikoZ05rxEe7RuPCWaMBADazum8JhihAIQgiN1CAQhAFjl+o4gEQs5ssn8Oj6x5b7bbjd9+cwX82m02wmE0IRyRK8RAEkTMoxUMQBY7eg5KqgmIE64USIAWFIIgcQQEKQRQQRmW//iArM5ZTPLEmGvcoVTyVyQQoSpqHFBSCIHIFBSgEkUfs7/HilfUHDMt7b39lE0767TJ0DwY0t/NW94qCwlI4LCBh8BRPMgGKldrdEwSRWyhAIYg84paXNuIn/1iHlds7o+57feNB7O/xYv2+Hs3tAV2Kh1XldPT7NY9LJcVjNbOBgRSgEASRGyhAIYg8Yl+3FwDQOagNLiRJQqeinHRFKShqJ1kAaKxyAgDa+3yax6XmQaF29wRB5BYKUAgij2DGVr051RMI81ROdIDCqnhkD0pjpaygtMUIUMQ5PLGwU4qHIIgcQwEKQeQRLIjQKxdiUBIzQFGCiqZKWUHp8QQ1AwMpxUMQRCFBAQpB5AmhcASDATmgCEW0gYEYlHR7jFM8YidZFqx09MmpokhEohQPQRAFBQUoBJEn9PnU4X76FI8YoHQO6AKUoFZBMZlMaFRUlPZ+Oc3T7w+BVSgnVWas9EEJkYJCEESOoACFIPIEsbFavBSPXkFh83JYHxRATfO09fo0r+20meG0WZAIVUGhAIUgiNxAAQpB5Am9mgAljoKi96DoFBQgupKH9URJJr0DqAMDKcVDEESuSHuAEg6HcdNNN2HcuHFwuVyYMGEC7rjjDk0HTEmScPPNN2PkyJFwuVyYP38+tm3blu5DIYiCIl6AIgYlYqM2SZLUMmObEKBUyJU8LEBJxX8CkIJCEETuSXuA8tvf/hYPP/ww/vjHP+Lzzz/Hb3/7W9x111144IEH+GPuuusu3H///XjkkUfw4YcfoqysDAsWLIDP54vzygRR3PT5Yqd4xKCkxxvknWZDEQms6awmxaMoKG2KSXYwIPtbyh3JzQe1U4BCEESOSfs04xUrVuC8887DOeecAwAYO3Ys/vGPf2D16tUA5B3ffffdhxtvvBHnnXceAOCJJ55AY2MjXnzxRVx88cXpPiSCKAiSVVAkCejxBFBX7uAlxoAuxcNMsooHhZUbu+yJ/ScApXgIgsg9aVdQTjjhBCxduhRbt24FAKxfvx7vv/8+vvKVrwAAdu7ciba2NsyfP58/p6qqCnPnzsXKlSsNX9Pv96Ovr0/zH0EUG/E9KH7dz3LAIlb7MNUDQFQVj1cpX3YlYZAFKMVDEETuSbuC8otf/AJ9fX048sgjYbFYEA6H8etf/xqXXnopAKCtrQ0A0NjYqHleY2Mjv0/PkiVLcNttt6X7UAkir+jzqmXG+sCgWzf4r3MwgEkQeqBYzDArzdUAbRWPJEnwKgpKMhU8gBqghEhBIQgiR6RdQfnnP/+Jp556Ck8//TTWrl2Lxx9/HHfffTcef/zxIb/mDTfcgN7eXv7f3r1703jEBJEf9MYpM+4ckBWUGqVNPfOkGFXwAECD0u7eH4qg1xvkAUryCooc7ARIQSEIIkekXUG5/vrr8Ytf/IJ7SY4++mjs3r0bS5YswWWXXYampiYAQHt7O0aOHMmf197ejmOOOcbwNR0OBxwOR7oPlSDyir4YKZ5gOMKbuE1sKMdHu7q5J0Wdw6MNUJw2C6rdNvR4gmjv88MXSNWDQgoKQRC5Je0KisfjgdmsfVmLxYKI0rp73LhxaGpqwtKlS/n9fX19+PDDDzFv3rx0Hw5BFAzaKh41QGGN2UwmYFx9mXwbD1DUFI8enubp86WsoFAVD0EQuSbtCsq5556LX//612htbcW0adOwbt063HPPPfj+978PQG7Dfe211+JXv/oVJk2ahHHjxuGmm25Cc3Mzzj///HQfDkEUDGKKJxBSlQtmiK1x21FfLiuJnTqTrMMg8JAf24+uQf8QPCg0LJAgiNyS9gDlgQcewE033YQf//jH6OjoQHNzM37wgx/g5ptv5o/52c9+hsHBQVx99dXo6enBSSedhNdffx1OpzPdh0MQBUOsKp4uZfZObZkdtWV2AKqqop9kLOJW0jmeQBjegPy4VFM8VGZMEESuSHuAUlFRgfvuuw/33XdfzMeYTCbcfvvtuP3229P96wmiYBE9KOI04y4lGKl1qwFKly7FYxSglClN2Tz+sNoHhcqMCYIoEGgWD0HkAZIkaaYZBw1SPLVldtToA5Rg9KBABlNQBgOh1Kt4lJJlMVAiCILIJhSgEEQeMOAP8fb1gLa8t5OleMrtqItSUOTH2eMpKIEwb9TmTDLFY1NeT/TCEARBZBMKUAgiDxDVE0CbWmHelGqXDTVuNUCRJEk1ycbxoAz6U1dQrKSgEASRYyhAIYg8oFfXKVYMUJjPxGWzoK7crtwWgScQNpxkzCizqwqKj1fxJHfKM0WGPCgEQeQKClAIIg8QK3gAbYM07jOxmeGyWbha0jUYEKp4DDwoDlbFMxQFhVI8BEHkFgpQCCIPYE3aLOboFvNiEGIymTQ+lHhlxqKCwj0oKfZBoRQPQRC5ggIUgsgDmILCyoiNUjwsCOGVPJ4A/MHYZcaGHpQkTbKU4iEIItdQgEIQeQDrgVLHAxQhxaOr1OG9UAYC8IeTq+JJtQ8KS/FQozaCIHIFBSgEkQf0K1U8xgqK1mcidpNNpg9KrzfIA41UpxmTgkIQRK6gAIUg8gCmcFS5bABiBShaBaUzgQfFrXhQ2NweIPkUj42mGRMEkWPS3uqeIIjU8Sgm1konC1DEKh5tKXGt0gulezDAzbRGZcZMQWG9UgDjQMYIanVPEESuoQCFIPIAZmKtcssBSjgiIRyRYDGbhGZsSoqnXFVQTMrzjVI3zIMC4TEmkynqcUZYLdHVRARBENmEApQS51C/H4FwBKOqXbk+lJLGyxUU9ZQMhiOwmC3RJlmhmyxTXkbVRP/93Lp0TrLpHYBSPARB5B7yoJQwkiThwodX4MQ738aBHm+uD6ekYQpKpeJBAYCQMpsnlgelazCAvV0eAEBrbVnUazqsZt5XBUjeIAsAdgtr1EYKCkEQuYEClBLGH4pgj3KBe3LV7hwfTWnjCchVPMyDAgBBJTjQ90FhAcreLg8G/CGYTMBoAwXFZDJpVJRk29wDQKVLVnJ6vUFIEqkoBEFkHwpQSpgBvzqg7t8bDtKFKId4lXLhcocVTPRgBlWuoNi0ZcZMYWmqdMbsEMu6yQKppXgaKpzKcYXR7w8leDRBEET6oQClhBkULjx7ujxYuaMzh0dT2ngVBcVlt3D/RyAc0UwsZmmXarcdote1tdYd83XZPB4gtRSPy25BheKH6ejzJf08giCIdEEBSgnDmoMxnv1ob46OhBBb0dstahdXsYqGlRJbzCZUC16VMXWxAxRRQUl2Dg+jsVJWUdr7/Ck9jyAIIh1QgFLCDOqk+/V7e3JzIASv4nHZLLzENxSO8PQOoO1hwubxAAkUFPvQFBQAaKx0AADaSUEhCCIHUIBSwjAPCruIdXuCuTyckoYFKG5dioe1sgfUFA+gzuwBgNa66AoehtgLJRUPCgA0Kj6Ujn5SUAiCyD4UoJQwLEBpqZF34L3eIELUmCvrSJIEjzDMzyakeMQKHrHJWo1bDVDGZEhBaeApHlJQCILIPhSglDCDfrXJF7v29XhJRck2/lAErIDKZbfwhmzBcEQ1yOpa1NeVCwFKxjwocoqngzwoBEHkAApQSpgBvxyMVLlsfEhdtzBYjsgOLL0DMAVFnSSsn2TMYApKhdPK/3ZGiGmdlFM8pKAQBJFDKEApYQYUBaXMYdG0TyeyC0vv2C1mWC1mWM1iisd4WjHrhTKmzh13vk7ZEMuMAcEk208BCkEQ2YcClBJmQCkzLnfYeFVIt4cClGzDK3gUhcPGUjyhSNQkY8ZRo6oAALPH1MZ9bbfYqC1VD0qFWmZMTfwIgsg2NCywhGFlxuUOC2qUKbpdg+RByTZiiTEA2IUUD+uDok/xHD++DitvOJ0HEbEoE1vdp5jiaVAUlEAogl5vENWCMZcgCCLTkIJSwgwEWIBi5Z4GUlCyD2vSxipujMqM9SZZABhZ5dIMAzTC7Ri6guKwqoErKzXe3NaHDft6UnodgiCIoUABSgnDUjxlDqtmQi6RXdigQFZlwwKUUBwPSrKUDSPFA2iNsr3eIM667z187Y8f8GMmCILIFBSglDBqiseqelAoQMk6vigFRazi0U4yThXNLB576q8xooJ1k/Xj9Y0H+e091NSPIIgMQwFKCcMatZU7rWoVD6V40kLngB9/X7kLfb7EF3KP3iRrUfugxCozTpbh9EEBtArKC+v289tZUEUQBJEpyCRbwrAApYwUlLTzyPLt+Mt7OzEYCOOHp06I+1hvUGuSVT0oEiLS8FI8YifZoQUosoLyzpYOfLSrO+qYCYIgMgUpKCUMC1AqHFbUlilVPKSgpIVdnR4AQFtv4h4iUWXGGgVleCmesmGYZAHg5EkjAEATnACkoBAEkXkoQClhBkUFhVXxUJlxWuhQuq8mk+IRBwUCgN0qTDNWqnj0fVCSpWwYs3gAuZz5z9+dpXkd+ZhpZhNBEJmFApQSxR8KIxiWm2+VO9UqngF/iO/aiaHTxgIUb+JqF9ZJlqVgWCfZgKaKZ2geFPcwphkzzpzWhH9fczLuunA6po+WG8RRiocgiExDAUqJwkqMAdlIWem0gbXUoAqN4RGOSDik9A0ZioIipnjURm1D9KDYLKgvdySc2ZOIcfVluOi4Fm66pRQPQRCZhkyyJQqbZOyyWXizrxq3HZ2DAXQNBnj1BpE6hwf8iCid4fuSmA6t7yRrU1I8wVAEwXDsRm3JYDab8PKiExEKS0MyyepxKqkmUlAIgsg0FKCUKP3KJONyp/oVqCmTAxTqJjs8xOm//b7EKR5exaOoE3bWqC0y/EZtANBc7Rryc/WwNBEpKARBZBpK8ZQoTEEpFzwKtWSUTQvtfX7+72QUFI9eQRFb3Q/Tg5JumArDVB+CIIhMQQFKiSJ2kWXUUKlxWmgTFRR/COFI/EnA+k6yVoua4uFlxkOs4kk3LIiiFA9BEJkmP1Y9Iuv08xJjdWdeS83a0kJHn7b3yUCCNA+ba8PSJ3bRJKsoKOy2XMMCFF+QyowJgsgs+bHqEVnHSEEZUSEbY/d1e3JyTMWCvjlbokoer3Kx16d4gmKZcZ4oKE4beVAIgsgO+bHqEVmH7erFAGXqyEoAwKf7+3JyTMVCe79f83NvAh+KV1FQjMqMeaO2PPGgMJWHPCgEQWQaClBKFHEOD+NopQnXtvZ+2iEPg/YUFRRmknVyBSV904zTjZM8KARBZIn8WPWIrDMoTDJmNFc5UVtmRygiYXNbf64OreBp75cDlAol+EvUTdYbjNWobfidZNMNmWQJgsgWFKCUKExBKberAYrJZMLRo2QV5dP9vTk5rkLHFwzzTrwTG8sBJOFBiTEsMCCaZPNEQXHZ5eMghY0giEyTH6sekXWMUjwA1ABlX0+2D6ko6FB6oDisZrTUuAHE74USDEcQUsqQ3Tb5b8FSPCFNH5T8OFWdVjLJEgSRHfJj1SOyjlEVDwAcxRUUMsoOBZbeaax08tk38QIUj2A2dSrqhM0qpnjyqw+K004pHoIgskN+rHpE1mF9LJy6CbdklB0emw/Kgd3oGhcqXYoHRamYkiQJb29uR68wjJF9xhazifc6sedzFQ91kiUIIktQgFKisCm5+gZgZJQdHsu3HgIAnDixHpVOrYLyyoaD+P5jH+MX/9rAHy+2uTeZ5NSOVRneGAhH4B/mNON0Q43aCILIFvmx6hFZJxDD22AymdBSK3snDuv6eRDx8YfCWLG9EwBw2uQRqGQpHsUku1K5b+nnHfw2vUEWUFM8gVA+mmQpxUMQRHbIj1WPyDrxLnwuxe9AF6HU+GhnNzyBMBoqHJg6slLwoMgpnvV7ewDIysjSz9sBqJ+xU/CYMFVL9Kfki4JCJlmCILJFfqx6RNbhKR6DC59bKT0mn0FqvLOlAwBw6hEjYDKZ1BSPLwhfMIwt7WrK7NUNbQDATbBOwWPCyozFGT754kFhRl5vMAxJij8EkSAIYjhYEz+EKEbiDaGjZlyp8eSq3fjTu9vRNSAPWTx18ggAUE2y3iA+O9CHcESC3WpGIBTBu9sOod8XNJy1w8qMWRBpMqm35Rr23ZAkwB+K8M6yBEEQ6YYUlBKFXRhtBgEKtTNPjX9+vBd7u7wYDIThsllw8kQlQOEKSggblL4yJ0+sx/j6MgRCESzfesiwSkf/N7FbzNxAm2vEgITSPARBZBJSUEqUgJJaMPSgMBmfUjxJwYYBXjt/EuZPaUSVWw5MmEl2wB/Cuj09AIAZLdUoc1ix4/Ag2vv8qC+3A9B6TPQBSr74TwD52GwWE4JhCd5gGNW5PiCCIIqW/Fn5iKwSiFO+yj0otENOClZGfPbRI3mjOwCoEOYcffDFYQDA9NFV3BDrC4YNO8Xq0zmOPEujqEZZKjUmCCJzUIBSosSr4nFSM66kkSSJN2JjVTsMm8XMPRudg7I/Zfroap7O8WsClOgyY0Y+KSiA0E2Wvh8EQWSQ/Fr5iKwQCkegjH8hk+wwGQyEEVY+TOY5EQmGVZXhy1MbUVtm5wqKPxSBPxjdyl7/N8m3AIW+HwRBZIOMrHz79+/Hd77zHdTV1cHlcuHoo4/Gxx9/zO+XJAk333wzRo4cCZfLhfnz52Pbtm2ZOBTCgIBw0TQuM6YdcrIw/4ndYtb0MmF8eWoj7BYzrl8wGQ9fOhOAqpbESvE4rGbMHVfLf+72xJ+GnG3UbrL0/SAIInOkPUDp7u7GiSeeCJvNhv/85z/YtGkTfv/736OmpoY/5q677sL999+PRx55BB9++CHKysqwYMEC+Hy+dB8OYQBL7wCxGrXRDjlZ2FydSpfVsNLmj9+eiXU3fxkLvzQRVkUZ0SgoBikek8mEv15+HGaNkc+ZowVfSz5AKR6CILJB2qt4fvvb36KlpQWPPvoov23cuHH835Ik4b777sONN96I8847DwDwxBNPoLGxES+++CIuvvjidB8SoYMFKCaTOvdFhC5AycNa1le6otM7gDwEsEw3MdppExUUJcWjCxTLHVY894N5WLalA9Oa8yxAUY7VF6LvB0EQmSPtCsrLL7+M2bNn45vf/CYaGhpw7LHH4i9/+Qu/f+fOnWhra8P8+fP5bVVVVZg7dy5WrlyZ7sMhDPALTdqMdv1u5QLqIQUlISzFY+Q/iQULRmQPSnSjNobZbMIZUxrRVOVMw5GmDxcFsARBZIG0Byg7duzAww8/jEmTJuG///0vfvSjH+Gaa67B448/DgBoa5NbfDc2Nmqe19jYyO/T4/f70dfXp/mPGDrx2twD6gXIRxeghLASY30FTzwcNiMPSn6VEseDPCgEQWSDtKd4IpEIZs+ejd/85jcAgGOPPRYbN27EI488gssuu2xIr7lkyRLcdttt6TzMkiYYpwcKQJ1kU6F3KAEKS5EEIzFTPPkMeZQIgsgGaV8VR44cialTp2pumzJlCvbs2QMAaGpqAgC0t7drHtPe3s7v03PDDTegt7eX/7d37950H3ZJEW8OD6BW8XhIQUkI64HC5u4kAwsA/SHjKp58R/UoUaM2giAyR9pXxRNPPBFbtmzR3LZ161aMGTMGgGyYbWpqwtKlS/n9fX19+PDDDzFv3jzD13Q4HKisrNT8RwydeE3aAJLwU2EoKR7VJCt6UAonxcM7yZJJliCIDJL2FM91112HE044Ab/5zW9w0UUXYfXq1fjzn/+MP//5zwDkEsprr70Wv/rVrzBp0iSMGzcON910E5qbm3H++een+3AIAxIGKHZVwpckKW8G1eUjwzPJqlU8Rj1U8hWa1UTkAlqLSo+0ByjHHXccXnjhBdxwww24/fbbMW7cONx333249NJL+WN+9rOfYXBwEFdffTV6enpw0kkn4fXXX4fTmV/VCsWKP0mTbDgiIRiWYLfSohCLtCkoZJIliJhEIhIufGQFvIEwXvnJSYZT2IniIyPTjL/61a/iq1/9asz7TSYTbr/9dtx+++2Z+PVEAhJ5UFxCusEbCMcMZIjhmWRFBaWgPChkkiWyzBeHBvhE8D1dHkwYUZ7bAyKyQuGsikTaSJTisVnMvIEbXYTik6hRmxHcJBs07iSb71AfFCLbfLyrm/97X7c3h0dCZBMKUEoQNUCJfVEUfShEbIaioDC/iU+s4ikgD4pqkqUqHiI7fLy7i/97X7cnh0dCZJPCWRWJtMEbtcXJ47I0jycQysoxFSp9XqXMOCWTrPzZBsMS/3wLKcVDjfyIbGOkoJAHqvgpnFWRSBuBJHpv8IsQLQIxCYQiXGEaioICqAFOQaV4yINCZJGOfh/2dKmqyd4uD15ctx9H3vQ6Xt1wMIdHRmQaClBKEBag2Cyxq3P4RYiaccWEpXcAoNyZvN9cDEbYRb6QFBQyyRLZZI2gngCygvJvJTB56/N2o6cQRULhrIpE2kg0iwdQFRRK8cSGGWQrnFZYDKZCx8JiNkUFh4XkQSGTLJFNPlIClJmt1QDkAGXj/l4AwBcdA7k6LCILFM6qSKQNf4IqHoBk/GQYikGW4dSldAopxcNSVH7qJEtkgS3t8nDYs48eCQA4POBHW58PALD90AAkSUKvJ4gBP22mig0KUEoQtQ9K7IuimzwoCekbQhdZhl4xKaQUj5r+o+8GkXkG/fL3rLXWjQqHNpXqCYSxtX0Ax97xBr72x/dzcXhEBimcVZFIG4n6oACqz4AGBsZmOAqKXjEpyABFGYVAEJmEbZLcditG1bii7n9k+XZEJGDHoUFEIvR9LCYKZ1Uk0kYgLJ/wlOIZHkOZZMwQK3ksZhOsBdS6m00zjkiqn4kgMgVbg1x2M1pq3VH3v7z+AP83fR+Li8JZFYm0kVKZMSkoMRlWikdQUApJPQG0oxB8VOVFZBiWSnTaLBgtKCjHKqbZsKCaBClAKSoKa2Uk0kKiWTwAdZJNBlV6Tt3gKioohRagiKMQfGSUJTIMV1BsFoyuURWUr81ojnpsMEwpnmKisFZGIi0kVWZMHpSEJOPliYVWQSmcCh6Gk4yyRJbw8RSPBS2KgjKmzo1jW2uiHhug8QtFRUamGRP5TTIX1ngeFEmSYDIl3/ejWGGB3lBGv2sUlALqgcJw2iwY8IdIYSMySjAc4aqIy2bBKUeMwLdmt+D0KQ2YMKLM8PFE8UABSgkSUE74eCmeWGXGP3t+PT7c2YWXF500pOqVYmI4CorTVrgeFEA2LAKUAiQyi7j+uOwWOKwW/PYb0/ltjZUOtPf5+c9+UlCKisJbGYlhEwglruKJVWb81ucd2N3pwYovDmfuAAuE4DAUFDEoKcQUD1PYyERNZBIWAJtNxhuqq0+ZgBMn1vHziRSU4oIClBIkqRRPjHbmrFvj2j3dUc8pNZKphopFwSsoLEAhkyyRQViVmMtmMUwrX3nSODz1f45HfbkDAAUoxUbhrYzEsEnGJGuU4gmGI/yivHZPT+YOsEBgufFhKygF6EFx0DBJIgt4BYNsPNhsKzLJFheFtzISw4bv/ONcWI1SPB6/+u9P9/eW/GIwPJNsYVfxUCM/Ihuw75d4vhjBzkFq1FZcUIBSggy1imdQmGwcCEWw6WBfho6wMBhWmXGRpHgoQCEyCUsxuxIEKOwcLPVNU7FReCsjMWySubC67XKBl5jiGdRNC127u7R9KKpJNvWSa61JtvBOQ+o0TGQDX9IpHmaSpUZtxUThrYzEsBlqo7ZB3cWo1I2y6TPJFl6Khx0/TbsmMkmyKR47VfEUJRSglCD+JFrdO4U+F2xirZGCUsrTbNNVZuwsQJMsO2ZK8RCZJOkUj4VSPMVI4a2MxLBJJsXDBuBJklpazAKUI5sqYLeYcaDXh12dngwfbf7iT1ejtgSLbz5CHhQiG4hzeOLBq3hIQSkqKEApMSRJSirF47RZ+C65xyNP7WUm2fpyB2aOqQYAvL/tUAaPNr8ZjoJSyMMCAaEPCgUoRAZJ1oNCJtnipPBWRmJYhCISWFYmXooHAGrcdgBCgKKUGZc5LDhpYj0A4L1tpdtRNplALxbaYYGFdxrGauRHEOmEfb+SLTMmD0pxUXgrIzEsxB1Gogsrm7XT7QkAUFM8ZXYrTpo0AgCwcnsnQiW6KARDiWcaxUKroBReikc1yZbm357IDsmmeEhBKU4oQCkxNAFKkgoKD1ACTEGx4uhRVahy2dDvD2H9vt4MHW1+M5xGbRoFpSBNsuRBITIPqyJkwyljYScFpSgpvJWRGBbsomo2AdYEF9Zqt6yg9HpZikdWUNwOCyxmE06YUAcAeL9E0zzBYZlki8ODQgEKkUl8SZtkWSfZ0q0qLEYKb2UkhkUq3U+rmYIyKAcoHsUkW640cZs1pgYAsLWjP+3HWQgEhtGordD7oLAdLZlkiUySah8USvEUFxSglBjJ9EBhMAWlxyuneAYUk6zbIQcozKMy4AsZPLu4SbYaKhaF3kmWp3jIJEtkEN4HJelOshSgFBOFtzISw0JVUBLv2mtYgKJU8XiUFE+5Q35uhVMOVPQN3EqBcArVUEZo+6AU3mnIy4xDFKAQmYNMsqVN4a2MxLBgu/5kdu3VLlZmzBQUxYOipHjKFCVloAQDFLEh1PAVlMJL8agKCl0QiMyRrAfFrqRZSUEpLihAKTFS86CwMmNto7ZyJTBh/+8vwRQPKzEGhtqorcD7oFCjNiILcA9Kkike6iRbXBTeykgMi0BKHhStguJhHhS7LsUTKL0AxR+WPwuTCbCahzvNuPAUFN6oTZjVRBDpJulZPJTiKUooQCkxgikYO7kHRSkzZqkcltrhKR5fqOQuUmysu81ihsmUeoBiMpn436AQPShMAQpHJBpxT2QM1ggw2TJjSvEUF4W3MhLDIpUBd1VCH5RwROJNk8p0KZ5QROKvWyqwnZpjCOkdRmutG3aLGQ0VjnQdVtYQLxhklCUyBUvxuGkWT0lizfUBENmFl8Ymk+JRTLKSBPR5gzyVU6ZU8ZTZ1a/PgD+UsFdBMcEHBQ7DP/L0VXPR7wvxVFohYbOYYDYBEQnwBcJ8+jVBpJNkZ/GonWRJzSsmSEEpMVIxydqtZpQpO5cDvV5eVssCE7PZxO8vtV4o7HMcSpM2RkOFExNGlKfrkLKKyWTKeDfZfd0enPH7d/Dkqt0ZeX0iv5EkSS0zTtYkSwpKUUEBSomRSoACqEbZ/d1eALIpVJT3y52lWWo8nCZtxYJolM0EK7d3YvuhQbz8yYGMvD6R34hp46RNsuRBKSpKd3UtUQKKXyDZC2tNmSzd7++RAxS3zQKzULVSqr1QglxBKd1TKNlusuGIhF++8CkeXPYFwpHkJXjWALDUvluEjPi9SpTisVEflKKEPCglhj9FcyfzoTAFhQUkjApHaXaTTcXLU6yovVDiXxQ+2tWFpz7cAwD4eFcX7r/kWFQk4Vlh07NLsYydUJU5u9UMS4JSfjLJFielu7qWKIO6SpxEsGZtTEHRP69kFRRK8fBdbaJmbRv29fB/L9tyCL9+9fOkXp8rKCXmbyJkkm1zD4gmWQpQionSXV1LFDZPx+1IruImOkDRPq9Uu8mm0vCuWEnWJLt+Xy8A4ORJ9QCAV9Yf4JOx40EpntIm2SZtAJlkixVK8ZQYvF29Pbk/fY3OJOvWPa+8ZFM8aqO2UoW1H0/kQflUCVCuPmU8dnd6sKfLg1c3HMT7XxxGIBTBQ5fONGx2x9Q+fyiCQChS0mpVKeJLsoIHEE2yVGZcTNAZX2IMsnb1SaZ4qlyygtI5KLe7L9c9r2SreFKshipGXEoH3HgKSvdgAHu6PACA6aOrccHMUQCAm17aiJc+OYD/bGzDgV6f4XPFoLfUAmBCmMOTgoJCKZ7ionRX1xKFSetlSexKAKC2TNtETN/RsbzEPSilrKAkMzBww35ZPRlXX4Yqlw0XHDtaeY56Ien3BQ2fOygoM6X2/SLEFE/ic8xBJtmipHRX1xJFP08nESdNrNc0I9MrKOI8nlJCVVCG3qit0EnGJLthbw8AYProKgBAa50bc8fVah7T5zX+7oiqCQUopUeyTdoAUlCKFQpQSgx1nk5yCkpDpRPnHzOK/6z3oFSUaIonSGXGPEBZuaMzZgqGGWSPHlXFb7v3W8fgDxcfgykjKwHEUVAoQClpfClU8bBNVCgiIZJCrx0ivynd1bVEYQu9PtCIx9WnjOf/7ujX+gVY2/tSu4D4qVEbzj56JKxmEz74ohNff+iDKCXFFwxjze4uAMCMlmp+e3O1C+cdMwp1SvqwL2aKhwKUUibZOTyA1gtG3WSLh9JdXUsUj2KS1adq4jGpsQKNlfLE3bnj6zT3lapJlvqgAHPG1eLZHxyPKpcNW9sHsHJHp+b+F9btR7cniOYqJ44RAhQGU99ilaiz7ypQeilEAvCkpKBQgFKMUJlxicF2pYnGl+t5c/GpePOzdpwzfaTm9lItMyaTrMysMbWYProK7207jK6BAL89EpHwl/d2AAC+f9I4w8+JTUDu8xorKANUxVPSMAUlmbVKTLUGyShbNFCAUkJIksQX+mRNsoxKpw0XzhoddXt5iZtkHSWsoDBYr5xujxqgvLLhAHYcGkSF04qL57QaPq/SJX93+gy+O6FwRDMsrtQUOkL1y7mSSEebzSZYzSaEIhKC1AulaKDVtYTwhyJg/rFUA5RYsBRPf4ldQILUqI3DStG7PQE+GPCnz3wCAPjO8WNiphPZPB4jk+ygrvlbqXUqJtQAJVm1txS7yb70yX7c+vJnRWsMptW1hBBl8mTyuskgpngkqThPEiP81KiNwxSUrsEg3visjQ8GvGj2aPz0jEkxn1epBLdGZcb6Vvjs++UPxe9aSxQP3hTT0Wo32dIJUO56fQseW7ELnx3oy/WhZARaXUsI1kXWZbMknA6aLCxAiUiJZ7IUE+RBUaktk5WQ7sEAdnXKXWO/NqMZd31jRtwKDKagGFXx6D0nA/4QrnpiDeYteRu9MTwrRHGhpnhIQYkF82/FKtUvdGh1LSGYQTZd6R1A3t2wMSql5BOgVvcq1UxB8QR4GfrIamfC51W6WIAS/b0Z9OtSPP4Q3tt2CF2DAXzR0T/cQyYKALbhSVZBYX6wUmnWJkkSBpQ1XZ8SLRZodS0heJv7JJu0JYPJZOKDB0vJKKs2aivdTrIM7kEZDOBQvx8AMKLckfB5lbzMOLGCsq/Lw9NqsTrPEsUFV1BsyW2oWLO2UglQPIEwWFY9menghQgFKCXEABsUmEKTtmQoxV4oAWrUxlGreII8QGmoTKyg8BSPQcCh3xF+0THA/x2rsRtRXJBJNj7aYZqkoAyJO++8EyaTCddeey2/zefzYeHChairq0N5eTkuvPBCtLe3Z/pQSh6P8oUuT6OCAgjzeEogQNndOYjPDvRyIx6leLRVPB2pKCi8zDi2gsKsUmLAEqtvClFckEk2PmLlJCkoQ+Cjjz7Cn/70J0yfPl1z+3XXXYdXXnkFzz33HJYvX44DBw7gggsuyOShEFAX+bQrKCXSCyUUjuCiP63EBQ+tQFuv7LUgBQWodstKSDgiYW+XbJJtqEwcoDAFJRCKRLXJZ36peoNAx8izQhQfZJKNDykow2BgYACXXnop/vKXv6Cmpobf3tvbi7/+9a+45557cPrpp2PWrFl49NFHsWLFCqxatSpTh0MAQpO29CoorGV5W58vwSMLm7V7etDe54c/FMHOw4MASEEB5FkpZcpFJKT0Y2ioSCJAcVi5wVrf54R9VxsNUkVUxVMaeFPcUNm5SbY02h0MkIIydBYuXIhzzjkH8+fP19y+Zs0aBINBze1HHnkkWltbsXLlSsPX8vv96Ovr0/xHpA6v4kmzgjJvgjyf58/v7ijqPhXLtnTwf7MLcSlPMxZhlTwA4LSZk5r1ZDab+OP0Rlnml2o0UGIoxVP8SJLEZ/EkneKxlFYVj6hYD1KAkjzPPPMM1q5diyVLlkTd19bWBrvdjurqas3tjY2NaGtrM3y9JUuWoKqqiv/X0tKSicMuetjwtXSWGQPA5SeMRUOFA/u6vXhy1Z60vnY+sWxzR9RtpKDIMB8KADRUOGEyJVfdxOfx6BQU5pcyMtuSSbb4CYQjCCubgORTPPJ3jqV4+n2qabsYEYMSD6V4kmPv3r346U9/iqeeegpOZ2InfzLccMMN6O3t5f/t3bs3La9bagxkKMXjtltx3ZePAAD88e1tUX6CYuBgrxeb26L7b5AHRaZGCFBGJJHeYbD04Irth3Hp/7cKG/b1AFAXX6NUEZUZFz9ewRTtTrLrtWiSDYUjOPv+93Dq75ahazCQ4JmFyYAQlJCCkiRr1qxBR0cHZs6cCavVCqvViuXLl+P++++H1WpFY2MjAoEAenp6NM9rb29HU1OT4Ws6HA5UVlZq/iNSx8Nd8emfEfnNWaNR6bSi2xPErs7BtL9+rnlnyyHD20lBkalVjLJAcv4TBmvW9vA72/HBF5145iN588FMf+UOK/e3MEhBKX6YQdZuMcOa5CZANMn+Z2Mb9nZ54QmENSXqxYSY4vFQo7bkOOOMM/Dpp5/ik08+4f/Nnj0bl156Kf+3zWbD0qVL+XO2bNmCPXv2YN68eek+HEKAVfHoF/x0YLWY0VrnBgDs7/am/fVzzYrtnQCiPRE2atQGYOgKitqsTV5sWRXQIC+Jt/I+OwwyyRY/qVbwAFoF5U/vbue3F6tnSVvFU5wKStq30hUVFTjqqKM0t5WVlaGuro7ffuWVV2Lx4sWora1FZWUlfvKTn2DevHk4/vjj0304hIBaxZN+BQUARle7sXF/H/YVYYDSoVQozR5Ti1c/PchvJ5OsTK1b9KCkEqDYND/zAEUYyyB/X1UvQbFecAgVb4pN2gD1XHxnSwc27lcLKbo9xZriIQUlI9x777346le/igsvvBCnnHIKmpqa8K9//SsXh1JSZMokyxhV4wIA7Ov2ZOT1cwlb5I5orNDcTikemRqdSTZZKnTqyL5uL8IRiad4yhwWVCjf1/py+Xf0+UprcnYpwtLRqSgoLMWzakeX5vYeT3EGtGKAUqwelMxcqXS88847mp+dTicefPBBPPjgg9n49YTCYIqdGVNlNA9Qik9B6RqUF7kjGss1t5NJVqbGPcQUj0uroIQiEg72ejUl8SzFM7mpAoe/6EQ4IsETCGcs0CZyT6olxkD0ZmFiQzm+6BgoWgVFTOvEq+IJR6S0Ta/PNrS6lhBiXj8TjK5RPCg9xRWgSJKEHqagNJGCYkRNmRpopOZBsUXdtqfLo0lHsr494+vLYVUWWjLKFjc8xZPkoEAgerNw8qR6APKMqGIkGQWlc8CPOb9+Czf8a0O2Diut0OpaQmSq1T1jVHVxKij9/hBvzDaq2qXZ1ZGCIqPtg5J6mTGgBs57uzyadGSd0u6+tdaNKlfsAYNE8TAckywAjK1zY2xdGQDwzUWxIQYovqDaN0Zkc1s/OgcDeHfr4WweWtqg1bWE8GSoDwqDeVC6BgNF5SrvVvoolNktcNosmvkwDlJQALDmbPLnIQYriWApHpMJmD+lAQCwu9MjpHgs+NGpE3Dd/CNw0ewW/niq5CluUh0UCAB2oaJu+uhqPiOqFFI8AOA16D/FelIVqrGcVtcSIRKR1DLjDKV4qlw2XjZaTGke1uiJGUHFFAYpKDK1ZXbc/Y0ZeOCSY5PuWwGoasvkxgpMbZb7G21tHwDbDJY5rGitc+On8yehyq1+vwp1wSWSYygKinguTh9dxX1RxWqS1Q8I9BhsCn1BpauuP2SosOQ75DIrEcToOt2zeERG17ix6WAf9nd7oypeChW2A2PKwAhFQbGYTQVrPssEF84anfJzZrbW4DdfPxrHtFRjT5fc4G/1TrnnjMNqhkvXRZQpKORBKW48QykzFtTMGS3VXN0s1gBFP79q0KDUWOzq3e8LamZmFQK0/SsRmGRuNsnD3DJFMZYaswoetiOrr5D/T03aho/ZbMK357ZianMlWmplkzWby/O1Gc0w6wJAHqCQgpJXRCISfvPa53h1w8HED04CbzB1v1y30NJ+WnMlP1+LMcUjSaoizk4Ro7S6TxjeWoi+LQpQSgTeV8JuTXqQ21AoxlJjtvCpCorc54OatKUXFqAwrjx5XNRjYg0XJHLLpoN9+PO7O7DkP5+n5fV4H5Qk5/AAWl+S227lHhR/KKKZ7VMM+EOqKZZ54oyatbEUD1CYqiOtsCUC23Hq24anG1ZqXEwBSpeyA2M7MuZBoRLj9FLptPGLysmT6nFkU/TMrUpXbA9KJCLhwWVfYPXOrqj7iMzCRhUMpMkcP5QUz5UnjcekhnL8+utyx/Jyh5WXpRebitIvBOgsQDEqNRZTPIWoOtIKWyJ06VSATDG6CFM8qoIiXzxZR1MyyKafY1qqYTIBPzp1guH9TEExquJZu6cbv/vvFtz+788yeoxENOxCmK6W66zMPJUApbXOjTcXn4pL544BAJhMJu65KLYAxWhWlVGzNr8YoBSggkIm2RKhM0sBCqvKODxQPAuCvopnXL3cXyGVhmREctz3rWPQ1uczVE+A+CZZZobsp/RP1mGekYCSehiueZx1knUN09Bf47bh8IC/6IyyA0LLCDb81VBBCQkpngL0oFCAUiJ0DcrD1sQeHpmgGI1pvIpHeW+TGivw2BXH8UZQRPqodtvjVhrEa9TGLpI+g34Qhcbza/ZhRIUDpx4xIteHkhSix8MbDA+7W/VQ+qAYwVKGxRugWOF2MAUlQYqnABUU0qhLhGwpKCxA8QTC8IcK/0IBRCsoAHDa5AaMracAJdvwPigGiy1bjP3CrrEQ+aJjAP/73Hpc9+wnuT6UpBHbGKTDkDqUPihGFEOK58V1+3HVEx9ryorFFI+qoMQvMy7E5oYUoOQZvmAYa3Z3IZLmpjqdA9kJUCqcVl72Viy7FjbLo6bAeggUI/FSPDxACRZ2gPLxLtnk2zUYKJjmWr40ByjqLJ7hBSg1XEEp3ADl2mc/wZub2nH3f7fw2waEAIWVYnsMTbJiiqfw1mMKUPKMu/+7BRc+vBIvfrI/ra/LVIC6DAcoZnNxGdPCEXVQoDgQj8gN7Pvb0eePunh7uYIShiQVxoXdiLV7uvm/Yw2Byzf0KZ7h4knT3DA15Vx4F2c9732hztMRUzxsdIm+syygT/EUxndJhAKUPGNrxwAA4N2th9L6uizFU5dhDwqg5n27Bwt/UejzBnnbdVJQcs/oGjecNjP8oQh2dQ5q7vMG5N1iRAIf7liIrN3Tw/9dKIZfMSgx2smnCu+DQikezo5D6vd9MFkFJUQKCpFGOgdkM+vHu7sTPDI1mEk20ykeAMIMjMJfFFgPlAqnlcqK8wCL2YTJygiFLW39mvvEi2Sh+lB6PUF8oWxSAGCgAAOURApKrzeIbe39cVUutZNsulI8hXdxNqJXeR8DilqSigeFTLLEsDmsBCj7ur1o7/Ol7XWZByXTKR5AXRSKQVbVd5Elcs/kJjlA2XywT3O7uBj7C7SSZ91e7cZkwF8Y51AqHpRFT6/Fl+99F+c9+AE+ENIWjGA4gmBYDl7SV8VTuJslcWL6WuX7wQLXRFU8mj4oBVhmTAFKHhGJSDyQAIC1aVJRfMEwz+nWlmf+QltMsiqv4KH0Tt7AeqRs1isogcJXUMT0DlBAKZ4kPSi+YBgrt8vDIDfs68UP/74mSkkRm72lK8VTqApKOCJpvsvsmqCmeCx8+KuxgqI+l6p4iGHR5wtqcufpSvMw/4ndYkbFMPsTJEMxOOcZaoBCBtl84UimoBRhimfdHu05XzABisaDEjtA2dLWj1BE4mmJfn8o6vEs2LGYTcOed8X6PnX0+wvSOK3v6bNGuSYMBEQPivxZGntQKMVDpAmW3mGsSVOA0iWUGGdyUCCjuoic8+198t+ksdKZ4yMhGCzFs6fLo5ngqg1QCjPFs3F/LwCgSfm+pWu2TabxCjv1eI3yPlXe38wxNTz46NHt7NmF1m2zDHu9Gl3jgskkf46F2N1ar0Z9srcHkYikTfGwAMWw1b36d/EEwgiGCytwpwAljzjUL59AbHfx2YHetHTFPJxFgyxQXCbZg73y0MORVa4cHwnBqCt38JEKW9pVFUXrQSmshRiQ1bpuTxAmkzyTCJC9Bp5ACGv3dKe9N1I68QWSU1BYADZ9dJVQ7addJ9LVpA0AnDYLmpVzd7eu6qsQYGoS6y3lCYQxEAhpG7UxD4pRikcXqBeKIsegACWP6FQCiWnNVRhR4UAwLPEdx3BgCkpdFvwnQHGZZA/2ykblkVWkoOQTTEURK3kK3YPCqndGVbv4nKd+XxC/ee1zXPDQCizd3JHLw4tLsp1k2Xp29Cg1QNF7I9hrlaUpHT22Xp6wvvNwAQYoymdR7bZzxWnAF1IbtTlVBWUwQat7oPBKjSlAySMO9yvzcirsfAe1fm/PsF83W03aGMVkkmUKShMFKHnFlJGyUfafH+/F3i55crZ4kSzEeTzbD8kByoQR5XxCbb8/hG3t8u3sfeYj+jLjtze345p/rNP4HvyhMLYqitdRo6pQ7TI2sLIL7XAreBhsZtbuzvz9/GLBgj2XzcK/EwP+kKZRG1Oa9GqJJEncJMuCm0LzoVCAkkcc5qXADh6gfJKGAEWdw5Od6bus42qhOudFmILSXE0BSj5xztEjYTWbsG5PD75873JsOtBX8CZZpqBMbChHBbsY+UL8/E1Hh9ZMoaniCYTxyPIdeHn9ASwTVJ8tbf0IhiXUuG0YVe1CFTPTe41TPGXD7CLLYAHKzjxP8Ril8Nhn4bSZ+QDGfp82xeNSxgEEwxJCgsdEPAeYIldopcYUoOQRzCRbX57mAEV53eyleFQPSj7nzRMx4A/xnG0TeVDyihkt1XjtpydjfH0ZfMEI1u3t1vggCtEkKyooFcLFiCmg+awK+XRVPMxXcqhfNf6z9M5Ro6pgMpliNlFjF990eFAA8KGe+exB+fO723HM7W9gc5txbx+33cqD1n5fkLe1L3NY4RTmFYmdY0UfFgtQCq3UmAKUPIIpKPUVdhw9ugomk9ywTV/dkypdWW42xnLLEanwTFkibUp6p8JpHfb4eCL9HNFYgWNaqwHI3zNvgZtkRQWFyfm93iBPlaZjCF+m0KfXWGVOl2CAZamqqUp6rjqGmZ4rKI50pXhkD8quw568LTV+e3MH+nyhqMpN9rm6bBa+BnUNBhBQlJJyh1XTyE38jrCUj9kE1CubU0rxEEOGBSJ1ZQ5UOm2YMKIcwPB9KJ1Z9qA4rBaeP84HH8rHu7rw5qb2lJ9HBtn8p9KpTDf2Bgs6xeMNhLG/Rw6IJ4woQ4VDfl97uz1g19R8TfFIkhQ1i4e1ZBcDFBaIMCW3ymWsoKRrUCCjpdadcqnx9kMDmPPrt/CNh1fguY/3ZlwJZnPL9KXCPMVjt3AFpU3oMF5ml0uxWZrHZ+DDctos6hRwUlCIocIClBEV8gmcrjQPqw7KVooHEKeI5j5A+eGTa3D13z9OeXTAwR758ZTeyV8qlUW7zxfUdM0stBTPjsMDkCS5Aq6u3MEVlANK0ALkb4DiD0UgChNdniDf4XcKAQpLL7DAhKeCY/RBKUtTiseo1PjVDQfx91W7Yyoqa3Z3o6Pfj493d+P65zfg+bX70nIssWAzv/TTq/lMIpsFFUow3q5snJw2M6yK+dVpk/+vDVAiyn0WNZAnBYUYKqzNPet+mI4A5VC/H3u75EWutbZsWMeXCtV5MqQrEpFweCAASUrdxc8NsqSg5C1s0Ra9DkDhKSjblUm1TDVlcr64cc9XD4r+uFhqFNAqKPoAJdacHOavcKcxrSqWGncPBnDNM+tw04sb8csXNxqqI/p0mv77lU4kSeKeHX0vE5/QE4Z9J9i6VO5Qu1szBcWoks1pNfPPuqvAJsxTgJInDPrVHHqdEqAcNaoKAHhp3lBYvvWQ8lqV3CiVDfJFQRFPWHE3mgxUYpz/VLrkRbtDH6AUmAdF9J8A4HK+SL56UHy6z1r8WxgFKCzdUB0zxZNeBQXQlhq/u+0QwkpQ8vSHe3D3G1uiHq9XqwIZDHgH/CE+4kTfy0St4lHLjFmKp1zw6DiVz0rjQRFSPKwzsRg8FgIUoOQJLL3jtJn5ickWKf0CkArLtshlfl+a3DDMI0yN6jxp1ibuSPYnGaBsbuvDqxsO4gB5UPIepqB09OkVlPy8mMeCBc8ttfJOn70vkXxN8eiPS8yaiAb/XqXElSkoapmxroqHqwbpU1BY4PfB9sNYvkXetE0YIQctr316MOrxeiUjkMEW8d2CqsF+7+7OQc2m1S0oKG3KuiQ2sjNUUJSgymGz8E0WU18KBQpQ8oTDQnqHzZ9g7uyhLrahcATvKgrKaVkOUPKl3b24oziY5O7hmn+sw8Kn1/LPjtrc5y8siC/0FA9TF1hgb1TB4s1TVSiestPvCyEQikCSJG7Q1HtQej1BjRfEmwEF5ZzpI2GzyH1zXtsoByRXnTwegHH6xqvzggQz+H3qEtbIQX8Iuw4P4rS738GPnlrLVRCXzcL9VoeUoE+sLHRyk2z0TCSnzYzmankNa0vRh5drKEDJE3gFT7mahrHzACUypPK4tXt60O8LocZt436WbKHW7Oe2zNgTVH//gZ7kTs6tSjkkgxSU/IWZ//Q73EJTUPT+DIfVws9/hi9PUzxs126OMdev2xOALxjhfyO9ByUQjmgUi0x4UBoqnDj76JEA5It4hcOKrxwl/zwYCEelVvSqUCaH7ImziDyBMDdMb23r5+kul11N8bBLQbmBgmJYxWNVFZQeTzBvU4VGUICSJ7z8yQEAwDilZh+QFylA/kIGw6kHKO8o6Z1TjxgBS6zVI0PYFHd5KJLbXZ+48CXjQTG6sI2sJgUlXzHyagCJPSjhiJRXQQwry2UXbwC8WRsjX1M87ELIFBE9nQMBXj1iMZv4hdVlsxhONM6EBwUALjthLP/3yUfUo8pt4+0Q9CoKWzfYsQaGsP4mi+jTGQyozSG7PQGumsl9ULRpvzIDBcWoF5DTZkal0yaYbAvHh0IBSh6wbk83Xv30IEwm4AenTuC3iw14hrKYMs8FM9tmE5tFDohCGTyxk8GbYoDSpZus2lzlpCZteYyRVwPQdtQ04gd/X4Ppt76B37+xxXDIWrbhKR6XepHXB1/5FqCs3N6Jq574GDuUIXw1MfosdQ0GVIOs08pT2CaTybCSZzDNfVAYx7ZUY4aiJM+f0ghA7bB6SNcMk60bLGDMpElWLCTw+MPoUwIUfyjC1RWX0AeFUS78zOfxaDwoqkkWQN74UC772+qkH0srb46RJAlLXtsMAPjGzNF8CBqgDVCGcoKw5zis2Y9DWX3+UJSfdCIqKH3KFNB4AQcr9W6ocOBP353FKw6I/CS2ghL/Yr52Tzf8oQgeePsLrNzeied/dEImDi9p9CkeQHsBAvIvxfP3Vbvw5qZ23l+oNpaCMuiHQ+nTUaU7n6rdNnT0+7mCBACeNA8LZJhMJjzynZlYtaMT580YBUA+z3d3eqIUFBYMsu9XRlM8Hr2Con4WBxS1Q+wky9B4UJQ13rDMWAlQRlY58UXHQE4DlFA4klLjUVJQcszeLi9W7+qCzWLC4jOP0NxnMpk0PpRUYSeVPpedDaxKSin3KR7t7vhgAhWlUxgLcGxrDe9LQeQnTlu0VwNIfL4MCKrJlrahl/Gng0Aowi8smgAlz1M8rDx4u1IiXeYw/lt0DgQMU1iAqhiJ1X6DaW51LzKyyoWvHzsaZmV9YgpKh848yjY2TOHJZIDSpaviGfCJvjklQDFQUMRhilxB0ZQZqykeQPXSJVoDM8m+bi8vqU4GClByzKaD8gCtyU0VhtUiDsvQAxT2HOYHySbcg5JjBUXfROpAgt1DVw667hLDo9JARYmXEg2GIxpF0p/Bi08yMPXEZNIqQvr0VSgiZfRCmSrMKzEoNBNzCYPrKoTZMfoeKAyjicbeDKV4jGiokC/aOU3xDGqreMTCAp/gQdF/HzQpnjiN2piXkV1fDuawkmfn4dQGNlKAkmM+Pyjv3qY0VRrez6TRoXhQ2EmVEwVF8aDkekHV9zNI5ENhKZ66suw1tSOGh7hwJ6M46j0nwfDQquTSBbt4VzisfGfPftaTTyqKvm2602bRpGXGK31GOoUARa+g6CcaB0JqtU9ZFgIU7kGJkeKJVSWWTsQyY38oYtjc0mW3RClKYqM2h2GZsdrqHsgPBWUHBSiFBRuvfeTIGAGKEv0OpTMmCw5yoqCYWRVP/nhQgMQnZ7YnPxPDR1RQWHfSeOeLvvRdknL7Pe1V1AOmJjDYDrnabeNVePnkQ9F/ji6bVkEZr6RHuwb9MRUU/URj0dTuSrMHxYgRSlsHfSdibxZTPPpeUUYzw1w2S1TpeeJGbWofFECtRsylB2UXBSiFBVdQRlYY3s8MrkOJ4AO59KDkiYKir/nfn6AXSleWJz8Tw0dUUNgFJZ7iyAayibv9TEr4iYilLjAPSm2Z3fAClEvExmsMl82iCSrG1SsKykBsBUU/0Zj9bewWc1bWrRGVxgoK865lI8Wjn4/T3hfdOI59rqKqpg1QkjPJArkNUCjFU0AM+EPY0yUPsDsyRoqHS9ZDUVBC8q7QkQMFRa3iyY8UTzM/ObUKyo0vfoqbXtzIf+YmWfKgFAyib4PtyJNJ8Yh9O3L5PTUqMQbUwKu+zGHY5yKX+IKRKNVJ70FhKZ6uwUBUF1mGOrNLvl9sTJYNYiooLMXjYgpKZhQ2SZKiUjqxFBRA51FyRJtk/UZ9UJRrCCsz7vUGo4oHsgUFKAUEqx5orHTETCkMp909U1BsOVBQbOY86YOidJJlcnObsHvo8wXx5Ko9+Puq3Tyf3sk6+pKCUjBUigoKS/HECVAG/OrFh1k+cqqgxKhwaVR296NqXHDZ5XNYn7LMFXr/CSDv1A0VlDgeFGZG71TM6ez9pbtJWywalM+4c8DPBwhGIhL3b1S5Mpvi6fOF+O9la47Rd5epfaIxNlGjNr2CIjZrO+f+93HFo6uz6r3yBcO8bDpZqA9KDvn8oOw/mRLDfwIIHpRh9EGx51JByRMPCpM3xYVVNEv2eoKodNoEDwqZZAsFrYLCPChxUjzK371cKYv1BSM5nd3Dhujp/RlnHz0S3mAYp01uwBWPys2t8sWD0m8QoIgeFLddnaDb6w1yZVIfoNSXa1MsmWhzH4+6MgfMJiAiyUrPiAoH924A6t8kUwEsq+Bx2y2oKbPzz0kPCzLE0nOjWTzeQBj/WrsPjyzfzj9Lp6BqNSm9UHYeHsTOw4PwBsNZqZYC5EnSkgSUO5MPPklBySHcIBsjvQMMs4onhyZZK+8kmx8pHiZv9nnVoISdwICaA2cLBJUZFw5aD0riFA/rgVLmsPJzI5cpHlZiq794O20WXDp3DEZVu/LOg9LrjU4RuOxqFU+Vy4Yat53/zDZj+vfYIFTRSJKUsTb3sbCYTXwz0tEvq6uiSpXpKh5WwVPjtsd8zyaTqqSL33WjWTzeYAT/WrsfW9sHeCdxZpIFgAtmjuLpbiC7jTR3Hpb75YytS763FAUoOWRzAoMsIJhkh6Og5CTFkx99UJhJtkHZzQXCES59innYHm8AgVCEVyZQiqdwqHSpC3WVkOKJJV8PCgHKcEzo6SJW+kMk3zwoMRUUIUAxm004trUagBowxlJQ/KEI+v2hjLW5j0eDrtSYrRlOm5l/PzIVwLIKntoye8z37LZZ+HiAWCZZ9v3wB8NR4zocgoLy49Mm4oNfnM5/zmZgvvOw7LccU5v8bDMKUHLI3m75D8ZytUYMJ8XDvny5aHXPZvEE86ST7IhyO5RzXG0wpVNQmFnNYjZpfA1EfiPuKsULYKxzhgUoFQ4rT3/m0oMSy0Aqwi78+TKJts9gSrnTZoHLJl802XuZPaZW8xj9e3TZLfyie7jfz9vcZ6KLbCx4N1kWoChBoFzam9nvB6vgqSmzx3zPoq+HeVD0VU6iwqYvW3Zata9rMpnU9TmrAQopKAVDMBzhJ0STILnpGU4VTyCHnWStedJJlpvuHFYuibLdn1ZBCfImbTVuu6ZhFpHfGHlQgNgBCjPJljms3ECeF1U87jgBCm/ElR8BCjuHNBdJu4Wbedl7OW6sNkAxmm0lNktTu9JmT0HRN2vzCCqOLcMzxVjFTr1OQTEJy4/oIWFrmH5OE/vcvcGwpvGb/Pzo9Z+/r1D21ufth+QKnjH17qSfQwFKjpBzrvLMmvo4hsyhVvFEIhIvA8xJiidPPChsN+S2W7gq0qdr0Q0AvZ4ArySg9E5hoW8Pzxb3WOeMmOKxD2OURLpIJsWTbx4U5uUSZ1W5bBZeNtyopFSPba3mTeZMJuPuuPXCRGFvlj0oALiZl3WZFkudbRlOAW5tl9P8ExrKNQpKY4W6aRX79TC1UK+2sCCm3xfSdJMV7xNhAUq2UpuSJOELZWbT+DgZAz1UxZMj2pTIubHSGXe37hjisEDxi8eChWxiNedXFY/LZuUXMq6gCFU8PZ4gdZEtUMR0nNsuy/K+YCSm6jigq+IB8rNRm4iTp3jyYxYPO4cmN5ZzA6zLZsE3Z7UgGJbwtWOaAchB4LTmSmzY14tKp81wrTNSULLpQRmrXDBZjw6fkOIRU4CSJHEvSLrY2i5ftI9orNB4R6rdNmWycUjTW4YpJ/oxACwICRust0YKOp+VlqUUPCs1N5nUzzsZSEHJEawfR7z0DqAanIYToJS0ghKIVlD0Q84AbYqHKngKCzFAcdksqmEwZorHqIond4F0T4w+KCJ5p6AoAUprrZvv8MscFlS5bfjRaRMwqlo1QjIfSqz3N0IoNc6FB4U1lGMBikcYfii2aEj3OIRwRML2QyxAKdeoRpVOG1ejXJrb5cBEP9nYpVNJRBWY9dMRsTMPSpZSPGzi9egal6GiEwsKUHLEwWQDlCHu8ILC43PZByVbHpQN+3rw/Jp9msoNsWzRLYwrZ6bEWAoKpXgKC3GxdgrGxkQpnnKHNecKii8Y5oGUkT+DkX8eFLV3yy3nTsXVp4yPafafO14OUFi1jJ5cKygs5XCw1wdPICR4UCywWVXFhPmU9nR6cOn/twpvbWof1u/d3TmIQCgCp82Mlhq3pvdLudPKBymKwcfJk0bglCNG4HvzxmpeS3/Rryu3Y/Uvz8C7138pagoygIynrvR8oQRiE0ckb5AFKMWTM5g5amRl/ABFzZGntjCpPVBMaZclk8Fqzm4Vz4+fWot93V4cNaqS95XxhyJgmx6XEKAYKSi93gAOsy6y5dSkrZDQBijmhJVv3INiF8uMc3PhZ8FyLH8GI++qeNgEZqcV3zquNe5jvzylETeeMwXHj68zvJ8rKAN+rsa4s+hBqXbbUeO2odsTxM7Dg4YpHkAOYt124IV1+/HBF5344ItOvP0/p/Iu1anC0juTGipgNps0CkqF08rTNaKCUltmxxPfnxP1WhazCXarmQfaNW47GipiX1uy3f9ne4esTk1I8bMiBSVHJK2gsEZtKVbx5LKLLCDkOLOgoHT0+bCvWza4ia3sxcXcbbfyHaphFY8nyBsbjUzwNyHyC6vFjPOOacbccbUYWeVSFZQEHhRNiieL1QwifMpvDH8GI//6oCgKShLl+GazCf/n5PE4alSV4f0aBcWvqhfZZJzgQxFTPBaziZuu2aYvIqi0P33mkyGrb8wgO6lRvmiLqlGFRkFJTkdwCql8cc6UEXwDmW0FpYEUlIKgTZlJkDjFMzQPSjCHc3gAoZNsRMqIuUzk0/29/N+9woRVj7KY261mWMwmNcVj1AfFG+Q7llE1yTcSIvKDP1x8LP93ou7L7O9eLlbx5MgrlUyJMZC/HhSj9EGqiAEKM3+WZanVPWP8iHKs3dODnYcGubHfpTRIs1lkZYL5lMS0yKf7e/HW5+04++iRKf9OFqAc0Sg36hR9NxVOGy80YCXEiXDZLXxtqymL/3exZ7m8nnlQJqQYoJCCkiOYgpJotz7UMmN/rhUUs/p7M21A3LBPDVCY4RAAL1lUJ4GyMuNoBaVXUFBGVydfp0/kH0mneHJcxdM54MffV+0GEN8gC6gXqfzzoAw/kGABSudggJ+buVRQfEGtiuPQNfPT/w1YeXKqbGtXDbLy79MqKMeNrYXZBBzTUpPU64lelUQKCi8zzoJy6AmE+NpKHpQCIBKR0NEn+x0aE3hQ1N2g8QLa0efDMx/txcVzWjQ5x1y2uQdUBQWQS9nsGYyFRQVFDFBEsxuAuB4UtisymRKrWkR+E680X5IkDAZUk2w2c/HBcATr9vRgRksVLCYTvvbHD/jC/eUpjXGfyxWUvPOgDF9BqS2TuzyHIxL/PLKuoCgByvbDg3ArSgZrFmezmgG/+h3R9xnp9hgP+ItHMBzBjsNqiTGgU1AcVpwzfSS+dOSCpA3DzpQCFKZwZ/57v0Np0FZbZkdNmR19fb4Ez1AhBSUHdHkCCIQjMJkQ18gEAHZL/N3gd/+6Gve8uRW/fGGj5namWuRKQREDlEwqKJIkaRUUr7pYeIVcMgChzDi6iofRUOHIWVBHpAcWoBipDd5gmBuny7JcxfPMR3tx0Z9W4s/Ld6BrMID9PV6YTcAzVx+Pn5wxKe5z88mDEgpHeHBf6Rx+IGGzmFGrXFDZ5iHrCgorNT40IPROsijHJ69l7DvCJmUzUytrV58Ke7s8CIYluO0WXpKtVVBsUbclQhOgJKhEzGZgvn2IFTwABSg5gRk568oSXwwTNWrbouQxP9rVpbk91wqKmOLJZC+Utj4fr74B5FQNwxM0VlBYF8xBg92o2L+BKEzipXiYQdZkUpu6AdkJUPZ2ybO3dhweRI/QnC1WdYtIPnlQBoTAPh0KCqCmeeTXtGJMXfLNvNLB2LoymEyyP22/Yrhn64ZdV5LrU9LtI5W1onswdQWlvU8dc8L8eWW6FE+qaFM8CTwoWTSHH0pipEss0n71WrJkCY477jhUVFSgoaEB559/PrZs2aJ5jM/nw8KFC1FXV4fy8nJceOGFaG8fXk15IdGWpP8EEKt4ohcmseeHPjrlJtkcKShms4m3uE53gyORTwX1BABf+AGhSZuNNTdSFBR/tAeFMaqG/CeFTrxzZsCnlhhne2ga+z52ewI8FVmdQIpnMBXQlwcpHqZyOG3mtG2A+oXhg/dcdAyfOZMtnDYLmqvkgGMT64xrZwoKu5hrUzxs/dbPvkmGQ8qmaoTQ0sCtM8mmiliOnOh7lc1W98kMw4xF2q9ey5cvx8KFC7Fq1Sq8+eabCAaDOPPMMzE4OMgfc9111+GVV17Bc889h+XLl+PAgQO44IIL0n0oecvBvuRKjAF1N2i0w2OltYDc0VHEn2MFBchOKRvzn7AdgzjJ06NL8VS5dB4UoZqDQQpK4eOMo6AM8kGB2t1xNmbxeHiAok7OTnbRzicFpTeN/hPG2Uc3AQC+e/wYfHlqfD9OppjcJHtB2PrAPnO7rtswSx2ygGYoCsphRVUQlaPhKijiUMBE4zqyOSQzmVEOsUh7mPr6669rfn7sscfQ0NCANWvW4JRTTkFvby/++te/4umnn8bpp58OAHj00UcxZcoUrFq1Cscff3y6Dynv4CXGCQyyQPwUD4v0jWCRca48KIAcpftDkYz2QmGy+bGtNXh7c4dOQdHmsyuEVvdil9nmaidvmjSqmgyyhU48Y7nYAwVQPV7Z2EmyC1uPJ8BTkYmkeEY+eVDUHijpu3z8z5mT8dXpzZg+2rhXSjY4qrkSb2/u4D+7dQoKa+bH/o4jlbViKCZZpqDUCwqK0ya3QwhHpCEGKMmneGxZ7IPSN4yKr4xfvXp75R1uba3c7njNmjUIBoOYP38+f8yRRx6J1tZWrFy50vA1/H4/+vr6NP8VMt3K4pTMzJd4O7zPhQBF38eByZG56oMCiL1QMncSsM+SlQn2GlTxuHQelHBEwmAgzO9vFlQT6oFS+MQrzWclxqxrK2tlHsyKgiL/7u7BADdzp5ziCUYQyfEAznT2QGE4bRbMaKnOSddrhr6RnEvvQQkxBUX+rnAFxRNM+W9yyEBBMZlM+OkZk3Dp3NYhKblM8TGbEjfQy+YMquEoKBm9ekUiEVx77bU48cQTcdRRRwEA2traYLfbUV1drXlsY2Mj2traDF9nyZIlqKqq4v+1tLRk8rAzTip/sHiLrRig6BfYfFBQ+ETjDJ4ELKXDJmT2eIPcm6MvM3bZLNwX0y6UumkCFOqBUvAwdYSZoUVYibGqoGQvF8++j32+EB9MmWqKBwBW7+rSGMOzDVNQhrLLz2eiAhRdFU8wyiQrKyjhiKTx0CSDUYACANecMQm//vrRQwrU2PFWu+1xuxIDamCeDXN4n9AtOVUyevVauHAhNm7ciGeeeWZYr3PDDTegt7eX/7d37940HWFuSOUPFm+asZji0Ut17Ge7NXc7EnWiceYCFK6gKK7/cETiMr6XV/HIC6nJZOKyNDMqm0zaVFszpXgKHrboG13Eo1I8WaziEcued3fKqclEHWQZYoBy8Z9X4Qd/X5Peg0sBpkIN5YKTz4yscmq8G2zd0JfkshEKFU4b96+lapRl3019gDIcnDxASfx34aNIstAHJS8VlEWLFuHf//43li1bhtGjR/Pbm5qaEAgE0NPTo3l8e3s7mpqaDF/L4XCgsrJS818qrN3TjSdW7tJUveSSPmESaCLEMkjx+Pt9QeztUk2yepUi17N4ADXFk8mBgcyg1lTl5J8Vq5Dw6DrJAqoszQKUMruVn9CVTmtaZWsiN7DKiI7+6ABFnGQMiAbI7CkogNyxFEjcUIuh3xHrq9eyCQvyst2rJNOYTCaNisLWDX0pOgs0nTYzbynflaJRlisoaRxMylJStUl8p/TG30zCUoLJXO/0pP3qJUkSFi1ahBdeeAFvv/02xo0bp7l/1qxZsNlsWLp0Kb9ty5Yt2LNnD+bNm5fuwwEA/N9/fYqbX/oM6/b2ZOT1U6WfKyiJJVKH4CERVRQ2x4Ghl6jzoYqH9ULJlIISDEfQryyWNW4bDzRYxK5P8QCqLN2mpHjcdguP7KnEuDhoUBSxwwYBykAOq3hEg+uuTjlASVZBAYArThyLOmWHn44W88mi39gN6lSoYuKoZnXzG1VmHNYFKFYLDwZSCVAiEQmdyuMzo6AkDlBsluwph3mloCxcuBBPPvkknn76aVRUVKCtrQ1tbW3weuXdflVVFa688kosXrwYy5Ytw5o1a3DFFVdg3rx5GavgYX4DVvGRa1KJKMUAQwxCDukW31gpnlz1QQEEk2yGdqdiW/sqlw3VLrvmdq9BgMJkafadKHNYcfKkEZg7rhZXnDg2I8dJZBdx+Fyii2s2F2qxTT0LiFJZtG85dxqe/9EJ8vNTnG4+VF779CCm3/YGlgnVLSzwF1uzFwuighJdxaOYZJW/ndNm4R1bUyk17vYEEI5IMJkSlwOnwulHNmBmazW+dVxij2a2Osn6Q2FuKh5KSjDtIfDDDz8MADjttNM0tz/66KO4/PLLAQD33nsvzGYzLrzwQvj9fixYsAAPPfRQug8FgBz9s5QKk/VziSRJ3LyXVIAiBBj+YARQLBLsPZlNQESK/qLlupMsoJpkM2VA7BF6SVgtZlSxXihKhYTebwCoCgob1ui2W1BbZsezP8iMekdkn3qlOi4QjqDXG9TsKHmKx671oGSlUZtBiXCyVTwMrvhkaQrtu1sPod8Xwj9W78GXjmwAYHxeFQtHKwGKzWLiioToUwqGI3zqudOmtuhPxYPCSoxr3Pa0biDH1ZfhXz8+ManH8uq1DH+P2LXOZBqaqTrt37BkfB5OpxMPPvggHnzwwXT/+igG/CH+hWpLYUhRpvCHIvyCnUyKx2QywWGV+4mIlTzMaFtb5sDhAX9Uy+JgHlTxZNok263rJVHtYs3a5NvVagM1EKzQKygpzLogCgOH1YJqtw09niAO9fs1QQD7brBgVt/GPFNIkmQYoCTbB4Wh96RluiyXqb0rtnciGI7AZjFzb1cxnjsttW7ceM4UlDmsvOJPVBtEo/NQFZRM+E9SxZaFCktA/f6UO6wJK4uMKPpZPL1C4658UFBYYGE2Iel2zkbN2tjFl+0W81JBybBTnDVIYhcgvQelXzg5GBW6Kh53EcrURGyjrP47Y89SiscXjMBo78bSkskSK+WbKdgOeMAfwtrd3cq/WYqn+AIUAPg/J4/HJXNa+c92ocxYnGTssJp5iiYVD0omKnhShQ9AzPB3aDj+E6DUApQ8UFDY8VS6bEnvfnipsXBysMiUnSB6k19+9EFhJ3ZmonSW4uEKituuuZ1J0aK0yKommMxajLtAQutDEWHnH1Pb1BRPZneSRurJUGTvWKb5TMHWGQBYvvUQAHUKeFmRVfHEQkzxMAXFYTXDZDLx9SSVbrLsO1mfRKPOTMFb3Wf4OzScHihAiQUo7fmgoPhS/4MZNZNiO5s6ZacYraDIC24uO8myEztzCgpL8cgnelWMFI/4WR81Snbps91sMRr9CKAhRoDSzYPa7CooRoMpq1y2lGVvccORzSZbAPDuNjlAKWYPihHiYD2WZmf+lNohlBnHatKWTdQ+KJkNzElBSYB4grX3+7kfJVeoBtnkT26j6awsfcHKDqMClBJQUGKleHq8QYTCEV5tUC7sUme21mhew00KSlHCFv+OfnVTIkkSD2rZd4Ut1JlWI3yG/pPUd9AmkymrpdF9QofUjfv7cKjfX9RVPEZoPSisgke+TVVQgsZPNiAfApRs9f8ZzhweoAQCFLEUNRyR0GnQXdIXDOPbf1mFJa99nvD1vIEwDvR4Ez4uFkNRUBwG01n7ogIUnUk2L2bxZLYPSs+g3iQrfxa9niCfWgtoPSg1ZXZMGFHGfy6VRbbUMErx+IIRrjpUu/UpnkwrKNEBylB3lY4sqT5yxaEyd0c5h7a29xd1HxQjjFI8qoIyFA9K+nugpEq2yuv7SEGJj5jiAYx9KKt3dmHF9k786d0d+O9nxvOAALmfx/kPfoBT7lo25J4qQ8nJxTPJshSP3uzEfnbkQxVPpk2yZXoFJcADOIfVHGUUnj2mlv+bFJTipKFCrsc/JGxI2PfFajbxoFXfJTRTeA0ClFSatIlkqz2/NxjmKYAx9XITwx5PUJ1nVCLnjth1lSsoyqaRVfH0KqptMqgelNybZDNfZkwelLjoA5SDBj6U3UpXRwC46cWNUc9h/OOjvdjS3o9QRNLMwUkFJnmlElEaDQzkCopQxSOWeOdFFU+GS9l6dGXGogfFqMSYMWusmuYpFaNfqcFTPH3RAUq1284N6jYDf1cm8Cg7b7GsuHqoCkqcAaLphKWjrWYTmirlgZpdg35+kS4VBUWseBHb3APav2EyaZ4+X5CPORidw87V2ZpmLBaFDIWSC1DaDRSUnYdVNaSj34+/vr8z6jE9ngB+/8YW/nNfjCAmETyiTCEnZ7RjYosHc4JLEjT+GrbgFnMnWb3hkfck8AS4R8eo18ysMWqA4i6RRbbU4CkeQUHp1flPAPXcCkekjPrTmIIyskqdnJ1qkzZGthQUseM1+8wOCBu8YpvFEwu7opYEQhE+yZhVVlotZh50JlPJ8+Zn7QiEI5jUUI5x9WUJH58pstVJln2HKMUTAxagsKY78RSU8coXhkW4Ig8v367xs8RSWZI9nuF4UCRJ4hfg2jJVJhSj4XxQUPgsngwt/OqOWP4sRT8OS+WVGwQo4+vLeO64VGTqUoNV8fR4glxp0Df2A7TnRyYXaxag1Fc4+I58qCkeI09aJlDleStXCpj/zmo2aUqeixmbQR8UpzCAlK0lRtOz9bz66UEAwDnTR6b7MFMi1T4ob29uxz9W70n59/QOYUMuUtDfsGR2POwDYsGHUanxTiVAOaa1GoDaR4PhCYTwjw/lP86oapfymCEqKEOY7Kiv4hkMhMHeep1QSy/uqNRZPJntNBkPawbynJIk4bpnP8FPn1knpHjkz8Bps/BdHQsyjfpMmEwmXDhzFCqdVt7amiguqlw2/t1npkQ2AkFULsTzI5MXfJbicdssatXZEHeVuVRQ9nfLAYrbbsl4F9t8QTRSq4MC1Usn8wF2DsRXUHo9QbynlGp/NdcBCmsBkWSK57pn1+OGf32acrNTpvSXpIKyq3Mg4WPYLmByUwWAaJNsOCJxw+uxLdUAotWRF9cdQJ8vhDF1blw4cxSA1BrzaI9nCGXGOpMsU09sFhN31wPaaDgvFJQMVPH0eoN4Yd1+vPTJAa7MiOWabDezu1P+m1Y4jE+MX54zFetuPhOtdTTBuBgxmUy8mywzJbKAVgwMxDL8TCooPkVBcdktUY0FUyXbHpRKpw1VyrEyBSXZLtjFgNgrR1/FA6hp9kSVPP/d1IZgWMKRTRWY2FCRoaNNjlTKjIPKTCtADfKTZSgZA5GCDlA2H+xP+JgeFqA0KgGKLgI80ONFMCzBbjHjyJFyEy9RHZEkCY+tkD0p35s3lvsceobqQUlDmTFbOCqccjdaoy8br+LJqUlWUVDSWMXj001xdVjNfCw6oKZ5WNrOKMXDsAxhNgRROOhLjdm8lBphgqx4/mRSkfAIAcqM0dWwmE2Y1lw5pNfKVh8UVUGx8h1wu/JZlpJ3S5xmzD5zZpIF1E2RUQsLkY92dgEAvjy1MROHmRKpeFBYWbn879SC4pL2oGxuiw5Q/KGwZqFhEdwRMRSUXcqFrLXOzb9oYopn3d4ebG0fQJndgm/OHs136/o0ULL0DcHVrN8x6Q2gRiVjvA9KTk2yrJ1y+hQUfcMrfbOrKAVlCBM0ieJA7VGhKCiszb3O+8Hz8XEu+LF6KCWLV0jx/PbC6fj4l/MxqXFou2ijtgOZQCwRZaoTS6uXSgUPoG0Lb6Sg1Ck+wMMJFBTWgbchh/1PGMl85xkDQoBi1BE5FpGINKTrnUhRBSiRiISz//AevnzvcgTDEc0HNKmhHIC8kxEjwl3KhWxsnZufhH0+dQLy9g45jTRrbK0idWrbqafKcMqM2ZeJRaWshNZm0GyKd5LNaYon/X1Q9Iuy/mLDTMOdymJhVGZMlAb67wLbVOgH9CXTrO3659fjuF+/hS86Equ2RniVhd1lt8BsNmlUnFQx8qD8feUuPPZBdPXhcFC7gNqizrNSKs8XR43ETfEk8KAMKipaPvReSqXMWBugJK+gDAZC3CtZmgrKwT5N74/Dg35sPzSI3Z0ebD80gAHhA2qudsGlfKlEt/UuxUw5tq5M8yEy5YWlhEZWyo2fql3RAYokSZqW2rEQOzMOp1Gb3seidgWMruLJqYKSgT4oooJiMgHTmrUmV/0ArooS2ukRWup0Fw6jKh5AmzIRNy8imw70ISIBnx0YWv8jMcUzXPQp30P9ftz00me47d+bUtrhJkKs4tFfYEpJQbFbDap4rGKKhwXC8RU2PmQxD7pXp5LiGfANTUFh10i7xTxkq0FBByjdnqAmZSO2td58sJ/3PbBbzXDaLIbtr5lXYUx9GawWM7+gsd3WQeX1m6rkAEWf4hn0h3DFYx9hzq+X4o04XWgBbWfG1GbxyF9odnFmKR5mAI3nQcnlLB6bNf19UNhnML6+DG//z2n41flHae6v1e1MKcVTuujbkPd4oqt4AHWxvvM/mzHjtjewbk931GuxACNRpUYsWIrHZRv+xUmvoGzY1wNA7oUkXkyGi6aKR6c6lZKCwi/m4jRjMcVTzjwohaSgMHVbQiRBNexQFZQ9SvHJ6BrXkCu+CjpAAeQ29c+s3oPOAb8m8Pi8rS9qtLpRgMLKUcfVyWXIVcLAOUBQUJQAhUmdg4EwejwBfPsvq/DOFrl07OkEdeLseKxmU0oLFXPMsy+KfgCTkUTNFq9cmmQz0QeF7RodNgvG1ZdF7Uj1AUo8kyxR3HDzIg9QjD0o7Pz5YPthhCIS1uyOHaAMtXrPyy9O6VBQtAHK+n29/L7BFC4giRCreCqcVojXmNJSUMRpxtF9UJhq25nAg8LUh7xQUMT+PwlS8JoAJQWT7PZDsj1i/IjyFI9OpeC/Zdc/vwGBUARb2wcwZaRqOvv8YD9OmaR1EPOyQyHFwxq3jaqR+5tUu23Y1+3l6gu7nykolU4bTCZ5t/Lkqt1Yv68XFU4r+n0hvL/tMLoGA1EXSYaamrGlFFGyCP1wv3wC6CuB9E13whGJp7byoZNsOss39a2m9dTpUzzkQSlZ6gQFRZIkvunQG6uZysiyxR390VI985AkugjFwmvgXRgqdp1pnikogKzohsIR7OnyYFx92bB6lYhVPGazCZVOG99klVKAYjMsM45O8fR6gwiEIjF9f6wCJh8UFFFZD4UlxPtziqrcYAopHubfFIezpkrBKyhsF7Hj8IAm8Nh8UFVQWIBSX8Eu9PLjguEI3xkxlYVJmazeu12X4jGbTfz12E7rG7NGY+rISoQiEl7fGDvN0xen/Xo8VJe4fNximTEQPZlSNM/ldBZPBvqg+BMoQ2JnXYBSPKWMmOLp96vG91gKCuOQLkCRJIk3WktkhIyFJ43yvpjikSQJGwQFxRMI47EVu3D675fj4eXbh/V79H458XMrpQ7MmmGBTEGxqoFmtcsG1rEgnsLmyaMhi7YU+v+ICorR0MtY7FCyExOGoaAUfIDCONDj1SwsHf1+nr5RFRTthFMxMmSpALFKxxcM8/z1yEphhobyekxaHVtXhq8d0wwAeHn9/pjHyMoUU23QVK/LcYo7GyDakS02bMulgmIzp7+Kx8hFL1Kn96CU0E6P0FInmBd7BuVzxmkzR3139D4tveHdF4xwdaXLE8DBXi++fM/ylKpm2Pc2PSke1SS7r9uraRA2GAjh1699DgC46/Uths9PFrGKB9A2uMuHNEW2EFM8RuuP2WxSjbIxAthIRFKD1Dz47CxmEw+qErW7FwOUISkoDSWqoFxzxkT88uwpAOQWzHpp9kOlMU5VDA8Ku9C77RZ+IRerdJh64rJZNKZWFmCwhWFMnZu3Lv5wZ1fMdsB7u+QujC21qXUvZa2UmYSon9SrN8mKCkpuW91noIonoYJCKR5CplYJ7H3BCA70yueePr0DRCso4gRkQFu50DUYwLtbD2FbxwCeW7Mv6WNhF6d0pHhED8qn+3s193n8YcxqVYdhsi7ZqWJUcVglfHalmOIJRySuIOhTzHXc72RcyeMVqg/zQUEBki811lbxJKegeAIhPlhyfH2JKihXnzIB3zl+DADZHLbjkKyYsIvyx7vkAKUyRoCiXujF4EN+bK83yP0nI6ucmlyuXiIeW1eG0TVuzBlbC0kC/t/affhoVxe+dPc7mpTP3m55sWipcSEVql023vW02xPQlP8BarUMD1CEHii5nJeRkT4oCRQUt92iCV4oxVO6lNktPPhghj0j9VKvMuo3OuKi3D0YwIEeeV3Yr7R9TwZPBkyy/lAY6wX/CSDvcB3CxfM/Gw8O6XcYVRxWaRSU0jmvxE0eq6DUrz+JKnmY8mAyxfbPZRuxOikeQzHJsmtxbZl9WD1/8uOTGgbibIut7XITpVlj5B0EWxSOUDo2sgCFDQ8z6knCPSieAFdCmP+EIe7CLGYTN9h+c/ZoAMA/P96LG1/YiJ2HB/HKhgP8sazsqjVFBUWWENWJmf36Rm06Dwr7wuWyxBgw7oMy4A9petekit8gByxiMpn4bsZsKp2R8EQ04ndhi9LUsbYsWlHTKyi93qBmzo0mQPEEeGDS4wnG7Juix5eJMuNwBJ/tl/uysH2Ixx/CgHARee3T+K0PYsF8bmLFoSbFU0Lnlfj9YJvaKAWlXNsUUA+7sJfZrXkzZNGoA7kRmgAlmFyAwit46oee3gGKIEAB5CZsgNqG+Ywj5VkHZhPwg1PH88CBeTkO9ftlCdNAQRHLjHkFT6U2QBF3EqOqXTxAOGf6SJQ7rNjd6cEWJVg6JMjFQw1QAEFCHAhElRnH8qDk0iALqFU8rA/KpgN9OOa2N3DbK5uG/Jp+3ocg9ntj0n65I38WAyI3sMB+1Y5OAMaGPaPzRPSziSmeiARsblObtR3sTayiSJLEXyOtCkowwi+IjRXyGjUYCGPApzaR/GRvT1LHqEfsgcLOIY1JtpQUFLP6/WCfi0O3QapLMI9nMI1//3ShzhhKRUFJLiBnCspwDLJAEZQZA3KAInZ4/Mas0ahwWnHUqCocNUrtNFqvRLmBcAR93pDmJGSojdiCURU8+scAsv+E4bZbce6MkfjH6r38tnbFcBeJSNg3RA+Keuz9ODzgj1J+YnlQcuk/EX8/k4pX7+xEKCLxkeNDwWfQh0APM6yR/4RgAcrWdnlHx6aaixgpjR39foyukc9TfeXCFmHExv4eX8LJtIFwhJf9O9NwgRIVlAG/vBY0VjrQ1ueDJxCKGui267AHI6tSSyvr08iALsWTJz6KbGA2m2A1mxCKSHwTGJXiKYuf4klnii9dJDttXltmnJqCMhyDLFAkCsqoavXks1vMqHbbcPGcVk1wAshfKnbCHRrwRZlNAb0HRQ4oRuoCFHEnMbZO+wf49pwxMJlUCbSjT1Zr2vt9CIQjsJhNUa+XDCzHuePQIE9zsMVX36gtbxQUXYpnb7f8ee7t8nK1K1V4J8c4740tFuQ/IfRVXUcmG6AIyqd+URZTlgeS8KGIAY47LSZZpYonqBrmGxWVd9Af5jtettYNpf0969Atbt6qSrSKB4heS1NN8bBUYD70QGEkM4MK0JcZp6agDMcgCxRJgNJcrV7wR1Q44sr6qlE22mwKiFU8ogdFu/sQAxRRQQGAo0dX4fkfnoAXF54IQDabDfhDvIJnVLWLV7ekAiuZ/HCnLFWPrHJymVXfqC2QLx4UXY5zn2ISDoQjSS3sRviDySgoFKAQMvq+OEYThMWLD+vaLPZUineB39+d+HvMds92i3lI574edl77wxG+u2UByoA/xC8oPGgZQnfZNz5rBwDMHlPLb6su0SoeINpIHcskezhGiod9B/IpsNNfN2KhLTNO7rvEsg+jUiwI0VMUAYooX9YnGGVdL3ST7dfV+QOqB6XXG8T+Hm2be4Z4ouoVFEA26U5qrOCLXUe/f1j+E0BtMrd+r1xWOLFBjUyjTLLh3A8KFH8/86CwIA0AdikzkFLFF0pCQSlnAQqleEodsbPwqGqX4ZBO8TyZ1lwJADgkzPiK15wqKQUlQffjVGH+q35vkKdPGytZAYB6gWxQbkvWN8DwBEJ4c5McoLD+TkDpelCA6PVGH6AwFX9X56BhEUA6G/Wli6TLjHWN2no9QTy47IuohoaMSETiDev0CmaqFEWA0iykeFg7+1iIpcZ9vBomOs8akdSTXe9BEd3segVFpEH5Xe19Ph6gDMV/AgD1Zap/BtCaj/STKfNhDg8QfQKwMmtAnSLNCEckLNvSkVCONhrWpWdmaw3MJuCYluqhHDZRRIh9cYz8J4BWQZk+Wk4Ld2hMsrEDlESlxoFQBOv39gBI38WJKShiMDKCrzXybRaziXvlUhnwBgBvb+6ANxhGS60LM0araXIxxZOOVFUhcfKkEZqfnbq19YjGCtgtZvR4gnytF8mnOTyMZMqMJUmKanX/91W78Lv/bsHP/98Gw+f0eIPcczWcEmOgSAIU0YMyIoGCopYaq+W64q7KYbVojExHj6qKigLZomcyxQ842A7mUL+fN0xqqR2a5KWfMTNBUFDUXKJSxRPKDwXFKnSS7fUEuWIFADsPa0/i1z49iCse/QgL7ns37nRNtcw49ns7fnwd1t9yJq45Y9JwDp8oAsQA5QiD9A6gnj9uu4UPNuuIUcWjf90DCSpkLv7zSiz+53oA2gv8cGDHy6r5yh1WlCuTzQ8ppnz5tqF5UF7+RG6NcO70Zk26XFagrDiisRxmc2lVx/2fk8dpftan6uxWM58FJw5vZOTTHB6GWGYcq/WDPxTRDHuVJGC74i95e3MHN8OKdCnN6iqd1mFfg4oiQBlR4eAXw2QDlEP9fmGmjfZLYxFOvh+fNiHK0zK6xoWLZo/GT740Ma4XokEp/evoUwOUoaZ46nTK0ESNgqLkEkP5ZZIVXeKiegJEp3g+UXaZe7u8+OfHahXU2j3dmtbjiVrdMyi9QwBaidnIIAsAduX8aap0ctXzkIGCIi4Ds5VeSwd7fDEN3+GIhLV7egAA86c04NavTRvam9ChL3GtcFp5+3TW46ncYeUXw1Q8KB19Pj6d/dwZzZr7yhxWLL/+S9xfV0pMGVmZcO2eProaAPCprnkeIM7hyT8F5V/r9mPWr97CC+uiOyMPGKQHdwtr96MG4x5YJZP+mjUUiiJAsZhNPA2TMEApV9Mu/f7oMmMAmp3+gmlNUa9hMplw1zdmYPGZk+P+LrbYdfT7hu1B0as4Rh4UluJZpyyK+tRUthFNsswgy4I/fYAiLvK/ee1zHOr34/ODfbjgoRVY9NQ6fl+iYYEEIZKKgtJY6eTrhxgUswCF9RoBgBkt1bAopaexcvHi4v7Hb8/EvAl1Q3wXxsfLKHdYo8p+yx1Wnk5IxYPy0DvbEQhHMGtMjWFAV1NmzysVIJv8z5lHAABiiUcsPRhXQckj7w67bry5qR1dgwFc/9wGrPjisOYxLL1TZrdwD9UewUv4/Jp96NZVLrERMPqxI0OhaFZ5tviMMzCtirB00IEeL1dQ9NOFz1Hm6tz81anDkjJZimdbxwCXjIdskhWi0SqXjTedA7QBSjAcwSvrFYlWtwPKNqzBUSgicYMsy2nv7fJw8ywgV00x+nwhvLL+AD5SRhWIwYwviSoegmA0Vjpht5pR7rDG7MnQovQ7mdpcyVXPwwMBHjQzk+xooSJhdI2LN3CM5UNhKWS7NXpA4XDQB+flTmtUf40yhyVlBaWt14enV+8BAFw3/whqcqjjvGNG4f5LjsVzPzzB8H6moGzc3xulquWzgsIIRST88Mk1vAIHUIPscqcaBDPvk9tugS8YwX8/03YrPkwBSjS/+frR+PN3Z+HEifF3KazsaX+PV23UpksH3P61aXj26uPx/ZPGRT0/Fdhi94ESlY6vL0t5kjHDZbfwL/fEhnLN4iGOA39v2yF0DgZQV2bHyRPrh3P4w0btJKumeI4bVwu71YxgWOIzTQDZWAWoAdyGfT28jTe7DxA6yZKCQiRBmcOKp//PXDx91dyo1AjjrKOa8PKiE3H9gsmoL7fDZJIVPdYVlHUBFQOU5mqXZrPDCIQi+PeGA+gUqwTTXO4eFaA4rFFVNeVOm6qgJOlBefidLxAIRTBnbG3CdbRU+dqMZj5KRc/EhnK47RZ4AuEob8ZgHlbx2K3aALTKZUOfL4RHlm/nt/EAxWGNmsL8laPkjfy7usabXQPpqeABiihAaapy4sxpTQmjfpb28AUj6PFoZ9ow6sodmDt++CcoU1CYefW4sbXxHp4QltObqGsfLHaWfGGdqp6ko+fCcOApnkiEe3DG1JZhjBKE7BSUkW7lb3HKEXJQtWFfLz47KEulgZA65tyfRCdZghCZPbaW726NMJlMmD66Gk6bBVaLmX8/WfdZpqCIhvjmahfvvyQGKK9+egCLnl6H3/13i2EjyHRg5EHR78wrHFY+Q0ffWdaI7sEAnlW8Xz+dP4nUkyFgMZtwVLOsEG/QpXlYmi0fq3gYLIX1j9V7eNqSpXjKnTa4bdrg6sKZowAA7287rFHDmUlWX9gxFIomQEkWh9XCvSEMNtMm3TRUaD0gx40bboAi/8FF/wmgftH6vEG8ochtXz921LB+VzpgKR5JAnYLVUxjlQFSYqkxS/GcopTz7Tg8qGkpzoLJZE2yBDFUpiq9UDYpATLzoIypK0OF04raMjsaKxx8w9AlpCdZKnNft5c3gkx3w0C9B6XCYYvyNpQ5LFxVSUZBeXr1HviCEUwdWYkT0uSVKUVmtMgBysdKepqhzuLJHwVFH6BcOHM0ZrRUwxeM4P97fwcAUUGxaBQUt92CuePruOoi+m46eYqHTLJDQuybYhGmdaYbpqAw5g4zQDl9cgMqHFacOllbk8+qePZ3e+EPReCyWbhhK5dYhVlALBgZXePmPVy2dagBCDNajR9RxqV0sYFQr7LYk0mWyDTTlF0wm+/FJrhWu2x4edFJeGnhibBazLwfUq9HTUGyQLrHG1BN+GlWUKJMsk5r1BpW7rBxX0oiBSUQiuDxFbsAyOW0pJ4MnZOUDdayLR2a0t18nsUDqGnCRV+aCAB47mO5okeT4hGOvb7cAYvZhJMUG8G7W9U0DzPJUopniIjtdyudmZt4W+GwcudzU6VTk8MeCj85YxLW33JmVDUCW7CYLFfjtuXFIiOeABFJLtNsrnby6gCmkIQj6mTparcdMwzkeKawkIJCZJqpIxUFhQUofI6KBePqy3iqR5zbxWDf0+7BoJDiSe+u2aIMr2OUO6xRG61yp+pL8QbD2NPpwfkPfoBXNxyMer3XPj2Ijn4/Gioc+Or03BrrC52542rhtlvQ3ufXDLDNx1k84jBZllVg5fNdgwH4Q2EhQLFpjp1Vu7GU/Bub2nkan6p4honY2C2T/TJMJhNP8xw3rjYtQYNRVRELBPqVL1PVEI246caqO9bmKhccVgvv6Lm5rR+SJGkW+GqXzVD96fUGEQqrTYNIQSEyBUvxbD80AG8grO5+dWmUSj63SwhQlO9yrzdzAQqg/f6z1xf9DeUOi6CghPD25nZ8srcHT324O+q1nlsje08unTsm572TCh2nzYITFVVh2eYOfnt+zuJR/9ZM7a9y2XgriO7BoOpBcVh0Cop8jTnlCFkx+vxgH06+axl+/eomIcVDAcqQEAOUTPlPGMyUO2essfM7HehziTXu/GhSZtEFKOMU78mEEeWwmk3o94VwoNfH5zZUOK2wWsyGhsYeb5CndwBSUIjM0VDhQH25HREJ2NLez2fp6OV5VpEnVpmx7/KAP8R3kpnYBBkNOBR3uOUOGy8L9QTC6FKCqH264YYHe71YsV0eQHrBzNz71oqBM45sAAAsFQKU/FRQhABF2UibzSZ+/egc9GvKjMVjZ20vRla5cNvXpuGoUXJQ/8K6AzxdTybZISJ6UCocmb2YXzt/Ei6Z04Kvzxydsd8hSnWAdqhXLjGZTJpjG1svS+N2q5n7ULa09XFZnB330aOreNdOlg7q8wZ5egcgBYXIHCaTCVOENA8zmep9HqoHRTXJin4UJnmn24MCaCt5yp0sQFFvKxNMjYOBEL9oHOjxanp0vLjuACQJmDOudshzwggtX1IClPX7enB4wA9JkvJSQbELa3Oj4JdkykfXYECT4inTeVAYl50wFs//8ARYzSYcHvBzlZsUlCGSTQXlhAn1WHLBdL7LyQR2nYIy1F4rmUCM0sXJz2Kah0nkbLhZucOKm86Zih+fNoEbi3s8QfgUBcVuMZfcLBAiuzCj7Kf7e3lzwGgFJdqD0i1W9ChqRSZSPHZNikc+DrEXSoWw45Uk4GCv3HMoFJHQpjTikiQJ/1ormyEvJPUkbTRWyj47SQLW7u5GQEhN57uCAmgDFNZsMCrFo6uEddosPDUqP94as+9QKpR8gFIMM1tsOjWhOk1DydKB6ENhKR4AOFIZrLX5YD/vgSIGVt8/aRx+dtaR3E/T4w2oTdrSNLaeIGLBFts1u9VyUX0zNDb8bzAQRiAUQSSi9VPtUxSUTAcoaopH9KDYNIqP2O2WHdcXHQPY1jEAu9WMrxw9Mu3HWMqwYa57ujzwCFVUeVXFY432oABAnVIe3DUY4B3QR1Q4NB6sEQbpm2OF6fHpUE+AEg1QKl3qpM9MyK/ZJtqDkp8KyhhBQREreViKx8g7wy4Cvd4QtbknssYU5fu5rUNu1mYyRacVK5w2nors9QbR7w9B7HDOTOv6WV/pwNAkK+zOyxwWTWXPfmFYJ1N2trTLVXRHj6oqinUwn2DjE/Z1e3mZut1qzvmEeZFkFJQ2RXlrqnJFlRnrmSl02KUAZRiYTCbeBTITu5tso0/xVOWJBwXQSt7iHKLJTWqlhFoeHf2lruaVEnLZG0D+EyLzjK0vg81iAmtl4bZZoqrwLGYTv7D3egOaeVIiWVNQBH8D89Yxz0OfMACVDe5kvYnG1JH3JN201Moqvayg5N8cHkBXZmzgQTnU7+cKSlOl09AkK3JsixqgpKMHClCiAQqgpnkysbvJNvqZCvmkoIg7SnFRba5yosJpRSgi8aGAVQZ/C3abbJIlBYXIDjaLWZOSdMXwDog+FLHcWCQzJlkhQImhoADGngfW7XZXpxyoJBqwSqQO24zt7fLk5RweQKugNFaqCgqrvtna3o9wRILFbMKICocmwBpRER2gtNS6eGBCCsowueyEsThpYj3OnNqY60MZNnrZMF+qeET0uVeTycQbsq3b2wPAOMXD3kuPNwgfKShEFpkkNESM5R2oFnqhdGdVQRH8JvZoBcWosoexV6+g1FOAkm5Yimdvt4eXGOdTBQ+gXjfcdoumiIMFF58flFOADRVy11iX8l1y2SxRfixAXtOPba2WXyMNJcYAkF8hXRY5bXIDTpvckOvDSAv52gdFxKiL7swxNXj/i8NcRq8xiLpVD0oQflJQiCxyREMFXoXceTVWgCI2a7NajCvLMqmglDusvKKNKSh2i5lXUBhdSPZ3k4KSaZqrXTCZ5KG0u5XPOf8UFPl7I6ongBqgsP4/7H5WxDCySvt4ke8cPwb7ur180vFwya9PjBgS+gClypU/KR7G6JroPPds3dhyo/LoKkFCV9vck4JCZJ7JTepQzpgKitCsLUZ8wtWMdGIXAhQGO8Yy3VA3htVsQigi4WCvFz2eAA4PyP6CMfXkQUk3dqsZzVUu7O/x8hR2vtkJRig+kvE6Ba1ON+SPBSTTR1Vh8ZeP4CqJEene+FOAUgRE90HJrxMBABZMi06lHdtaDbNJ9akYlUczBUWS1FlD6aivJ4hEaFM8MTwogsLHKupdNgvffbpsloxUbnAFxSn6TqxRt4kBSmutG/t75IGiK5XusXVldqrgyRCja+QA5dVPZRUuk93Eh8Lx4+vwp+/OihotovePsG7oZrMJ15wxKWvHB5SwB6WYsFm1g8PyqZTtrcWn4K4Lp+Oi2S1R91U4bbyaBzA29zqsFl4q2a40mCIFhcgGY2rdPPh3xVRQ1G6yzCQrVsVkqkrQEUdBKRe6Y4vG2ZoyO0+1vvfFYQBytRKRGVhn3oDSYPLUI/LLUmA2m7BgWhNGVmnT73qLQFNl7JROpqGVvggQA5J8U08mNlTgouNaYg5KnDWmmv+7usz42JmK0q4oKE5SUIgsYLWYMX6EfAGPVSLKvps93iAvMxarfzIl6zMVUQyA2PgIdsyA1jhb47bxi+bSz9sBUIlxJhHbKtSV2TFN6LSaz1gtZs11pCmO5yTTUIBSBIjdWvMtQEnE7DFyK3ur2YSKGOMA2HtiCgp1kiWyxRFKmidWmXGVpopHVlBEVSJTCgrzoIivf9SoKry1+FT8/psz+G0aBcVtx5lTmwAA7X1ysE8G2czBeqEA8tTfQhrPIaZ5SEEhhoXJZOILVj71QEmGeRPq4FCGB8ZSWdgutIMFKKSgEFli3oQ6AMDEhnLD+5lJttcb5FONxYt+pkZpsNSTfsbXxIZyTZWbW5fiuWj2aEwS3guVGGcOUUE59YgROTyS1BEbrelTQNmETLJFgt1iRiAUMWx2ls80VjrxxnWnxDXqMSNiGykoRJa5+LgWnDChTnOxEREbtUWUevlWIW1SmSEF5YSJdfjH6j0JKybEip5qtw1Wixm/PGcKLn/0IwCkoGSSMXVlMJkAE4CTJtXn+nBSQtzoil1msw0FKEUCq2kvtBQPoJ3RYwQLungnWVJQiCxhMpnifj+rhFEMrBqtvtyOCqcV/b5QxhSUEybU4+Mb58dUHRluXYoHkEtBf3DKeBzs9Wkm0BLppb7cgd9/cwYcVotha/h8hnWTrS2z57TvFAUoRQIzyhZaiicZ9EEXNWoj8gWm7nULbe6r3XZUu23o94UypqAASBicANoyY7E644azp2TkmAgtF8wcnetDGBLMg5JL/wlAHpSigQUohZbiSYYpI7W7PGp1T+QLRlU6VS4bqpVmibkeRioGKEaNEAnCCKb4xOsamw1yutI/+OCDGDt2LJxOJ+bOnYvVq1fn8nAKmkI1ySbDgmlNmoWWFBQiX3Da1D49gByc2IQyzUyleJJFbHVfjGsDkRm+ctRInDWtCVeePC6nx5GzAOXZZ5/F4sWLccstt2Dt2rWYMWMGFixYgI6OjlwdUkHDXP2F6EFJRJnDinOOVmc7kIJC5BNMDi93WHHLuVMBAF+dPhKttW6cODG35shYKR6CiEdTlROPfHcWTpiQ2+9vzlb6e+65B1dddRWuuOIKTJ06FY888gjcbjf+9re/5eqQCppvHdeC48bWYM642lwfSkb4xiw1lyvl8DgIQs8vvnIkLj9hLN5afCr3HHzruFa8+7MvxSxPzhaigkIpHqLQyEmCNBAIYM2aNbjhhhv4bWazGfPnz8fKlSujHu/3++H3+/nPfX19WTnOQuL7J43D90/KrRyXSY4bqwZedWka5U0Q6eDcGc04d0Zzrg/DkIYKB2wWExoqnDwNTBCFQk4ClMOHDyMcDqOxUTtArrGxEZs3b456/JIlS3Dbbbdl6/CIPMRsNuG/156C1Ts7cVqBNT0iiFxR7bbjuR+ekNFqIoLIFAURUt9www3o7e3l/+3duzfXh0TkgMlNFfjuvLFJlVcSBCFzTEs1xo/IbaqJIIZCTsLq+vp6WCwWtLe3a25vb29HU1NT1OMdDgccjsJqdEMQBEEQxNDJiYJit9sxa9YsLF26lN8WiUSwdOlSzJs3LxeHRBAEQRBEHpGzxOTixYtx2WWXYfbs2ZgzZw7uu+8+DA4O4oorrsjVIREEQRAEkSfkLED51re+hUOHDuHmm29GW1sbjjnmGLz++utRxlmCIAiCIEoPkyRJBddWoq+vD1VVVejt7UVlJQ27IgiCIIhCIJXrd0FU8RAEQRAEUVpQgEIQBEEQRN5BAQpBEARBEHkHBSgEQRAEQeQdFKAQBEEQBJF3UIBCEARBEETeQQEKQRAEQRB5BwUoBEEQBEHkHQU5g5v1luvr68vxkRAEQRAEkSzsup1Mj9iCDFA6OzsBAC0tLTk+EoIgCIIgUqWzsxNVVVVxH1OQAUptbS0AYM+ePQnfYLFx3HHH4aOPPsr1YeSEUn3vpfi++/r60NLSgr1795bcOItS/HsDpfu+gdJ67729vWhtbeXX8XgUZIBiNsvWmaqqqpJbvCwWS8m9Z0apvvdSfd8AUFlZWXLvvVT/3qX6voHSfO/sOh73MVk4DiKNLFy4MNeHkDNK9b2X6vsuVUr1712q7xso7fceD5pmTBBE3kHnOEEUJ0U/zdjhcOCWW26Bw+HI9aEQBJEB6BwniOIklXO7IBUUgiAIgiCKm4JUUAiCIAiCKG4oQCEIgiAIIu+gACWLPPjggxg7diycTifmzp2L1atXa+5fuXIlTj/9dJSVlaGyshKnnHIKvF5v3Nd85513MHPmTDgcDkycOBGPPfZYyr83k7z77rs499xz0dzcDJPJhBdffJHfFwwG8fOf/xxHH300ysrK0NzcjO9973s4cOBAwtct5PcNAAMDA1i0aBFGjx4Nl8uFqVOn4pFHHkn4uhs2bMDJJ58Mp9OJlpYW3HXXXVGPee6553DkkUfC6XTi6KOPxmuvvZaut0UkgM5xOscZdI6nAYnICs8884xkt9ulv/3tb9Jnn30mXXXVVVJ1dbXU3t4uSZIkrVixQqqsrJSWLFkibdy4Udq8ebP07LPPSj6fL+Zr7tixQ3K73dLixYulTZs2SQ888IBksVik119/Penfm2lee+016Ze//KX0r3/9SwIgvfDCC/y+np4eaf78+dKzzz4rbd68WVq5cqU0Z84cadasWXFfs9DftyRJ0lVXXSVNmDBBWrZsmbRz507pT3/6k2SxWKSXXnop5mv29vZKjY2N0qWXXipt3LhR+sc//iG5XC7pT3/6E3/MBx98IFksFumuu+6SNm3aJN14442SzWaTPv3000y9VUKBznE6x0XoHB8+OQlQ/vjHP0pjxoyRHA6HNGfOHOnDDz/k93m9XunHP/6xVFtbK5WVlUkXXHCB1NbWlvA1//nPf0qTJ0+WHA6HdNRRR0mvvvqq5v5IJCLddNNNUlNTk+R0OqUzzjhD2rp1a9rfWyzmzJkjLVy4kP8cDoel5uZmacmSJZIkSdLcuXOlG2+8MaXX/NnPfiZNmzZNc9u3vvUtacGCBUn/3mxidBLrWb16tQRA2r17d8zHFMP7njZtmnT77bdrbps5c6b0y1/+MubrPPTQQ1JNTY3k9/v5bT//+c+lyZMn858vuugi6ZxzztE8b+7cudIPfvCDYbyD1KFznM7xWNA5XhzneDbIeorn2WefxeLFi3HLLbdg7dq1mDFjBhYsWICOjg4AwHXXXYdXXnkFzz33HJYvX44DBw7gggsuiPuaK1aswCWXXIIrr7wS69atw/nnn4/zzz8fGzdu5I+56667cP/99+ORRx7Bhx9+iLKyMixYsAA+ny+j7xcAAoEA1qxZg/nz5/PbzGYz5s+fj5UrV6KjowMffvghGhoacMIJJ6CxsRGnnnoq3n//fc3rnHbaabj88sv5zytXrtS8JgAsWLAAK1euTOr35iO9vb0wmUyorq7mtxXj+z7hhBPw8ssvY//+/ZAkCcuWLcPWrVtx5pln8sdcfvnlOO200/jPK1euxCmnnAK73c5vW7BgAbZs2YLu7m7+mHifTTagc1yGznFj6Bwv/HM8W2Q9QLnnnntw1VVX4YorruA5Obfbjb/97W/o7e3FX//6V9xzzz04/fTTMWvWLDz66KNYsWIFVq1aFfM1//CHP+Css87C9ddfjylTpuCOO+7AzJkz8cc//hGAPDXxvvvuw4033ojzzjsP06dPxxNPPIEDBw5E5Q0zweHDhxEOh9HY2Ki5vbGxEW1tbdixYwcA4NZbb8VVV12F119/HTNnzsQZZ5yBbdu28ce3trZi5MiR/Oe2tjbD1+zr64PX6034e/MNn8+Hn//857jkkks0DXyK8X0/8MADmDp1KkaPHg273Y6zzjoLDz74IE455RT+mJEjR6K1tZX/HOt9s/viPSab75vOcRU6x7XQOV4c53i2yGqAkijqXbNmDYLBoOb+I488Eq2trZrocOzYsbj11lv5z4kiyp07d6KtrU3zmKqqKsydOzcvos5IJAIA+MEPfoArrrgCxx57LO69915MnjwZf/vb3/jjnnjiCSxZsiRXh5lRgsEgLrroIkiShIcfflhzXzG+7wceeACrVq3Cyy+/jDVr1uD3v/89Fi5ciLfeeos/ZsmSJXjiiSdyeJSpQ+e4MXSO0zleLOd4NsnqsMB4Ue/mzZvR1tYGu92ukf7Y/WJ0OGHCBNTX1/OfE0WU7P+5ijrr6+thsVjQ3t6uub29vR1NTU185zB16lTN/VOmTMGePXtivm5TU5Pha1ZWVsLlcsFiscT9vfkCW7h2796Nt99+O2H740J/316vF//3//5fvPDCCzjnnHMAANOnT8cnn3yCu+++O+pCzIj1vtl98R6TrfdN5zid40bQOV4853g2Kcgy46VLl2LRokW5PoyksdvtmDVrFpYuXcpvi0QiWLp0KebNm4exY8eiubkZW7Zs0Txv69atGDNmTMzXnTdvnuY1AeDNN9/EvHnzkvq9+QBbuLZt24a33noLdXV1CZ9T6O87GAwiGAxGTfO0WCx8p23EvHnz8O677yIYDPLb3nzzTUyePBk1NTX8MfE+m0KBznGZQv+uA3SOi9A5niLZdOT6/X7JYrFEuZ2/973vSV/72tekpUuXSgCk7u5uzf2tra3SPffcE/N1W1papHvvvVdz28033yxNnz5dkiRJ2r59uwRAWrduneYxp5xyinTNNdcM9e2kxDPPPCM5HA7psccekzZt2iRdffXVUnV1Na9euPfee6XKykrpueeek7Zt2ybdeOONktPplL744gv+Gt/97nelX/ziF/xnVop3/fXXS59//rn04IMPGpbixfu9maa/v19at26dtG7dOgmAdM8990jr1q2Tdu/eLQUCAelrX/uaNHr0aOmTTz6RDh48yP8TXezF9r4lSZJOPfVUadq0adKyZcukHTt2SI8++qjkdDqlhx56iL/GL37xC+m73/0u/7mnp0dqbGyUvvvd70obN26UnnnmGcntdkeVIFqtVunuu++WPv/8c+mWW27JagkineN0jtM5XtzneDbJepnxnDlzpEWLFvGfw+GwNGrUKGnJkiVST0+PZLPZpOeff57fv3nzZgmAtHLlypivedFFF0lf/epXNbfNmzePl11FIhGpqalJuvvuu/n9vb29ksPhkP7xj3+k660l5IEHHpBaW1slu90uzZkzR1q1apXm/iVLlkijR4+W3G63NG/ePOm9997T3H/qqadKl112mea2ZcuWScccc4xkt9ul8ePHS48++mjKvzeTLFu2TAIQ9d9ll10m7dy50/A+ANKyZcv4axTb+5YkSTp48KB0+eWXS83NzZLT6ZQmT54s/f73v5cikQh/jcsuu0w69dRTNa+7fv166aSTTpIcDoc0atQo6c4774z63f/85z+lI444QrLb7dK0adOiynEzDZ3jdI7TOV7c53i2yHqAkijq/eEPfyi1trZKb7/9tvTxxx9L8+bNk+bNm6d5jdNPP1164IEH+M/JRJR33nmnVF1dLb300kvShg0bpPPOO08aN26c5PV6s/PGCaJEoHOcIIh0kJNGbfGiXtbEqaamRnK73dLXv/516eDBg5rnjxkzRrrllls0tyWKKFkTp8bGRsnhcEhnnHGGtGXLloy9R4IoZegcJwhiuJgkSZIy5W8hCIIgCIIYCgVZxUMQBEEQRHFDAQpBEARBEHkHBSgEQRAEQeQdFKAQBEEQBJF3UIBCEARBEETeQQEKQRAEQRB5R1YDlAcffBBjx46F0+nE3LlzsXr1agBAV1cXfvKTn2Dy5MlwuVxobW3FNddcg97e3oSveeutt+KYY47J8JETBJEMsc5xQJ7kO2HCBLhcLowYMQLnnXceNm/enPA16RwniNIkawHKs88+i8WLF+OWW27B2rVrMWPGDCxYsAAdHR04cOAADhw4gLvvvhsbN27EY489htdffx1XXnlltg6PIIhhEu8cB4BZs2bh0Ucfxeeff47//ve/kCQJZ555JsLhcI6PnCCIvCRbHeHmzJkjLVy4kP8cDoel5uZmacmSJYaP/+c//ynZ7XYpGAzGfd1bbrlFmjFjBv959erV0vz586W6ujqpsrJSOuWUU6Q1a9ZongNA+stf/iKdf/75ksvlkiZOnCi99NJLQ39zBEGkfI6vX79eAqAZlmcEneMEUZpkRUEJBAJYs2YN5s+fz28zm82YP38+Vq5cafic3t5eVFZWwmq1pvS7+vv7cdlll+H999/HqlWrMGnSJJx99tno7+/XPO62227DRRddhA0bNuDss8/GpZdeiq6urtTfHEEQKZ/jg4ODePTRRzFu3Di0tLSk9LvoHCeI0iArAcrhw4cRDofR2Nioub2xsRFtbW2Gj7/jjjtw9dVXp/y7Tj/9dHznO9/BkUceiSlTpuDPf/4zPB4Pli9frnnc5ZdfjksuuQQTJ07Eb37zGwwMDGjy5QRBJE+y5/hDDz2E8vJylJeX4z//+Q/efPNN2O32lH4XneMEURrkXRVPX18fzjnnHEydOhW33norv33atGl8YfvKV74S8/nt7e246qqrMGnSJFRVVaGyshIDAwPYs2eP5nHTp0/n/y4rK0NlZSXPlRMEkRkuvfRSrFu3DsuXL8cRRxyBiy66CD6fDwCd4wRBaEktfzJE6uvrYbFY0N7errm9vb0dTU1N/Of+/n6cddZZqKiowAsvvACbzcbve+211xAMBgEALpcr5u+67LLL0NnZiT/84Q8YM2YMHA4H5s2bh0AgoHmc+NoAYDKZEIlEhvweCaKUSfYcr6qqQlVVFSZNmoTjjz8eNTU1eOGFF3DJJZfQOU4QhIasKCh2ux2zZs3C0qVL+W2RSARLly7FvHnzAMjKyZlnngm73Y6XX34ZTqdT8xpjxozBxIkTMXHiRIwaNSrm7/rggw9wzTXX4Oyzz8a0adPgcDhw+PDhzLwxgiAAJHeO65EkCZIkwe/3A6BznCAILVlRUABg8eLFuOyyyzB79mzMmTMH9913HwYHB3HFFVfw4MTj8eDJJ59EX18f+vr6AAAjRoyAxWJJ+vdMmjQJf//73zF79mz09fXh+uuvj7sbIwgiPcQ7x3fs2IFnn30WZ555JkaMGIF9+/bhzjvvhMvlwtlnn53S76FznCBKg6wFKN/61rdw6NAh3HzzzWhra8MxxxyD119/HY2NjXjnnXfw4YcfAgAmTpyoed7OnTsxduzYmK8biUQ0lT5//etfcfXVV2PmzJloaWnBb37zG/zv//5vRt4TQRAq8c7xAwcO4L333sN9992H7u5uNDY24pRTTsGKFSvQ0NAQ93XpHCeI0sQkSZKU64MYDj/84Q+xb98+/Pvf/871oRAEkQHoHCeI0iTvqniSpb+/H++++y7+9a9/aXovEARRHNA5ThClTcEGKDfffDO+8Y1v4Otf/zp++MMf5vpwCIJIM3SOE0RpU/ApHoIgCIIgio+CVVAIgiAIgiheKEAhCIIgCCLvyFmAsmTJEhx33HGoqKhAQ0MDzj//fGzZskXzGJ/Ph4ULF6Kurg7l5eW48MILNZ0q169fj0suuQQtLS1wuVyYMmUK/vCHP8T8nR988AGsViuOOeaYTL0tgiAIgiDSQM4ClOXLl2PhwoVYtWoV3nzzTQSDQZx55pkYHBzkj7nuuuvwyiuv4LnnnsPy5ctx4MABXHDBBfz+NWvWoKGhAU8++SQ+++wz/PKXv8QNN9yAP/7xj1G/r6enB9/73vdwxhlnZOX9EQRBEAQxdPLGJHvo0CE0NDRg+fLlOOWUU9Db24sRI0bg6aefxje+8Q0AwObNmzFlyhSsXLkSxx9/vOHrLFy4EJ9//jnefvttze0XX3wxJk2aBIvFghdffBGffPJJpt8SQRAEQRBDJG88KL29vQCA2tpaALI6EgwGNf0PjjzySLS2tmLlypVxX4e9BuPRRx/Fjh07cMstt2TgyAmCIAiCSDdZa3Ufj0gkgmuvvRYnnngijjrqKABAW1sb7HY7qqurNY9tbGxEW1ub4eusWLECzz77LF599VV+27Zt2/CLX/wC7733nqZdNkEQBEEQ+UteXLEXLlyIjRs34v333x/ya2zcuBHnnXcebrnlFpx55pkAgHA4jG9/+9u47bbbcMQRR6TrcAmCIAiCyDA5D1AWLVqEf//733j33XcxevRofntTUxMCgQB6eno0Kkp7ezuampo0r7Fp0yacccYZuPrqq3HjjTfy2/v7+/Hxxx9j3bp1WLRoEQBZrZEkCVarFW+88QZOP/30zL5BgiAIgiBSJmcBiiRJ+MlPfoIXXngB77zzDsaNG6e5f9asWbDZbFi6dCkuvPBCAMCWLVuwZ88ezJs3jz/us88+w+mnn47LLrsMv/71rzWvUVlZiU8//VRz20MPPYS3334bzz//fNTvJAiCIAgiP8hZgLJw4UI8/fTTeOmll1BRUcF9JVVVVXC5XKiqqsKVV16JxYsXo7a2FpWVlfjJT36CefPm8QqejRs34vTTT8eCBQuwePFi/hoWiwUjRoyA2WzmnhZGQ0MDnE5n1O0EQRAEQeQPOQtQHn74YQDAaaedprn90UcfxeWXXw4AuPfee2E2m3HhhRfC7/djwYIFeOihh/hjn3/+eRw6dAhPPvkknnzySX77mDFjsGvXrky/BYIgCIIgMkTe9EEhCIIgCIJg5E0fFIIgCIIgCAYFKARBEARB5B0UoBAEQRAEkXdQgEIQBEEQRN5BAQpBEARBEHkHBSgEQRAEQeQdFKAQBEEQBJF3UIBCEERKnHbaabj22mtL7ncTBJFdKEAhCCJjvPPOOzCZTOjp6UnL8/71r3/hjjvuSN8BEgSRt+R8mjFBEESy1NbW5voQCILIEqSgEAQRk8HBQXzve99DeXk5Ro4cid///vea+//+979j9uzZqKioQFNTE7797W+jo6MDALBr1y586UtfAgDU1NTAZDLxOVuRSARLlizBuHHj4HK5MGPGDDz//PMJn6dP8YwdOxa/+tWv+DGOGTMGL7/8Mg4dOoTzzjsP5eXlmD59Oj7++GPNcb///vs4+eST4XK50NLSgmuuuQaDg4Pp/vgIghgGFKAQBBGT66+/HsuXL8dLL72EN954A++88w7Wrl3L7w8Gg7jjjjuwfv16vPjii9i1axcPJlpaWvD//t//AwBs2bIFBw8exB/+8AcAwJIlS/DEE0/gkUcewWeffYbrrrsO3/nOd7B8+fK4zzPi3nvvxYknnoh169bhnHPOwXe/+11873vfw3e+8x2sXbsWEyZMwPe+9z2wsWPbt2/HWWedhQsvvBAbNmzAs88+i/fffx+LFi3KxEdIEMRQkQiCIAzo7++X7Ha79M9//pPf1tnZKblcLumnP/2p4XM++ugjCYDU398vSZIkLVu2TAIgdXd388f4fD7J7XZLK1as0Dz3yiuvlC655JKYz5MkSTr11FM1v3vMmDHSd77zHf7zwYMHJQDSTTfdxG9buXKlBEA6ePAg/z1XX3215nXfe+89yWw2S16vN/6HQhBE1iAPCkEQhmzfvh2BQABz587lt9XW1mLy5Mn85zVr1uDWW2/F+vXr0d3djUgkAgDYs2cPpk6davi6X3zxBTweD7785S9rbg8EAjj22GNTPs7p06fzfzc2NgIAjj766KjbOjo60NTUhPXr12PDhg146qmn+GMkSUIkEsHOnTsxZcqUlI+BIIj0QwEKQRBDYnBwEAsWLMCCBQvw1FNPYcSIEdizZw8WLFiAQCAQ83kDAwMAgFdffRWjRo3S3OdwOFI+DpvNxv9tMpli3saCp4GBAfzgBz/ANddcE/Vara2tKf9+giAyAwUoBEEYMmHCBNhsNnz44Yf8wt3d3Y2tW7fi1FNPxebNm9HZ2Yk777wTLS0tABBlRrXb7QCAcDjMb5s6dSocDgf27NmDU0891fB3Gz0vXcycORObNm3CxIkT0/7aBEGkDzLJEgRhSHl5Oa688kpcf/31ePvtt7Fx40ZcfvnlMJvlZaO1tRV2ux0PPPAAduzYgZdffjmqR8mYMWNgMpnw73//G4cOHcLAwAAqKirwv//7v7juuuvw+OOPY/v27Vi7di0eeOABPP744zGfly5+/vOfY8WKFVi0aBE++eQTbNu2DS+99BKZZAkiz6AAhSCImPzud7/DySefjHPPPRfz58/HSSedhFmzZgEARowYgcceewzPPfccpk6dijvvvBN333235vmjRo3Cbbfdhl/84hdobGzkQcAdd9yBm266CUuWLMGUKVNw1lln4dVXX8W4cePiPi8dTJ8+HcuXL8fWrVtx8skn49hjj8XNN9+M5ubmtP0OgiCGj0mSlNo7giAIgiCIPIEUFIIgCIIg8g4KUAiCIAiCyDsoQCEIgiAIIu+gAIUgCIIgiLyDAhSCIAiCIPIOClAIgiAIgsg7KEAhCIIgCCLvoACFIAiCIIi8gwIUgiAIgiDyDgpQCIIgCILIOyhAIQiCIAgi76AAhSAIgiCIvOP/B9IDOWldfZzhAAAAAElFTkSuQmCC",
|
|
261
|
-
"text/plain": [
|
|
262
|
-
"<Figure size 640x480 with 1 Axes>"
|
|
263
|
-
]
|
|
264
|
-
},
|
|
265
|
-
"metadata": {},
|
|
266
|
-
"output_type": "display_data"
|
|
267
|
-
}
|
|
268
|
-
],
|
|
269
|
-
"source": [
|
|
270
|
-
"dates = pd.date_range(\"2024-01-02\", freq='10min', periods=288)\n",
|
|
271
|
-
"data = np.abs(np.cumsum(np.random.normal(0, 8., len(dates))))\n",
|
|
272
|
-
"df = pd.DataFrame({'rsam': data}, index=dates)\n",
|
|
273
|
-
"df.index.name = 'datetime'\n",
|
|
274
|
-
"df.plot()"
|
|
275
|
-
]
|
|
276
|
-
},
|
|
277
|
-
{
|
|
278
|
-
"cell_type": "markdown",
|
|
279
|
-
"metadata": {},
|
|
280
|
-
"source": [
|
|
281
|
-
"For illustration, this time we store the data under the site."
|
|
282
|
-
]
|
|
283
|
-
},
|
|
284
|
-
{
|
|
285
|
-
"cell_type": "code",
|
|
286
|
-
"execution_count": 9,
|
|
287
|
-
"metadata": {},
|
|
288
|
-
"outputs": [],
|
|
289
|
-
"source": [
|
|
290
|
-
"st3 = g.get_substore('NET1', 'MDR3')\n",
|
|
291
|
-
"st3.save(df.to_xarray())"
|
|
292
|
-
]
|
|
293
|
-
},
|
|
294
|
-
{
|
|
295
|
-
"cell_type": "code",
|
|
296
|
-
"execution_count": 10,
|
|
297
|
-
"metadata": {},
|
|
298
|
-
"outputs": [
|
|
299
|
-
{
|
|
300
|
-
"data": {
|
|
301
|
-
"text/plain": [
|
|
302
|
-
"<Axes: xlabel='dates'>"
|
|
303
|
-
]
|
|
304
|
-
},
|
|
305
|
-
"execution_count": 10,
|
|
306
|
-
"metadata": {},
|
|
307
|
-
"output_type": "execute_result"
|
|
308
|
-
},
|
|
309
|
-
{
|
|
310
|
-
"data": {
|
|
311
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGjCAYAAAACZz4+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnIhJREFUeJztnXd4HNXV/7+zfdUtyWq2bMvdYLDBNsamV9MSCLwJBJIAITahJC8QUngDJAGCQwjEkB+BUIIh1EAgBEgIJRgCGOOCGy64y0XFVltpV9p6f3/M3Lszs0W7q62j83keP7Z2V+u50s7M957zPedIjDEGgiAIgiCIPMSU6wMgCIIgCIKIBQkVgiAIgiDyFhIqBEEQBEHkLSRUCIIgCILIW0ioEARBEASRt5BQIQiCIAgibyGhQhAEQRBE3kJChSAIgiCIvMWS6wMYCqFQCAcOHEBpaSkkScr14RAEQRAEkQCMMfT29qKhoQEmU/yYSUELlQMHDqCxsTHXh0EQBEEQRArs3bsXo0ePjvualIXKhx9+iHvvvRerV69GS0sLXn31VVxwwQXiecYYfvGLX+Cxxx5Dd3c3jjvuODz88MOYNGmSeE1nZyd+8IMf4PXXX4fJZMJFF12EBx54ACUlJQkdQ2lpKQB5oWVlZakuhSAIgiCILOJyudDY2Cju4/FIWai43W7MmDED3/3ud3HhhRdGPP/b3/4WDz74IJ566ik0NTXhtttuw4IFC7Bp0yY4HA4AwGWXXYaWlha888478Pv9uPLKK7Fo0SI899xzCR0DT/eUlZWRUCEIgiCIAiMR24aUjqGEkiRpIiqMMTQ0NOBHP/oRbr75ZgBAT08PamtrsXTpUlxyySXYvHkzDjvsMKxcuRKzZ88GALz11ls455xzsG/fPjQ0NAz6/7pcLpSXl6Onp4eECkEQBEEUCMncvzNS9bNr1y60trbi9NNPF4+Vl5dj7ty5WL58OQBg+fLlqKioECIFAE4//XSYTCasWLEi6vt6vV64XC7NH4IgCIIgjEtGhEpraysAoLa2VvN4bW2teK61tRU1NTWa5y0WCyorK8Vr9CxevBjl5eXiDxlpCYIgCMLYFFTVzy233IKbbrpJfM3NOARBEATBCYVC8Pl8uT6MYY3VaoXZbE7Le2VEqNTV1QEA2traUF9fLx5va2vDzJkzxWva29s13xcIBNDZ2Sm+X4/dbofdbs/EIRMEQRAGwOfzYdeuXQiFQrk+lGFPRUUF6urqhtznLCNCpampCXV1dXjvvfeEMHG5XFixYgWuueYaAMC8efPQ3d2N1atXY9asWQCA//znPwiFQpg7d24mDosgCIIwMIwxtLS0wGw2o7GxcdBGYkRmYIzB4/GIYIQ6YJEKKQuVvr4+bN++XXy9a9curF27FpWVlRgzZgxuuOEG3HXXXZg0aZIoT25oaBCVQdOmTcNZZ52FhQsX4pFHHoHf78f111+PSy65JKGKH4IgCIJQEwgE4PF40NDQgKKiolwfzrDG6XQCANrb21FTUzOkNFDKQmXVqlU45ZRTxNfcO3L55Zdj6dKl+MlPfgK3241Fixahu7sbxx9/PN566y3RQwUAnn32WVx//fU47bTTRMO3Bx98MOXFEARBEMOXYDAIALDZbDk+EgKAEIt+v39IQiUtfVRyBfVRIQiCIDgDAwPYtWsXmpqaNJtiIjfE+33kvI8KQRAEQRBEOiChQhDEoIRCDKFQwQZfCSLvYYxh0aJFqKyshCRJWLt2ba4PKW8oqD4qBEFkn0AwhPP+8BGKbGb87Zr5Qy41JAgikrfeegtLly7FsmXLMH78eFRXVw/5Pa+44gp0d3fj73//+9APMIeQUCEIIi5b23qxpbUXAOANhOCwpqeJE0EQYXbs2IH6+nrMnz8/14cSQTAYhCRJOSv3ptQPQRBx6egLd/gMUPqHINLOFVdcgR/84Adobm6GJEkYN24cQqEQFi9ejKamJjidTsyYMQMvv/yy+J5gMIirrrpKPD9lyhQ88MAD4vlf/vKXeOqpp/Daa69BkiRIkoRly5Zh2bJlkCQJ3d3d4rVr166FJEnYvXs3AGDp0qWoqKjAP/7xDxx22GGw2+1obm6G1+vFzTffjFGjRqG4uBhz587FsmXLMv7zoYgKQRBx6XSrhEqQun0ShQNjDP3+YE7+b6fVnHCa9IEHHsCECRPw6KOPYuXKlTCbzVi8eDGeeeYZPPLII5g0aRI+/PBDfOtb38LIkSNx0kknIRQKYfTo0XjppZdQVVWFTz75BIsWLUJ9fT2+8Y1v4Oabb8bmzZvhcrnw5JNPAgAqKyvxySefJHRMHo8H99xzDx5//HFUVVWhpqYG119/PTZt2oQXXngBDQ0NePXVV3HWWWdhw4YNmDRpUso/q8EgoUIQRFwO9nrFv30kVIgCot8fxGG3/zsn//emOxagyJbYLba8vBylpaUwm82oq6uD1+vF3XffjXfffRfz5s0DAIwfPx4fffQR/vSnP+Gkk06C1WrFr371K/EeTU1NWL58Of7617/iG9/4BkpKSuB0OuH1emOOpYmH3+/HH//4R8yYMQMA0NzcjCeffBLNzc2iKevNN9+Mt956C08++STuvvvupP+PRCGhQhBEXFpdA+Lf/iClfggi02zfvh0ejwdnnHGG5nGfz4ejjjpKfP3QQw/hz3/+M5qbm9Hf3w+fzyfG1gwVm82GI488Uny9YcMGBINBTJ48WfM6r9eLqqqqtPyfsSChQhBEXFp7wkKFUj9EIeG0mrHpjgU5+79Tpa+vDwDw5ptvYtSoUZrn+GDeF154ATfffDPuu+8+zJs3D6Wlpbj33nuxYsWKuO/NDbHqXq9+vz/y+J1OTeqqr68PZrMZq1evjugyW1JSksTqkoeECkEQAIABfxBPfrwbp06twZS6UvG4NqJCQoUoHCRJSjj9kk+oDawnnXRS1Nd8/PHHmD9/Pq699lrx2I4dOzSvsdlsYqwAZ+TIkQCAlpYWjBgxAgAS6tly1FFHIRgMor29HSeccEIyyxkyVPVDEAQA4L3N7bjnrS341etfaB5XR1R8AUr9EESmKS0txc0334wbb7wRTz31FHbs2IE1a9bgD3/4A5566ikAwKRJk7Bq1Sr8+9//xpdffonbbrsNK1eu1LzPuHHjsH79emzduhWHDh2C3+/HxIkT0djYiF/+8pfYtm0b3nzzTdx3332DHtPkyZNx2WWX4Tvf+Q5eeeUV7Nq1C5999hkWL16MN998MyM/Bw4JFYIgAAAtPf0AgM0tLhEWDoUY2nspokIQ2ebOO+/EbbfdhsWLF2PatGk466yz8Oabb6KpqQkAcPXVV+PCCy/ExRdfjLlz56Kjo0MTXQGAhQsXYsqUKZg9ezZGjhyJjz/+GFarFc8//zy2bNmCI488Evfccw/uuuuuhI7pySefxHe+8x386Ec/wpQpU3DBBRdg5cqVGDNmTNrXr4aGEhIEAQC4560teHiZHDpe+fPTMbLUjkN9Xsy+613xmr9dMw+zxlbm6hAJIi40lDC/oKGEBEGklU5VY7cv2+ROtOq0D0CpH4Igsg8JFYIgAAAd7nC/FC5U2lxaoUKpH4Igsg0JFYIgAAAdbnVERS6PbCWhQhBEjiGhQhAEAG2rfBFR6dELFUr9EASRXUioEAQBQDt88Mu2XjDGKKJCFCQFXCNiKNL1eyChQhAEvIEg+rwB8XXvQABtLq8mygKQUCHyG94x1efzDfJKIht4PB4AgNVqHdL7FF7LPoIgkmJNcxfue3srdrS78bdr52NUhTPiNVyQWEwSxlQVYedBN7a196Lbo22tTUKFyGcsFguKiopw8OBBWK1W0S6eyC6MMXg8HrS3t6OioiKi5X6ykFAhCAOzprkLFz38CXgE9vPmrqhChad9KottGFXhxM6DbrS7vOjyyI9XFFnR7fGTR4XIayRJQn19PXbt2oU9e/bk+nCGPRUVFSlNbtZDQoUgDMzOg26o08Q9/ZHDx4BwxU9lsQ0jimwAgC6PT0RURpbYFaFCERUiv7HZbJg0aRKlf3KM1WodciSFQ0KFIAyMN6AdSBZLqHQqPVSqS+yoLJaFSofbh27l9SNL7djW3kdChSgITCYTdaY1EJTAIwgD4/VrhUXMiIoq9VOlCJXmDg+CITkcU1Mqj5an1A9BENmGhApBGBhvQCtUXIOkfqpKbBihCJUdB+Wmb06rGSUOOfhKERWCILINCRWCMDAJp36UiEqVKqKy65AbgGyktSjVEyRUCILINiRUCMLA8IhKdYksPmKbaWWPSlWJXURU+PdWFNlgs3ChQqkfgiCyCwkVgjAw3KMyslQ2FiZS9cMjKpwRRVZYzRIAiqgQBJF9SKgQhIHhqR9uho1d9RNO/YzQCRVK/RAEkUtIqBCEgeHpGy5U9J1mOZ2qiEqF0wpJCj+nSf0EKPVDEER2IaFCEAZGCJUyWaj0DgREyTEnEAyhd0Ce81NRZIPFbEK5Mzybg1I/BEHkEhIqBGFgvH6e+gk3v+od0EZVXAPhYYRlShlypSr9U+G0wWpWIiohiqgQBJFdSKgQhIHhEZUSuwVFNrmdtd6n0q3M8yl1WGBRBEllkUqoFFnF4/4ARVQIgsguJFQIwsBwM63dGk7nRAgV5euKonC6Rx1RGVFkg41SPwRB5AgSKgRhYHhExW4xxxQqPYrBtsIZFicaoVJsFakfHwkVgiCyDAkVgjAwA34uVEwoixlRkVM/sSIq5SqPSoAavhEEkWVIqBCEgRGpH0vs1A+PqJQ5Y6V+qOqHIIjcQUKFIAwM70xrt8ZO/QiPSgyhUu4Mp35IqBAEkW1IqBCEgQl7VOKYaT2xzbS8EijsUaHUD0EQ2YWECkEYmGipH5c+9dMfaaZtqi7W/B32qFBEhSCI7GLJ9QEQBJE5REQlXupH6aNSroqojK0qxivXzkd9udwojjwqBEHkChIqBGFQGGPwJZL6Ub5Wt80HgKPHjBD/DntUKPVDEER2odQPQRgUr6qLbNyqnyhmWj3UR4UgiFxBQoUgCojPm7vwxvoDEY+/smYf5vz6XXze3CUe0woVs0jtdLljNHxTtc3Xw1M/5FEhCCLbkFAhiALi+uc+x/XPfY793f2ax9/+og0He73477ZD4jFupJUkWWjUlMoTlA/2esGYnMJhjEVtoa+HUj8EQeQKEioEUSCEQgwtPbJA4VEQTofbK//d5xWPeVVdaSVJEhOUfcEQOt2ygbbPG0BQmYis96iosVoo9UMQRG4goUIQBUKfLwBFU0RU33QowoP/DWjn/ACAzWJCdYkcVWl1DQAI91BxWE1wWM0x/29K/RAEkStIqBBEgaCOouiFCo+QdGqESriHCqeuXBEqPbJQ6YlR8aPHapLfI8QgIjAEQRDZgIQKQRQI6moddQrGHwyJyEhntIiKVSVUyuT0D4+oRGv2Fg2rSuxQLxWCILIJCRWCKBDUHWXVptYuT1icaFI/fm3qBwDqlAZubT3a1E95HCMtEE79AORTIQgiu2RMqASDQdx2221oamqC0+nEhAkTcOedd4pqA0CuOLj99ttRX18Pp9OJ008/Hdu2bcvUIRFEQaOOqPhVpcfqKEqX2yfOsaipHyWi0sKFSr/8vfF6qADh1A8ABKjyhyCILJIxoXLPPffg4Ycfxv/7f/8Pmzdvxj333IPf/va3+MMf/iBe89vf/hYPPvggHnnkEaxYsQLFxcVYsGABBgYGMnVYBFGwaISKKqrR2RcWKoEQg6s/AEA7kJBTV+4EEGmmHcyjYjJJMJuojT5BENknYy30P/nkE5x//vk499xzAQDjxo3D888/j88++wyAHE1ZsmQJbr31Vpx//vkAgKeffhq1tbX4+9//jksuuSRTh0YQBUksj8ohVUQFkEuVy4usEVU/gMqjokRU3F5Z1JQ4Br8UWM0SgqFwW36CIIhskLGIyvz58/Hee+/hyy+/BACsW7cOH330Ec4++2wAwK5du9Da2orTTz9dfE95eTnmzp2L5cuXZ+qwCKJg6Y7hUelU9U4Bwqkgr19J/VijVP0oEZV+5TXOOKXJnHDTNxIqBEFkj4xFVH72s5/B5XJh6tSpMJvNCAaD+PWvf43LLrsMANDa2goAqK2t1XxfbW2teE6P1+uF1xu+KLtcrgwdPUHkHzFTP7qIyiElFRQv9dM7EIDbG8CAIlSKbIkLlQCVJxMEkUUyFlH561//imeffRbPPfcc1qxZg6eeegq/+93v8NRTT6X8nosXL0Z5ebn409jYmMYjJoj8JpZQ0ad+RERFESrqRm4ldgtK7PL+pNU1AI8vGPGaWPDKH0r9EASRTTImVH784x/jZz/7GS655BIcccQR+Pa3v40bb7wRixcvBgDU1dUBANra2jTf19bWJp7Tc8stt6Cnp0f82bt3b6YOnyDyDnV5sloscDOtpFQQdyrt9KNV/QDaEuV+Rag4k4ioUOqHIIhskjGh4vF4YDJp395sNiMUki9yTU1NqKurw3vvvSeed7lcWLFiBebNmxf1Pe12O8rKyjR/CGK40BPLo6JEUMZUFgEI91KJ1kcF0JYo9yeR+rHRYEKCIHJAxjwqX/nKV/DrX/8aY8aMweGHH47PP/8c999/P7773e8CACRJwg033IC77roLkyZNQlNTE2677TY0NDTgggsuyNRhEUTBEiv1wwcSTqopwZ4OT0TqRx9R4VOUD/V5hUclETOtheb9EASRAzImVP7whz/gtttuw7XXXov29nY0NDTg6quvxu233y5e85Of/ARutxuLFi1Cd3c3jj/+eLz11ltwOByZOiyCKFhiCxVZmEysKcW7m9uFUBmIUvUDAMWKR8XtCybpUaEJygRBZJ+MCZXS0lIsWbIES5YsifkaSZJwxx134I477sjUYRCEIQiFmNajooiFgGrOz+TaEgBAR0TVj1aEFNnlrz3eQIrlyZT6IQgie9CsH4IoAPp8Aairgv0B+YsuRaRIEjB+pCxUwqmf6GbaEhuPqAQw4OMelcH3LNyjQqkfgiCyCQkVgigAejx+zdc89cP9KSOKbKgukScgdyrzfmJ5VIp46scbDEdUbINfCrhHhVI/BEFkExIqBFEAqP0pQFiouL2y0CixW1BVLJtkfcEQer2BcNWPLq1TrFT4eHyBlDwqlPohCCKbkFAhiAJAL1R4VIOndxxWE5w2sygz7uzzxUz98IhK70BARF2ohT5BEPkKCRWCKAAiIypyVENvmK0sltM/HW5fTDNtiWKm7VB1tE3Eo2Kl8mSCIHIACRWCKAAihIoiQsJN3eRTuao47FOJ6VFRRMkh1TBD/WuiES5PptQPQRDZg4QKQRQAsTwqIr2j9EqpFELFG3V6MgAUK0KFlzU7rCaYTNKgx0CpH4IgcgEJFYIoAPoGAgCAUocsMvyhWKkf2VDb4faJeUD61E+xXft1Iv4UALBZZDHjp6GEBEFkERIqBFEA8OqccqcVgCr1o0vvVPES5b7YqR/emZaTiD8FACzK7C5/iFI/BEFkDxIqBFEA8H4nZQ5FqPDUj19b2VOp8qjwFvq2CI+KNoLisCZ2GaDUD0EQuYCECjFkGGNUCZJh+n1y6kdEVIL6iIq26qelZwCdHrmqp7rErnkvfQTFmcDkZACwUuqHIIgcQEKFGBKhEMN5f/gI5/3hI7GDJ9KPPvXDK2/0hlnenXbD/h4wJjd3449xzCZJ40tJ2KNCERWCIHIACRViSHT3+/HFARe2tPbinxtacn04hoWnfmJHVHjqR46e9HnlCMzYqmJIUmRFj9pQ60zQo8K9LS7F2EsQBJENSKgQQ6JPddN6YeXeHB6JsRERlaL4qR/eR4Uzrroo6vup0z/OBD0qtWWyCGpzDSR62ARBEEOGhAoxJHq94f4en+3qxPb23hwejXGJXfUT3UzLGVtVHPX91JU/iaZ+asscAIBWEioEQWQREirEkOBD8Tgvr96foyMxNgOi6kcWGGGPCh88KJ/KRTazphx5bGX0iEqxTZ36SU6otLu8g7ySIAgifZBQIYZEn1fbMbW5052jIzE2HqXqp2yQqh9JkjTpn1gRlSJNRCUxj0qdIlT6vAHhgSEIgsg0JFSIIdGrM1Z29PlivJIYChGpH30LfVUUpVJV5RPLo6KNqCR2GSi2W1CqCBzyqRAEkS1IqBBDgu+seROxTjcJlUzQH1OoaFM/QLjyx24xobbUEfX9UvGoAEANN9T2kFAhCCI7kFAhhgSv+hmjeCG6PCRU0o0vEEJAaVsfFioMjDHV9OSw2KhWUj9jq4piDhvURlQSS/0AQF05GWoJgsguJFSIIeH26oWKHyGaBZNWeDQFCAsVQBYrUVM/ilAZUxndnwLoPSqJR1S4obaNDLUEQWQJEirEkOjVCZVgiME14I/3LUSS8GZvFpOkSdn4g6EIMy0AzGisAAAcO74y5nuWqIVKgh4VQC1UKKJCEER2SDzmSxBR4KmfEcU2lNot6PUG0OH2oaLINsh3EonCK36cVrMYDAjohIrKo/KVGQ2YN6EqovmbGvVgwmQiKnUkVAiCyDIUUSGGBDfTljosGKHcGLvIUJtWeMWP02aG2SSB2058wVDE9GROdYk9aut8TrG6M20SHhV907e/rtqLK578TKQACYIg0g0JFWJIcKFSYrcIb0QHCZW0wlM/PApiFcMBWdTUTyIU2VOMqChm2raeAQz4g/jJy+uxbOtBvLme5jwRBJEZSKgQQyKaUKES5cQIhRg2HXAhMMg04nBERY58iCnGgVDEUMJESbU8mc/7ae/14t9ftIrHrZbY0RuCIIihQEKFGBLco0JCJXleXrMP5zz4X/xx2Y64r+v3aXvVWC08ohIKV/0kOFiQo039JP69I0vsMElAIMTwpw92isd5mTRBEES6IaFCDAkRUXGQUEmWL/b3AAB2HOyL+zoeUQmnfuToxYA/BL8y8yfp1E+KfVQsZhOOGFUOANjU4hKP8/QUQRBEuiGhQgyJaBEVMtMmBjek9vTHL+fmIsBh1XpU1PN2kk39lKSY+gGAP35rlhArHI+PhApBEJmBhAqRMowx9PlUEZUiMtMmQ6vSNM01mFCJiKgMXaikaqYFgFEVTrz0/Xm456IjcOrUGgDh6c4EQRDphoQKkTIeXxBMaUJbareGIyrURj8hWnv6AQweUYmV+uGTq80mCRZzcqdyZZENE0YWY/qoMjiS9LcAcnTn4jljMKm2BIC2ey5BEEQ6oYZvRMrwHb1JAhxWk5jaSxOUBycQDOFgrxJRGYjfg0RU/Vjl01VEVJTvSzaaAshek7duOBEmSYrbb2UweDSGPCoEQWQKEipEyvSq/CmSJInUD0VUBudQnw98JNKgHhV91Y9I/URv9pYo1iSjMNEgoUIQRKah1A+RMm7RlVYelMcjKh5fkDwLg6CePuwLhOL+vNSdaYFwHxWe+km24ied8GOi3zdBEJmChAqRMupmbwBQarcI/wQZauPT2qOdlRPPUBvRmVZpriZSPyl4TNIFr0QijwpBEJmChAqRMjz1U6xUkEiShJElcufSA939OTuuQoAbaTnxJk73C4+KNvXDJ1enmvpJB5T6IQgi05BQIVIm3OzNKh47rKEMALBhX09OjqlQ4KXJnHg+FX3qJ9JMm8PUjxAq1JmWIIjMQEKFSBnhUVE1DztydAUAYP2+7hwcUeHQ5tKnfmJX/nhE6kc766cvHyIq3KNCqR+CIDIECRUiZfQeFQA4YrTcsXT9foqoxEPvUYkXUYms+uF9VPLIo0KpH4IgMgQJFSJlRHmyIyxUZigRlZ0H3XF9F8MdHlHhTfLi/azyOfXDxRMJFYIgMgUJFSJleHlssSqiUllsw+gRTgDARvKpRIUxhhYlojKpRu7s2uOJLVQGIqp+8tBMS6kfgiAyBAkVImX0rd05PKpC6Z/otPd6RQRicm0pgHBEpXfAj+3tvZrXi5+zVedRGUJn2nThVEVUGJ+nQBAEkUZIqBAp4wvIlR76G6XwqZChNiofbD0IADhydDnqyh0Awh6Vn7y8Hmf8/kN8urMDgBx9EdOTbfLPmXtU+OO5TP1wj0owxOAPklAhCCL9kFAhUoYLFZtOqDRVFwOINIwSMv/Z0g4AOGVKDcoUf4+rP4BgiOHDLw+CMeDl1fsAAAP+kBj8yKt+9K3vc2mmVU9eJp8KQRCZgIQKkTJeLlR0N06eCvKQbyECXyCEj7YfAgCcOrUGZU65B01Pvx/b2nvhVn5m//6iFd6AdhSBvuEbJ5epH6tZgtkkR3iojT5BEJmAhAqRMrEiKtStNDqbDrjwl0/3oM8bQHWJHUeMKhdCxTXgx9rmbvHa3oEA/vvlIQwE5J+hWhDof965TP1IkkSGWoIgMgpNTyZSxheM7lERBku6cQn2d/fjvD/8V0xMPmXKSJhMEspVEZW1e7sByELEFwjhjfUHMFGpClKLEe5R4eQyogLIPpU+b4CEKUEQGYEiKkTKhM202h097bAj2X3IjRADLCYJ9eUOfOvYsQAghIpLJVQuPWYMAGDl7i6RXlOLkXzyqACAUzH5klAhCCITkFAhUiZW6oebPj1UsirgVT0zGyuw/JbTMKOxAgBQ5uCpnwC2tMplyadPqwUg3/i9SurHYVVHVPIn9QOEhSm10ScIIhOQUCFShqd+IjwqNipZ1cOFCo+gcMqc2uxrfbkDYyqLAMjm1AF/ZERFb17OdeqHPEkEQWQSEipEyvhiVP1oSlZplw0gtlDRR0POnl4Ph5LKkYWK/PNTi0GrRedRyXHqh+b9EASRSTJ6hdu/fz++9a1voaqqCk6nE0cccQRWrVolnmeM4fbbb0d9fT2cTidOP/10bNu2LZOHRKQRnpbQR1RsFhMsJm1TsuEOFyplOqECAPPGV8FuMeGWs6fi/86ZCrty4w+x8IRqu0r8zRlXKcQMkPvUTxGZpwmCyCAZEypdXV047rjjYLVa8a9//QubNm3CfffdhxEjRojX/Pa3v8WDDz6IRx55BCtWrEBxcTEWLFiAgQFqFFYIeGN4VIBwVMWjTP4d7sSKqADA01cdg89vPwNXnzQBFrNJI0L49zlUP+PRI4rw8vfno0oZaMhTRbnCSYMJCYLIIBkrT77nnnvQ2NiIJ598UjzW1NQk/s0Yw5IlS3Drrbfi/PPPBwA8/fTTqK2txd///ndccsklmTo0Ik3ESv0A8s2r1xugpm8K8YSK1WzSGGRtZhMkCWAs/H3qiAoATB9Vjv/+9BS09gxg/MiSDB754DioyosgiAySsYjKP/7xD8yePRtf//rXUVNTg6OOOgqPPfaYeH7Xrl1obW3F6aefLh4rLy/H3LlzsXz58qjv6fV64XK5NH+I3MAYC/dRieKR4OkA6lYq44ojVPRIkiQMst1cqESJWhXZLDkXKQCZaQmCyCwZEyo7d+7Eww8/jEmTJuHf//43rrnmGvzwhz/EU089BQBobW0FANTW1mq+r7a2VjynZ/HixSgvLxd/GhsbM3X4xCAEQkzMoLGbIz0SDiu10VcTL6ISDf7z64kjVPIFEioEQWSSjF39QqEQjj76aNx999046qijsGjRIixcuBCPPPJIyu95yy23oKenR/zZu3dvGo+YSAae9gGie1SKyLegQQiVogSFikUrVBzW3Bpm48E9KtRHhSCITJAxoVJfX4/DDjtM89i0adPQ3NwMAKirqwMAtLW1aV7T1tYmntNjt9tRVlam+UPkBu+gQkW2P5FvQSb5iIr8M3UVQESFypMJgsgkGbv6HXfccdi6davmsS+//BJjx8qtw5uamlBXV4f33ntPPO9yubBixQrMmzcvU4dFpAkeUTGbwsPy1FDqJ0woxJLyqADRUj95HFERQiU0yCsJIpJ21wBVBxJxyZhQufHGG/Hpp5/i7rvvxvbt2/Hcc8/h0UcfxXXXXQdANgzecMMNuOuuu/CPf/wDGzZswHe+8x00NDTgggsuyNRhEWkiXsUPQKkfNX2+gBhGmKhQsVv1qZ/8jajQEEoiVXYdcuOE376PHz7/ea4PhchjMlaePGfOHLz66qu45ZZbcMcdd6CpqQlLlizBZZddJl7zk5/8BG63G4sWLUJ3dzeOP/54vPXWW3A4HJk6LCJN+ILyTSlWV9TwYELaKfV4ZLFhs5gS9prwVE8hRVSowotIlvc2t8EbCGHFzk4wxiBJkdFZgsiYUAGA8847D+edd17M5yVJwh133IE77rgjk4dBZADvIBEVvsum1E/y/hQgnPoRHpU8jqiQR4VIlZW7OwEAvd4Auj1+jFCaGBKEmvy9+hF5TazJyRxK/YRJ1p8ChDvR8pRRPptpqYU+kQqMMaza3SW+3tvlyeHREPlMRiMqhHGJ1z4fUKd+6OY1lIhKrK/zCWqhT6TCjoNudLh94us9HR48+2kzqkps+MlZU3N4ZES+QUKFSInBzLR08wrDhUpFUkJF+3PN54gKiVIiFT7b1an5+p1NbfjHugMAgO+fPAFljsTPF8LY5O/Vj8hruFCJdQMlj0qYdERU8tlMSx4VIhW4P4VfQ97bHO6ptaO9LyfHROQnJFSIlBBzfmLcQMm3EIYLlbIhpX7y91Sl6BmRCptb5FltJ08ZCQBwq64V29v7sONgH9bu7c7FoRF5Rv5e/Yi8ZjAzrdOqdKalm1dKERV9pCqfIyo89eMLhBDk7l+CGAQebT1iVHnEc1tbe3HafR/ggoc+RqfKx0IMT0ioECkxqFCh1I8gLamffI6oqI6VeqkQicI3MZNrSyOee2N9i/g3CRUif69+RF7jDSbYmZYavqUpopK/p6r62CiCRiQKH2I5fmRxxBiOVteA+DdF6Yj8vfoReY1XuSENWp5MNy70eWWxVuJIvMiukMqTTSZJeGjIk0QkAmMMHuXaUGK3oqFC7kY+tS4yuqKe1E4MT0ioECnBzbSU+hmcwSqkohFZ9ZPfpyq10SeSwR9kIlLitJnROKIIAHDK1BpUFGkjj/xaQwxf8vvqR+Qtg918eepHf+MKhRgYG16h3MF6zkQjso9K/kZUAIqgEcmh/pw4rWacP7MBDeUOnHdkPSaOLNG8liIqBDV8I1Ji8Kof+cblDzL4gyFYzSaEQgxfe/gTSAD+ds38iLy0UfEPEn2Khl6Y5HN5MgA4qBydSAL+OTGbJFjNEi6eMwYXzxkDAJhYU4JVe8Kt9SmiQuT31Y/IWxKt+gHC6Z+efj/W7e3G2r3doofCcGCwn1U0Ci2iQrOdiGTgn5MiqzliYvKlc8fgyNHhkmU/RVSGPSRUiJQQDd9ipDNsZhN4wISnf7ipFMCwauTEf1bWpFI/WmGSjMjJBdRGn0gG/jlx2CIF+JGjK/CP64/HMeMqAVBEhSChQqSI1x8/SiBJEopscmaRR1TcqlLl1arQrtFJKaKiiqBYzVLep8mojT6RDP1++VrgjFPNZrXIn3k/CZVhDwkVIiUGq/oBVK3VuVDxDlOhMkjPmWioUz+OPE/7AGSmJZKj3yefE0VRIiocfr54KfUz7CGhQqREIpUs4ZuXLFDc3vBNrLnTg/begajfZzRS86iEL+D53JWWoxelBBEPLmjj9Qfi5wtV/RD5fwUk8hK+y7HHudAU6XqpqCMqALB6t/GjKsEQA2+smUxERV32ne9GWoD6qBDJ4fElkPpRzhdK/RAkVIiUSCSdwXdLXKj06YTKymEgVNS7waTKkwssokIeFSIZuKCNm/qhiAqhkP9XQCIv8QXit9AHgDJlto1LmXWjj6h8vP1Qho4uf1BfZJOr+imwiIpI/dBNhRiceFU/HBtFVAgFEipESngT8F2MUFphd3sUoaJcnM48rBaSBGxt60Wby9g+FXVppdWceOWOzWwCby+R7+3zATLTEsnB5/zES/1QRIXg5P8VkMhLEjGIjiiyAQC6PPKYdp76GT2iCEeOkhs6ffjlwUweZs5RV0fpG1vFQ5IkUe1TSEKFPCpEIvDJyQlV/VBEZdiT/1dAIi8Rs37ipDP4cLEujzb1U2w348TJIwEAH24zdvonlTk/HJ7+yefJyRxqoU8kQ38CERWrItD9geE1G4yIhIQKkRKiM20coyePqHQrERVenlxstwih8tG2g2KKqhFJZc4PhwuUQoqoUOqHSARusI9bnqyIe1+QPlPDnfy/AhJ5SThSEPtCE46ocKHCIyoWHNVYgWKbGV0eP3Ye7Mvw0eaOoURUuECJVwKeL9CsHyIZ+qnqh0gCEipESiTjUQmbaWWhUmI3w2I2YWSpXX5eqQoyItx0zNuBJ0NBRlQo9UMkAPcyOROq+jFuxJVIjPy/AhJ5yVDMtMXKDKASh/x330AgyncbA38K7fM5PJKin6Scj1AfFSIZEkr9UESFUMj/KyCRlyRUnlwcNtMyxkTqp8Ru0fzd6zWuUAkLuuTTNw6e+imoPiokVIjB6U+g6scqPCokVIY7JFSIpGGMJdSZlkdUfIEQPL6gxkwLACV2WcgYOaIS9qgMj9QPlScTiTBAfVSIJMj/KyCRd6h3OPGqfopsZiFkujy+cOrHLl+cSnnqx2tcj8rQqn4KpzyZqn6IZEikPJmECsEhoUIkjWZ+TZyIiiRJovKn2+MXg8iKdakfQ0dUhiBUihQvT0F4VGzyMfb7g2CMzI9EfLhHJb6ZVo5CUgt9wpLrAyAKj0SFCiCnf9p7vWjvHRDufSFUHMb3qIiqnxTMtJfMaURPvx9nHV6f7sNKO3xnzJi85kKIAhG5I6GqHwt5VAiZ/N+qEXkHv3BYzRJMpvjeCx5R2dfVLx4TVT/DIKIylKqfueOr8Ocr5mBMVVG6DyvtqIVJun0qK3Z2YNHTq7Cvy5PW9yVyBzfTxu1Ma6bUDyFDQoVIGq8/8ZsvN9RyoeK0mmFWxE3Yo2JcoZJIGbcRsJpNYuhiun0qf/l0D97e1IZ/bWhN6/sSuYExFh5KmEAfFYqoEMa+ehIZIRnfBS9R5rthnvYBVBEVAwuVoURUCg1HAk3fBvxBfHfpStz5xiZ4A4kJml4l4tY7YFzT9XDCGwiB25jITEskAnlUiKThEZVE+nvoIyq84gdQ9VExcOpnuERUALnKq3cgEDei8t9th/CfLe0AgDXNXXjyijmoUD4jseAmbCN7mYYT6tRgPC+TVXSmJaEy3DH+1ZNIO/oy43hECBWbKqKipH7cBr4BDSehkkgvlbV7u8S/P2/uxiMf7Bz0ffuU/jtG9jINJ3jFj9UsxTWZ2ymiQigY/+pJpB19h9l4cDNtp9sX8T2lvOGbkYWKUumUStVPocF3x544qZ91e3sAACdMqgYAvPr5PvQO+PH3z/ejxxM9tcM/b0b+nAwnEumhAqgjKlTuPtwx/tWTSDtuXT+UeIzQhfU1qZ9hMOtnWEVUBmmjHwoxrNvXDQC46YzJGFFkRZvLiyN/9TZueHEt/vThjqjfR0LFWPQn0EMFII8KEcb4V08i7ehb4ceDm2k5Uc20vgBCIWPumnxB+Wc1HMy0g3Wn3XnIjd6BABxWE6aPKsf5M0cBgDBWrt7TFfX7uEAxspdpOJFoREXdR4WaCA5vjH/1JNKOW0xBHtyjMrGmVNNZVZP6USIqjEGUKxoNf0C+wA6LiMogHpV1e7sBANMbymE1m/D12aM1z0cTvoFgSDTNo4iKMQhHVOJvdNTpUkr/DG+Mf/Uk0k7YTDt4RKXcacUlc8aIr9XfY7eYYFF6qhg1/ZPI8Eaj4FCE64dfHopaeszTPjMaKwAAhzeU41dfPRzHT5T9Kq7+SI8Kj94Bxv2MDDfCEZX454R6GCf1UhneGP/qSaQdXi6aiJkWABaeOF78u7VnQPxbkqSwT8WggwmHk0fl3CPkVv9vbmjBoqdXa8L1wRDDh18eBADMVIQKAFw+fxyuOXkCAMAVpU9Kny8sTiiiYgwS9ahoIirkUxnWGP/qSaQdXi5aNEjoljOqwokzDqsFAJx5eK3mOaP3UgmPGzD+qXbOEfX48xWzAQAffHkQbpWp9u0vWrG7w4NypxWnTK3RfF+5U/Yx9USJqHi8WqFiVC/TcCIcUYl//TCbJNHFmiIqwxtq+EYkjTuJPiqchy87Gl8ccGH6qHLN40bvTjucIioAcOrUWjisJgz4Q+hy+1Bit4Axhoc/kCt6Lp83NiISV+aQhYqrP/IzoP9cuH0BlDqsEa8jCgd+/ShKwONmM5vQHwpS5c8wZ3hcPYm0kmzqBwAsZhNmNFaIHRKn1OAlysNNqABApVKS3un2oaffj9tf+wLr9/XAYTXh8vnjIl5f5pQ/A/3+yBuS2qMCGFfQDid46icRocLnRxkxohIKMazY2UGf6QQYPldPIm0kY6YdDJH6MejJGp71E3/KtJGoLAkLlWueWY2/fLoHAPCDUyehqsQe8Xq14NXP89FfxI0qaIcTvMIvkdSxTRnTYcSIyntb2nHxo5/i129uzvWh5D0kVIikCfdRSTz1Ewsudox6A0pmgKNR4E3+DvZ58enODgDAE5fPxnWnTIz6eovZJMSKS/c50I9X+O+2QzhryYf4aNuhdB82kSU8SaR+eOWPEef97OlwAwgPbCViM3yunkTaCPdRGXpERaR+DBpREakf89BFXaFQWSwLle3tfQgxwCQBJ00eGfd7ypTPgb5E2e3Tfi5eWNmMLa29eGP9gTQeMZFNPAlW/QCq1I8BIyr8mmfkWWfpgoQKkTTJtNAfDMObaUXVzzBK/ShCZUtrLwCgqsQOyyBVT2VK5Y++RFn/udh1SN6FRqsQIgoDnvpJpGGkkdvo8yiy3odFRJI1ofKb3/wGkiThhhtuEI8NDAzguuuuQ1VVFUpKSnDRRRehra0tW4dEpEgyLfQHo0QZTGjY8uRhbKbd0uICANSURvpS9MSq/NHvNnmH0mg9V4jCIJz6Gfz6wcv6jWimFREVnzGvfekkK1fPlStX4k9/+hOOPPJIzeM33ngjXn/9dbz00kv44IMPcODAAVx44YXZOCQiRRhjqojK0NMZJQZN/fx11V785l9bhqdQUcy07b1eAEBtmWPQ7+GVP3oBEmu3SRGVwiWZ1I+hIyrKNS/etHFCJuN9VPr6+nDZZZfhsccew1133SUe7+npwRNPPIHnnnsOp556KgDgySefxLRp0/Dpp5/i2GOPzfShESnQ7w+KIXLJlCfHolSYaY1z4+nzBnDrqxs1u8Dh0EKfU6mbmJ1cREUvVKILWBIqhQtv+JbIRsc2DCIqRtukZYKMXz2vu+46nHvuuTj99NM1j69evRp+v1/z+NSpUzFmzBgsX7486nt5vV64XC7NHyK78JNKkgaffpoIteXybnv1ni50uX1Dfr984KNtByMurMMpojKiOAWhEsOjwqN3Dt1cmGjN4YjCgIvPwTrTAuHzxohVP9yj4guEDLm+dJLRq+cLL7yANWvWYPHixRHPtba2wmazoaKiQvN4bW0tWltbo77f4sWLUV5eLv40NjZm4rCJOAh/is0CSRq6QfT4idWYWlcK10AAD/5n25DfLx94b3N7xGPDSahU6YVKQqmf6B4VPq6hTvcergE/tdMvUJJp+CYiKkrqJ2ig37k6kkLpn/hk7Oq5d+9e/O///i+effZZOByDX6gS4ZZbbkFPT4/4s3fv3rS8L5E4qbTPj4fZJOHn504DAPxl+R7s7SzsngKhEMP7WyOFynCY9cNJKaKieJXaXAP4xWsbsWp3J4Dw503vc2HMuE0CjY4nidRP2EzLsPuQG3Pvfhe3vLI+o8eXLbRChT7L8cjY1XP16tVob2/H0UcfDYvFAovFgg8++AAPPvggLBYLamtr4fP50N3drfm+trY21NXVRX1Pu92OsrIyzR8iu7jT2JWWc8KkkZg1dgQCISYahBUq6/Z141BfZAprOEVUKpzaWTzJRFTe3tSGp5bvwb3/3gog/HmrK498D72fhSgMPF5upk089eMLhHDts2twqM+H5z8zxgZVLVSol0p8Mnb1PO2007BhwwasXbtW/Jk9ezYuu+wy8W+r1Yr33ntPfM/WrVvR3NyMefPmZeqwiCEiKn7S0OxNzeTaUgDA3q7+tL5vtlmuCC19Vmw4mWktZhMqisJipbYscTMtZ7fStZNfzPWpH4AMtYVIIBgS/q2iBDxuXKjs6XBjU4txPImMMU03buqlEp+MVf2UlpZi+vTpmseKi4tRVVUlHr/qqqtw0003obKyEmVlZfjBD36AefPmUcVPHtOXxvb5ahornQCAfQWe+ml3ySW5YyqLsKcjvJbhJFQAufKn2+OHJAHVUeb76OHlyZw2lxcD/mDM1A9AEZVChKd9AKAoidTP08v3aB4f8AfhSIOZP1d4AyEEVH4b6qUSn5xePX//+9/jvPPOw0UXXYQTTzwRdXV1eOWVV3J5SMQg8GZN6ShNVtM4oggAsK/AIypdHjntM0WJEAGAxSTBZBo+nWmBcHfayiJbQv4cfUQFAJo7PXArJsOoqR8DlbQPF3jax2ySEhLv9hgpU36eFSr6kmQPRVTikvE+KmqWLVum+drhcOChhx7CQw89lM3DIIZAOicnqxk9Qo6o7C3wAV2dSon11LpSvL1J7rI8nIy0HG6oTcSfAgDlzkihsvNgn6j2UKePRlU4sb+7n1I/BQg3jRZZzQlVDapHT5iUlghuXxCdbh/qy50ZO85Mox/CGi2icqC7H08t343L541DQ0XhrjUdDL8rKDEkeC41kfbXydBYKUdUWl0D8AYKd3fBhcqUurDROxAafj0SeNO3RCp+gOgRlU0tveLf6tTPlDo5WkVCpfDgZbiJpH0ArQl9cm0pRikbmm5PYf/u9RGVaB6V51Y0408f7MRfPt0T8dxwI6sRFaLw4cq/JM0elapiG5xWM/r9QbR0D2BcdXFa3z9bcKHCPTdAeD7NcKKqJDmhwkcpqNl0QDZP2iwmNJQ7ccKkapQ6LBipeF6o6VvhIYRKghsd9dTxmY0VYiil4VI/USIqXIh39Hmzckz5DEVUiKTIRHkyAEiSVPDpH8YYOhShMkLXRn648dWZDZg/oQoXz0msKaNZ5eE55wi5PcFmpcqjxG6BySThL1fNxR8vmyXSRBRRKTz4DTnRrtZWS/hzMbOxQpxXhd7FWp/6idZGn48aoM85RVSIJBFCJc2pH0BO/2xr78PezsI01Hp8QeGp4BGF4crUujI8tzC56r0HLpmJPR0ezB47Av/c0Ir93fLnQF3qDIR7rtAFvPDgXWkTrRq0qATsjMYKrNvXDQDoKvDUj96TEq0z7YAiVChySEKFSJJweXIGhEqBR1R42sduMcFpNaPcaaWbaRKcP3MUAGCf7vd/gfI4J9ZcICJzeHwBXPnkSpw6tQZXnzQh5fdx+xJv9gbIlV+cybWlIqLSWeARlV69mTZKRGXAL2966BpCqR8iSdLdQl/N6AIvUeYXz6piGyRJiogEEIlRX+4U1R5OqxnfPnas5vnBUj80Ayj9rNvbgxW7OvHsiuYhvU+/quonEdQpVLNJEl93G86jEhlR4UUFJFRIqBBJ0q2cNBUZ8GBwA2qhzvvhQoWX5upbyROJYTZJoq/OxXMaI2YH8QqhaBfw51Y0Y8Ydb2NNc1fmD3QY0e+Xb6xDHZ6XbNXP944fj28fOxavXDsfQPjc6izw1A/3qPBeMtE8KiL1Q5FDEipEcnAHun5CbjrgEZUD3YUdUeHNzsZUFWblUj5w5fFNOKapEteeHJlmKI8xaRkA/rvtIHoHAli9m4RKOun3hZS/h+aXcCcxORkAyousuPOC6Th6zAgAwAglSmmUiEqN0h8oWtUPN9P2DgQMNTU6FcijQiRMKMTC6Y0MmEX5Db7L4wNjLKGGUPmEXqjcdt40HOjux2Vzx+TysAqSbx87NiLlwykv4kLFH/E54Rf3QuvFs7W1FzaLCU15WpbPb6T9/uCQzk2R+knRjM8juUYpT64ptWNfV3/UPircowIAvQP+jESxCwWKqBAJ4xrwi/kUlRmIqPD8sz/IxM6rkOjQCZWaUgf+ds18XHj06FweluHgERVfMKS5mAPh1IL+8XzmYK8XC5Z8iFN+twyM5efOmachQkyeU5MqniQjKnrEZsZdOOmQtXu78fNXN6BHla7iqR/eyDC6mTZ8DRzulT8kVAzOmuautHk++I241GGB3ZJ+M63TZobDKn8kC7FPQpfKTEtkjmKbWfRd0efvBwowovKpMnEbGLoHJFP0q26a/UM4xqEKFZ766fMGRCuAfOfbT6zAsyuacfPL68RjvDyZC5Xo5cnh9Q13Qy0JFQOzv7sfFz38CS7/82dpeb+OPvlGnMg03FSpLODyww6dmZbIDJIkCTGo9zPxm+hQdv3Z5gulAy8Q3VSZD3CPCqCdgJwsouFbiqmfMocVvLVKofhUeCnyO8rsL/Vj3KMSbdaPJqIyzA21JFQMzO5DbjAG7DzkTotBNZNGWk4h56D5MVNEJfPweT9bWns1j/Od/8AQbqbZZs2esPG3N09vSB5/+EaajohKcYoRFZNJUl0j8vNnpUfdtI6XznNBWluqRFSielTCj1FEhTAsB3vDMyJW7xl6FcQhnQcjE6gNtYVGJ7XPzxrT6uWhj7zNPiec+imMiIovEBLdVgHANZCfEZUBX2Kpnw++PIjbX9sY83oz1NQPEO5UXCjXCPXcsh0H+wBEelR8wZAmlRUIhoQfECChQkLFwBzqS69QERGVDKZ+RhSgWY4T/vmQUMk00+rliIpeqPAbobdAzLRfHOjRiCp9x9J8Qe1RiVZKy7nt7xvx9PI9uOjhT/CL1zZGPO9JsjNtNCoLbN5PIBj+/a5SrsPcPFtbFr6Wqn+uAzqh7SKhQhiVgyqhko4GWGGPSuZuxCMKbLfE8QdDYjdMEZXMwyMqW1p6RaUMYyyc+ikQM61+A6EfVpcvqM2esTwqnW6fpuW92pMRfh8+Kyz1iArfzHQUiFBR/+xW7u5EKMTQp/wcyoussFnk27A7TtSKIiqEYVGnfr444Iq7E0qEDnfmPSqFOsuDR6/Mqhw6kTnGV5fAapbQ6w2IkQveQAi8urdQIiqf7+3WfJ2vHhW1X2IgRupnvZLCEmbXKDfXcEQldaEyqqKwOliro1GrdnfB4w+Kz2mp3SpEm0dlpNZ7rEioEIblUF/4Zh8MMazf15OW98to6kd0niysE/NA9wAAoK7MIUpnicxhs5gwsUab/lFf3AulPHlbm2wG5r6L3oEA2l0DwsuQL2hTP9F/thuU68uJk0eK1+l/D/3Co5J66mf8SNnzsfOQO+X3yCbq6Ehzp0eIUbNJgsNqEj8LdcWX/ueWr96lbEFCxcAcUiIqvEHWUH0q2fBgiFkeBRZRaemRd/UNFY4cH8nwIexTkW/26htoITR8CwRD2KXcbI9qrAAgR1QueexTnL3kv3lVftufQOpnnSJUjp9YrSohDm84GGOiDHcoQ015995dBSBUfAGtKRYA2lzydbTYZoYkSeJnEe/zSxEVwrBwj8rp02oBaMsgUyE8HTiDfVQKtOqHl3/XlztzfCTDh8MUn8qLK5vx/pZ2za6/ECIqezo98AcZnFYzptTJa+ny+LHzoBu+YEjc0PIB9U3U7Q3giic/w80vrdO8ZsP+bgDAjMaKqG0GBvzh1FzxECIq45QZWs0dnryfgdMfRdS1KNeKUmW4JjcWq8Wg/vtIqBCGRD2XZ8HhslBZ3dwl6viTJRAMib4FGY2oFGgfFZ76qaeIStb46owG1JbZcaBnAFcuXYnPdnWK5wqhPHlbm5zemVhTgjKnfLPao/JdRLvJ5Qp1Wm17ex+WbT2Il1fvE4KwzTWANpcXJgk4vKFMTA5XV++pm5o5ralHVBoqnLBZTPAFQ3k1wHRray9W7u7UPMbFh8UkiU1YS498rSixy79zp9KNW/371ntUekmoEEaky+MTu40TJo2Ew2pCt8efcl63UxEOkpTZqhZ1eXK+zj2Jhkj9UEQla9SUOfDuTSdhSq2cAtqqav5WCKmf7e3y8U6qKRG7692q83Oo5vd0or6Jtio3WiAcZeX+t0k1pSiyWYTnpqc/vOHgTc2KbGaYhuDjMpskjK2UJ63nk0/lW0+swDcf/VSTsuM/N6fVjFKHLExaXYpQcVjEc+rXAuHPL3+OIiqEIeFpn8piG5w2M44cXQEg9fQPL02uLLJl1CzKzbS+YChnc09cA35N74NE4LukhgoSKtmk1GHFmCr5ptXmCt9ACyH1s61diajUlqBMuWnt6wpHVPKpu676XDzQE45i8OsCj2xwo+uIKN1juVl0KEZajvCpJGg6fnr5bjzywY6MRWD6fUEc7PUiEGKa/lXhkQFhocKPoZhHVJSqn4EoERXeZ8U1UFgbt3RDQsWgHOrV9jyZNXYEgNQNtR2i4iezpbdOqxl2pa9ALgy1nW4f5t39Hq5cujKp7xOpn3JK/WSbMiUaoRUq+R9REamfkSUiDaDOzKrn6+Qa9U20pTv8c+Y3Zb7j55GUaB4VTxqMtJwmRRDt7pCF3c6DfVirK/VWH+Ptr32B3/xrC46/5z94a2PLkP9/Pbx1AwD0qdrh96vKsfnvmEekSpWvHTyiEsWjUqN0rvUHWV6lArMNCRWDwi8gfIDgrDGKUEmx8duXShllXYZTG5Ik5dSnsutQH9y+ID7b1ZnwDsYbCIqfN0VUsg/3d6jNp75AKGU/VjYIhpgoQZ5UWypSP2ryJfXjD4bgD4Z/luobJt9M8Oqecqd87kZrM+AWc37SEFGpCpco+4MhfONPy3HBQx/jyY93RbxWnTYJMWDFrs6I1wwVtRdH3Q9Fm/qRfyaRHpXI1I9X+XdVsQ1WsxzBLpTZRpmAhIpB4c3eRpbKQmXmmAoAshEulZDyf7a0AwBOnFSdngOMg/Cp5ODEdHvDs2IS7XzJd0h2i0lcoInswW8A6gaHgJw+zFf2d/XDGwjBZjGhcYRTpAXU5EvqJ95OnkdauRjgrRDEPB632qOSxoiKKFHuw6rdXaLH069e34S/rtqrPX5dCtmXgWhbp2pTpe4wq55txH/HPPJXHEeocI+Kw2pGjTK4UO0NGm6QUDEo+ogKd+EDyU8/7R3wY8WuDgDAaUqpcyapLI68yGULTS5+kHw2YwyPfLADz65oBiBHUySJmr1lG+7v0AuTfO5Ou69bTlmMHuGExWwSu2s1+RLqj9WJFgAOuXnqRz5X9akfdXdadxqavXEm1pQAAPZ29uOJj+QoCu/w+tra/ZrX6r1u/gwI2E5V6sftDWBvpwfvbW7TpH54ipL3VRFmWu5R8UV6VBxWk+jN1NKTPxVO2YaEikE5qBMqFrNJjBtPNn//0bZD8AcZxlcXi51MJqnIYRv9ftU4+/1d8S8MXxxw4Tf/2oJHP9wJgJq95YoyZ/QoVj7P++lRooV8wF5Z1NRPfhx/KhEVnr5VV8C40xhRqSqx49SpNQCAdzfLM4UuOGoUAKBd139Gn0LLSERFV4Z901/X4qqnVuEzpVzZabVEiNEIj4o6oqJ8du0Ws+jNlE+l2NmGhIpB4XMw1AMEuUk12YqI95S0D78wZJoS3gApBztKt8oIt3+QC4M+FFtXRv6UXBDtJg/kd0SlW3djL4mS+smXiEp8oSKLgrBHhQsVPlw0so9KOiIqAPDd45rEvy0mCRfNGg0AaNelAPURZLXfJl2oo79ub0CY679USubVVT+cyPLk8OeVG6mdNrPwvR3optQPYSCW7+jAyt1dMJskzB5XKR63KydEshGVT3fKaZ+Tp2RHqFgU81gmQrSD0a9J/cS/MOgjPkVDGLRGpE5ZlJs8EFuQB0MM97/zJZ5dsScju+tEEDd25YZuNkkRn594KZdsEAoxLN/REbdDLvdxRXpUIiMqvI9KtDRXKhw3sQqTa+UU0NzxlZhQXSKORe3v0UemMlER1qERKkG4lJ8Hj4IUqcy0HH15svrawyMqDos5p6mf9fu68ddVe0UxRa4goWIwgiGGu97cBAC49JgxmlSNiKgkudPk/Q/qyjPXOl+N1SwfZyADO5/BUF/U9nfHn87K8/MWk4SJNSX45jFjMnpsRHRipn5ifM437O/Bg+9tw89f3Ygzf/8BmjuyP4VXlPM6wxFP/Y471xGVZV+245uPfYpb/rYegNzsUU/M1E9xuOqHV8+FIyrpEfSSJOFnZ09FdYkNV85vQpnTAptyjVMbq/WziTKxAVJHVPq8AfQpa+XN3Zw2c0TUrFRnpo3WR8VhNalSP9mPqLy5oQU/eXk9nv10T9b/bzUkVAzGh9sO4osDLpQ6LLjh9Ema51JN/fBdp82cnYgB99LkIqLiUXlUBrsw8Iv0Vcc34d2bTsJhDWUZPTYiOjFTPzE+5+pd/u4Oj/A4ZBNuPi1XiSz9jjvXHpXdh2QBd0BJcUbrSN3h9mLAHxRRCmGmVQRYIMTERodHVIrTFFEBgFOn1mLVrWfg9MNqIUkSapQqx/be8Lnbr4gGXuab6aqf9l6vmGnEK+TjpX6ieVS8qqqfXEZUdh6UO/+OH1mS9f9bDQkVg7FOaXp0xmG1qCrRRkDsltRSP0KoWLLzcbEq/08mcsmD4UnCo5KNadLE4PA+Knpifc77vFpzZS5Mtzz1U6EqZ9enRHJdntw7oP058Vk1agb84Xk7ZpMU7g1iCzdu5GtNd0QlGkKouNTdYeWfIxeFman6CQuV1iiCoshqjkhR8n4y0VI/6v4rfCzHoT5f1j8TO5VeP7zjcK4goWIwNre4AACHN5RHPOewJh9RCYWYKKfLmlBRIiqBUA4iKqqLRafbF7eUm+elKzM4TZoYnFieh1gXdbc381Ugg6Hv5ArkX+rHNaDtY6QXKnyUxg5l113utGrK8/WNG0XVT5rMtNHgPUfUhtp+nVDJRH8ddeqnJUq/Ezmioo2YlToGT/3YrSZUFFnFtTubvVQCwRCalaKMbFR7xoOEisHYpAiVafWlEc+JiEoSHhX1Sc1Dp5nGYs5dREVdngzEj6pka6wAER+L2SR6aKiJFVHRRwpykWLUV8kAkSmsXKd+XLpBeJWq1I/VLKFOae/Od93lOq9Qha7yR/RRSUN5cixqyiJTP/qISrqFaSjENF201aMcOOoW+px4nWnDHhUzJEkKV/5kMf2zr6sf/iCTe7nkeNgqCRUD4RrwY2+n/EE+rD7SL2EXEZXUhEq2Iiq86ifZwYDpQH9zUPcu8PgCaFddhPh8j2qKqOScaIbaWJFDdQk6kNuIitajIt+4+HmWbGPGdKOPqBTZzWJnX+60idYHO1URFTX6XirhWT+ZjKjETv3wSqR0R1R6+v2aGU3RNlhFUTwq4aof5fcdozMtEJ7K3pJFQ+3OQ7IAHVdVPKRp1+mAhIqB2NIil5CNqnCKk1JNKmZa9UXcZs5W6odHVHIgVLyxhcqlj63ACb99H51uHxhjFFHJI9TRCL5TjVX10+fV3oBzm/oJf3b4cY9Sds+59qi4+rWRJ6fVLHqgVBRZhQeO39AihIpS+cP9G8JMm+3UjxIlzZRHpTOBmWROqxnFNouonLJZTEKQRhtKKCIqymv4sNN/bmjBvza0ZGWSMhegE3JspAVIqBiKTQd6AERP+wCpmWnDFT+mrLWH5ykmfw6GyvGqHx7WVpc5bmvrhTcQwq5Dbrj6A8K7E81kSGQXtaGW35C8MW70fLotF97ZngnkD4aEoVc92uKYpkrYzCbRWDHnqR99RMVmFmmKCqdVfO5jRVRGKkKGn0PZMNOOFKmfOB6VNAvTRDpoO20WmFRm41JVVMmp6m+1+5Abf/5oF3qVzwc32tYr4vW9Le245tk12LjfldY1RIN7j3LtTwFIqBgK7k+JlvYBUuujwk/qbPlTgLBHJZepn1plB8MvGKEQE/0Yevp9Iu1TYreIHRGRO9RGRb6TH6zqZ7DXZQr1NF91yurMw+uw8VcLcOlcuR9Pvplp5YiKIlSKrGLgKTeVV+gGctboxL47A+XJempL+f8Z6VEpExGV9G6AuFDRCzU1/OfGBYq6p4pTJdyuePIz3PHGJvEz49cW3tiOk43J8rsO5UfFD0BCxVAIoRKjn4c9haofHibNlj8FCIuinDR8Uy6mdcrOjBsK+/1B0Ruhy+0XF2dK++QH6tJP3sMjVuqHV5/waq1sp364UCl1WETlDMdmMYmbWr6lfhw2s7ipVhTZcOQobWVhrIiK3FeEiYhKNONzuuBm2g63T2x0uOCryFBEhVf8NFbGNpzyqAkX1Or0l8MS/nns1jUf5M+dPb0eT3/3GJECykZaPF96qAAkVAwFb9A0sSZ9qR9vlnuoAICFe1RykfrxaVM/fFfpVg026+73h3uoUNonL1BHJvjOPpYg7xvgQiUzN67BiNZDRQ2/qfmDLCc+LUCOIPbqUz9WbepnTlOl5vkIoaJKwwz4Q0LoF2UwolJZZIPFJIExue8IEKXqJ80/U75paRxRFPM1XOBxQ606omIySSLarYebl80mCSdOHonRI2QxlOnPRZ83INJnlPoh0oZrwC9C2rGm+IbNtMlX/WRVqHCPSg5Mjnz3JVI/A9qumoBcxXBIGGmp4icfUJtpebXJoKkf5XXZFgPRutKqUacSc5X+cfsC0O8TnDZt6qe6xK5JC+jXwytwDvZ6NUK/KIOpUpNJEhPjeYlyv6j6CQvTdJpReTnymMrYQoX/3LhAKdWJNWeMKJNd97OyCl9VZjdxO9rltE91iT1uSitbkFAxCLwRULnTGnM6adijknzVT7YqftT/V7YbvvkCIZG/FhEVJUyv7mba7fGLvHQ1pX7yArWZlt+QYjZ8U26aPBqWbTNttDk/auwWE3hGKFeDCV2KQLeoUlMOqxl1ioAfpezs56qiKvpKw7CHxSvOoyKbOeOlrvXKRm1fl1yxx6Ok6htuII3R2q3KhOTJtaUi4qQnIvWjFyqDfB+HC5VMb+K2KUJlUk3u0z4ACRXDwMtoeQ4zGqlMTw6babMZUclNwzd1eWA49aNEVFTPdXl8IvVDFT/5Ab8BWM2SuAnEjKgMcDOtIlRylPopj5H6kSRJ3KByVfnjUpVPczFeZLPgR2dOwR++eRTOPaIBgFypxNHvvKuK7TBJAGPAXkU0xNpEpROequCN6Dy6iAqQvt85Y0xMFp5SV4piVTO7siiG2WipHyC2UNEXMQihkmFxva1dXtOkWhIqRBrhEZW4QiWF1A8/IWLlUDOBaPiW4YiKfsfNS5OtZgmVysWZX7DVoeuefj8OcTMtNXvLC3jqx2E1D/o57xNm2twKlYo4IXUx/yVHqR/+uS9zWjBNqSIcVeFEdYkdX5nRIFLBxzRVie/Rlx2bVWmY3YdkY2ZxBrvScnjfj50H3QiGmPgcqH1M/LrW5hrAip0dKaeCDvZ60eXxwyQBE2tKNEJsbJUsmExSOErMe+TUl2mv0+p0n8NqwpxxI/DVGQ0RLSFsFmWwYoaFyo48i6hkXt4SWYFPOOX19tEYSsO3rFb9cDNtIHMRlXc2teHqv6zCHedPx7eOHQsgvPNyWs3ixucakMfUq+fDdHl84kJHVT/5AU/9FNnMwjQeLfXjD4bEjWswL0umiNaVVk/OhYoSdSpzWLHk4pnY3eGJWk04qsKJuU2V2NfVj4lRbmojS+1o7/VilyJUshFRmaD4ZnYc7NP8/ErtVpgkeaIxv6796K/r8NH2Q/jxgim47pSJSf9fW5VoyrjqYjisZk1KZ0xVETbs70GRzSIEx+Xzx2H0CCdOm1areR+1R6WuzIGXvj8/6v8nPCpZSv3EKszINhRRMQh8YqdeqasJX8Dz20wbbviWuZPxrY2tCDHgs12d4jFumC2yWTQ9F7yBkM5M6xeDx+ri/LyJ7DG2shiSBIweUaQavhn5+VELzspce1RipH4A1fyXHKd+Sh0WVJXYMWvsiJivfWHRsVj245Oj9hPihtrdHbJQKclCRGW8KqLC/SmSJEcq+HWM/84/2n4IAHDvv7di04Hkm6hxf8qUWvmGri695uZatQgpsVtw/sxREXN/1KmfEXHSydYspMUH/EExjDCa+MwFJFQMQksiEZUU+qh4c2CmDTd8y9zJuH5fNwC51JjjUXXOLLaZhaHR1e/XpH463T7hCRodx+lPZI8xVUV4/frj8advz1IN34z8nPMqLofVJG4g2U/9KA3SYphpgTwQKgM89TN4xYckSTE9bLyl/e4sRlTGVhXBJMnNGpuVviROZbifPiKh3mjc8cYXSf9faiMtoC29HsuFSgJVTmqRVxll/AknGx6VnQfdYIxXduVHxJiEikFoScajkkREhZ8Q2TTTWjM8lLDPG8B2xWjXrerwyDvPFtnli1qpKv2j3ol7fEH4gwxmk4TaUvKo5AvTR5WjusQuPucD0SIqiuAssVuE+M5mefL7W9qxYb886iKeCMh56qc/nPoZCiNFREUWDNnwqNgtZjQqIoH/rLl/hn82eERiQLVp4w3OkoGnfqbWyUJFHTGaPW4ETFJiPg911CVeRMXGo80Z/MwKI21NSdbGpgwGeVQMAGMMLYlU/cRp+BYMMfzyH1/g8IYyXHLMGPF4LjwqmW74tmFfj2g+xY2NQHj3WmSVT4sypwU9/X709AfEiHo19eUOEf0h8ge+O40WUeEVPyV2i7hpZTKi0u3x4ZU1+/GVGQ3Y2tqLK5euBCCXtc9srIj5fSKikjOPSthMOxR4p1hONiIqADC+uhh7OjxiJg4XAvqIitrH1OWRh40menMOhcIVP5MVocLX57CaMLGmFB/99NSEKgOd1vB1JN7rrVmYT7U9z/wpAAkVQ9DrDd9I68tTM9P+Y91+/OXTPQCQc6FizfCuYZ2S9gG0MzPcukFg8m6yH726iAqHd4kk8gue4owmQHjFT7HdEvYrZFCoPLuiGff+eyvaXANiE3H0mAos/e4xcaMVIqKSY4/KUCMqNbqIo96bkSkmjCzB+1sPYiOPqCibD7VHhTGm8ev5gwy93kDCa25xDWDAH4LVLGGcUuFTLMqQ5fdoiJOKV6PxqMRL/fCIUAYLDXYo0eYJeTDjh5Oxu8/ixYsxZ84clJaWoqamBhdccAG2bt2qec3AwACuu+46VFVVoaSkBBdddBHa2toydUiGpaVbTvtUFFljdjgE4vdRWbW7K+r38It4NsuTrRn2qKzb2y3+3TsQiJgJUqQRKnIFhNsbecMYVUH+lHxEpH6iRVSiCZUM7k47lA7GB3oG0KVE76bVlw16M3QqN9bcR1TSk/oBZEPrmYfXxnl1+uCGWp6aiRZRiXYd7OxLfNhfu9KRtqbUIWY28aqfUkdygsyhum7z0Q7RyIZHhX9ma/OoUCBjd58PPvgA1113HT799FO888478Pv9OPPMM+F2h/OAN954I15//XW89NJL+OCDD3DgwAFceOGFmTokw9KiVPwMVoESz6Oyra0v6vf4cuBRsWQ4orJ+X4/ma16FwcuTefiWX2xc/X5htFVDEZX8JF6Kk0fGSjUeFYZQhtKM/Upvnm6PT/ih4u2YOU6bfGy5i6hwj8oQUz+l4WvSDadNxvwJ1UN6v0TRV6vwzYfal6QWsjza1ZnEVGI+C0ctxsJCJTmBl2hEJRselUTK57NNxuJwb731lubrpUuXoqamBqtXr8aJJ56Inp4ePPHEE3juuedw6qmnAgCefPJJTJs2DZ9++imOPfbYTB2a4eDN3gYLMzriVP1wA5UeUZ6cVTMtb6Gf/ptH74Af+xU/j81igi8QQne/H1Uldni84aofILybVM9RUkNCJT+JV57Mq36K7RYRRgfkz7nDlH6jJxe/XR4fujzyDSheWTIn1x6VXm96IiqjRzjxrWPHwGEx4wenJt+nJFWm1Wv9FfyctqrSfTztYzZJqCm1o6VnIKmIysEoQiUcjU3u1qoWKrn2qLiGk1DR09Mj72IrK+WWy6tXr4bf78fpp58uXjN16lSMGTMGy5cvjypUvF4vvF6v+NrlSr7u3YhwZa/PB+uJtdP0BoIiLA1AYyjLjZlW/r+DIXmnm87ZIHxGT5HNjKoSG/Z29oudbjiiok399A4ENM3g+M1jFAmVvCRewzeewitxWDTi2xcMRe0DMlSEUHH70VWklCUnFFFRUj85j6gM7WYlSRLuuuCIdBxSUpQ6rBg/slhU8vCfpz1KRMVpNYtKm1QiKurr7pGjy2E2STh6TOy+M9FIuOpHV7WUCfIxopKVu08oFMINN9yA4447DtOnTwcAtLa2wmazoaKiQvPa2tpatLa2Rn2fxYsXo7y8XPxpbGzM9KEXBEIBD7JTi9VaXJ/2Uav1nAgV1Q0k3U3fuCAbUWQTIVZe+cPLk4WZ1hlO/fCUgVqcxBvrTuQO/vsLhFiEWOlTIgXq8mQgc0Pe+lURlW7x2Us8orKn04PVe7rSOu03EYRHZYipn1xy5Khy8W8+sdmqakHPS5MdVpOIYvCNTCJEi6jMGluJdb84EzeeMTmpY026j0qGPq/+YEgUZgw7oXLddddh48aNeOGFF4b0Prfccgt6enrEn71796bpCAubngQd+nynGQwxTY+SLw5oPRtqtZ4LoaK+gaTbUNulXIhGFFvFicjFC7+pFNu0eWbXQED03+CzOkwSxCRZIr8oc4SNsvxmwunjERW7BSaTJCrMMhVK594mjy+I9l5uek+8XPXDLw/iooc/wRcpdE1NFcaYSJHph+cVEkeMrhD/duo8Kt5ASJzvdotZiIPkhErYTKsmlcomLkxNUvx0W6Z7/7hUDTCTNQRnkozffa6//nq88cYbeP/99zF69GjxeF1dHXw+H7q7uzWvb2trQ11dXdT3stvtKCsr0/zJNc0dHlz9l1VYvadz8BdniERDdXZVrb46qqJvHa1W67nwqFhUE0PTLVT4hUgbUZEfiyxPVplplRsc9wHVlzuzajAmEkeSJBGO5+KA41ZV/QDhz3WmSpT7Vcb1NpcsmhKJqJToNh28oWM28AZCCCr+sOIslRNngiNHhyMq+qofOfUj/24cVpMYQjrUiEqqcKFSUWQTFUTRsGZ4KCG/l5TYLXnVIypjR8IYw/XXX49XX30V//nPf9DU1KR5ftasWbBarXjvvffEY1u3bkVzczPmzZuXqcNKO6+vP4B/f9GGpZ/sydkx8DDtYEJFLTbUQoWX8HHUJwFX7rnwqACZSP3IF6LKYpswNfKQfER5spN7VMIt9McrI+THVlHaJ58RQsWlj6iEq34AZLyXSn+UarFEIiqnTq3B+TMbxNfJjL1Ilm6PD+9tbhPpJbVxvDhLDdoywWH14Y0sb/Sn/n3z1I/TZkbVEFI/g3kDE4FfiwZ7r0yXJ+ejPwXIoJn2uuuuw3PPPYfXXnsNpaWlwndSXl4Op9OJ8vJyXHXVVbjppptQWVmJsrIy/OAHP8C8efMKquKHpxJ4Z9hc0MONb4N8uEwmCTazCb5gSHPhU3dnBbQXbZH6yaK6liQJFpOEQIil/YTsUpWIlonUT3wzbZfHL3ZfX5nRALcvgNOnZacfBJEaPBzfHpH60UVUYvi20oVHZ4aVpMRuApXFNjxwyVHo8vjx4ZcHM9qU7ud/34g317fg+lMm4uYFU0T00Gk1x93d5zvqaBAfiqhOnfDOxQ6LWURXOxIUKowxHOxLX0TlqDEjcPOZkzF7XGXc12V6KKGwEeSZUMnY3efhhx9GT08PTj75ZNTX14s/L774onjN73//e5x33nm46KKLcOKJJ6Kurg6vvPJKpg4pI/BfbDZDs3qSKSeL1ktFnZcEtGrdmwOPCpC5pm+d7rCZtkL5efHBhL0DfGKsVflbvtC1qn63I4qtuOH0yZiuMuoR+Qdv3a5P/fDPOvdeZLrcU1+1U+awJnXzV3sqMsWb61sAAP/v/e0AIsVcIXPpXLnL9tUnTgCgjajwCKrDKlcAAuGN52B0e/xCLFSXDF2omE0Srj91Eo4dXxX3dRn3qCiRp/Ihjk5INxk7mkRc6g6HAw899BAeeuihTB1GxuE3uTbXQNpLaRMl3O568F+n3WpCr1d74eMfTk40M222/RgWswT4039Cqs20XIhwjwovyeSPc+HHL2hWsyQMyUR+w7tq6lM/PHrIzZOZTP0wxkQlGScRf4oaMfE8g/1UimxmEfnp9wVVgxsL/7N+1/nTccNpk1CjfB7CwpRpPSrFsthINPXDI3UjiqxZHi+S2VRlvqZ+8sctU6D0KBe+QIjhkNs7yKvTTzAkz6cAEo2o8F4q8oUpEAyJHVS0i3YuPCpA5pq+qVM/FbryZH1ERR/+zNZANWLojBRmWu05yX//3BOQyR2qLxg2pXLKE/CnqLFnoc2/2hfx6c4OQ0VUTCZJiBRA51FRRVS4cO3zBhLyA6XTSJsMma5Sy8dmbwAJlSHTo0qbtOYg/cNvrkBieUV9LxW1ca5aMZRp+qjkSKhwQ22mPCqVxarUj8ePYIiJ/gE8olLmsGimURfHmaNE5Bc1UYRKvy8oPve8qVYmJyhHa9aWdEQlztiLdKGOqC7b2h5RGWUkolf9mFHmtIiUXJfbH/P7OQf7opcmZxoxlHCYmWlJqAyR7v5wqPBAd3ShEm3ybrrgH6wimzmh9IxNd+Hj6Q6n1Ywi5cLkj9LwzZ7l1E+mTGPco1JRZNWUJ/epLtZcqEiSpDG3GfHCbVT4DeSgyqPCu45azZIQnZlM/eiNtEBic37UxJtblA4YYxqP2vtbD4rrVbYmHWeT6B4VEyRJUhlqB4+M85RitiMqIgKYoenJPENAQsVgqCtmWnsiK3+e+mQ3pv/y33j+s+aY78EYw8ur92Hl7uR7sSSrgMMTlOWTNDwl1RI1/5mLhm9AOMQZSOPOgTEm/Cjq8mS3LyguTnaLSeNDmTMu3Aq7yIAXbqPCzbQdbp/4DHF/UkWRTYyIyOQE5WhzehKZ86MmHAHNjEfF4wtq0qvNnR7RANGIwlw91E9d9QNAlCgnFFFJY2lyMgzX8mQSKkNgwB/U7HRaXJERlSc+2gXGgFte2YDmDk/U93nqk924+aV1WPj0qqSPIdmZHPrUj0vV1TbaZM7cmWnTH1Hp9QbERXlEkQ1lDiuU+xX2dskiUz/1dPbYcETFkWWxRqROZZENFpMExoBDyqC5aC3sM1lVEz31k1xEJdN9XvhGxWySxLlwQGm1YMRUZzSPCm8Gx9voJxJR4dd6o3lUhl158nCgR1fWG82jIqmKgG55dX3E870Dfvzy9U0A5AtpsjM9ko6o6HZo4YiKNapa9ylCIVcelUAaG77xHbXTaobDaobJJImfW3OnLCL1lVNT6sJTWPd2RheaRP5hMkmibLRNuamojdScTFZRREv9pB5RyeyNqcIZHimxXxHtRoyoqMvR1R4VAKI7bccgE5R9gRA+2nYIAHB4Q3bbFFBEhUgavVDR91LxB0PY1xVOB328vUPkADl/+M92zde9SfpZ1EIjEcKTZbUeFfV8FK8m9SNfbI3QR4WHtNVj1Pm/9xySG0Lp51uoe14cyGGvHCJ5wr1U5B1ydxShklmPStj/xUmkK62aTHtUXKpmkdxcvr/buEIlmkeFi8HqBLvTfvjlQfT0+1FTascxTfEbtKWbZKYnd7l92Li/Z9DXqSGhUkBsa+vF08t34+Pth+K+Tt/RVR9R2dfVj2CIyUZVJbzYpRoj3uPx4y/Lta33uxPIj6oJh+oSu6jo+zJEj6io+qjkYNYPkN4QJ2MMv35zEx7/704Acg8VTrXSP4F3rtSnfgDgyuPGAQAuU5pHEYWBft6PaPan+v3bMlhFwVM/DRXhypBkq34ynfpRh/p56TTfXBmhj4oebdWPNvVTpUTgDvXFT/28vv4AAOC8Ixuy3rmXH38wxCJK3/Vc//wanPeHj7C9vTfu69Tka3my8SRzGnh9fQsefG8bvj5rNI6bWB3zdXyHVl1ix6E+L1p7tE3fdh3qAyDPhekdCMDj60eXx4dxkOfFPL+yGf3+IKbWlaKn34+WngF0eXwYk8QcmWQVsEO3Q1N7VNxK6+yoVT/ZTv2kMaKyYX8PHvvvLvG1ekfNO1LuihFRAYBbzp6GEyePxNws756IoTGyVNv0LdxDJfz7z2R5Mk/91Jc7sfOQG4ylUvWTWTOtulkkv+kaqY+KHnVfGn5p4dfEaiFUYkdU+n1BvLOpDQDwlRn1GTzS6FhVA1v9wRDMpthicvchOVXd3OnBxJrSmK/jJNuTK5tQRCUK0xvkYVYbBxmtzkXClLoSSJL84e9URUx2KR+U8SOLxS6Od7L1B0N46pPdAIDvHt8kLmDqiEsiqIVGIoiIChcqAzz0axEnMRcqgWAIXLRn20wrqn7S4FHRmxrVNwue+tnbyc20kRdnm8WEU6bUUMO3AoNHVPhMlnDqJ9JMmwlzIu9KW2w3Y0ptKZxWMxorkxtmqT9f0416o1OhuzkZsTzZqirvVTd8A8Kblnhm2nX7uuHxBVFf7sDMxorMHmwU1NfhwaKAvMdWNK9UNNRl6mSmLQD4HJdtbb3iw8xZubsTu5XdNz/Jq0vsQo2r0z88ojKuqhgVznDPDgD4ePshtPQMoLrEhq/OaAgLGU9qqZ+UzbQqoSPSLcpFUZ0Cyr6ZNn1VPwO6i7x6p8jDvfxGFS31QxQm1cqNp1PZIXeJqp/kPCr/2dKGnQf7kv7/+eTkIpsFL31/Hj748clJ71Rt5gx7VFSpX71/ppAnJ8dCVHkF1Z1pFY+K8nmJl/rpVTZ2tWUOUeKeTbRCJfa1kTEmImN8yORg8HtJcYI9ubJJfh1NnlBf7kBlsQ2BEMOXbeH83v7ufnzjT8tx+ZOfAQiLigqnNbx7U3XC5KG3pupi4fbn37NHKVWeNXYEHFazuEgkG1FJtpxMmPO4mTaKR4XftNUX71z1UUmHd0AvNrnJEQhfnDjRIipEYcJFKN8hxzPTxhIC29t78d2lq/DDFz5P+v/v98nv6bSZUeqwalq5J4q+6scfDOEbjyzHohRaGURDvdHRiygjpn5EZ1d1eTKPqCh+tXhVP+Guvbnx75hNkkjRxbs29vuDIhru9iVWoJGvRlqAhEpUJEnC4Tz9sz+c/tmt5Jn3dHhwsNer+cWOLI2c1sp9D2qhwnd1B5TmcPXlTgDhcDR/fvchN25/bSO2tsY3QoWnXabaRyXchyV8EsufcG8wqPw8wuXC2SJc9TN0oaK+CY0e4cTCE8aLr9UVQEDiKTQi/xF9MZQbD0/Lqs20/HO2v7sf97y1JaIEnVfy7YnRAykeHn9k1U+y6M3vn+7swGe7O/H2pra0+GrU57/e6GvE1I8tSnkyb4JZrVzDPb6gZjOjht/0cxlt0ke+o6HutJ1o6odHkkYUJ+ejygYkVGLA0z8bD/Sg2+NDKMQ0ImRzi0v4TcqLbBERlQF/UIiRpupiTbt2IJwi4rNk1M+v3tOFr/3xYzy9fA/uenNT3ONM1qXN87H8w6vuTBs+ieXn1M3esh3mTGfDN75zOmXKSHz001PF7xYI76I4FFExDtXCc6A0fBPjEyIjKu9sasPDy3bgiY92ad6Dnye9A4GkhQH3RhUNoXEaj4DyKKd64xKtoVyyaDwqutRPkQGrfmyWcDRCn/optpnFRi5WVIWnUXIZbUqkl4q6zUWiI1x2KOnNpuriIRxdZiChEoPpSiOfN9e3YPZd7+KWVzZoRsZvanEJ0VGhiajIr9nX5QFjQKndgspimxASPPXToswFqq+QIyr8InGw14uFT68SkZWPtx/SCCQ9riTLkyuV3WSnEg7XdKbV1ejnas4PAFjT2PDNqzPNqYlM/VBExShUKiK0p9+Pfl9QXLw1qR/dZ5v3EOGod9bJpmW5yHEOQajoZ3NtUhn8+e4+NIQJ4+qNSvmwiKgowk8z60d+TJIkVeVPdJ8K930MRXwOFVsCm7hUIirb22WhMrGmZAhHlxlIqMRg+ig59dPT70cgxPDiqr0a/8nmFpcmmhEegsbz4fJzVSU2zcArfrFrcckXxAYRUZEvEuv39aDT7UORzYwjRpUjxIDX17VEPUbGWNJ5RX0JXrjqJ7aZNtv+FACwCI9KOiIq2g6UaiJTP8a7OA9XKpxW8IzlTsXYLknac0Vfdq+etgxoL/KD9dfQIyIqQ0n96FK1a/d2i+fc3gCuWroSp9y3LKL5ZKK44lT9GNOjop71o3iIVL+f6kG603LhmsufTSK9f/pSiKhwoTJhJAmVgmFMZZHmpmU1S2hTXcQ2HQinfiqKIiMq+o6x6qqeUIiJ1E+dLvXDd3TjqorxP7NGAwBeW7s/6jG6BsKza5IVKh19XgSCIfGBLnNYwrsNnZk2N0IlfY24BnQdKNVUFNmgtt9QRMU4mEySiKrwi3C506pp0qX/bLfr5nWpKyY6+nz43lMrcdOLaxP6/z2qqp9UCfd5CaLH48dOxfcGyDej97a0Y0+HB0s/3p3S+6sjqvoeL0MRWPkKj0YM+EPiOqfewOgN2HrcivjMrUdl8JL13iQjKowxiqgUIpIk4c4LpuM788YCkHf2m1vCYdcdB/vEDJHyKFU/+mGB5bw8ud+HQ24v/EEGSZLL3IDIGSBN1cU498h6mE0S1u/rwfb2PgRDTNOCnxv/qoptCV8Mq0QJnk/zYS51WMO7DeUE4F6VXAgVWxobvg0EYqd+zCZJE1Uhj4qx4BNxdygXYf3NWP/ZPtjr1aRS1BUTa/d2493N7Xjl8/1iIxKPtKZ+AiGs39+teU6dilr2ZXtK76+OqKqvQcU2s2hcaST4TV4dceAeFSD8eYnV9M2T46ofILGKyF7V5zORqp9DfT64BgIwSeRRKTjOnzkKd5w/HXWKmNih6qUQYuGUQrkqonKw1wvGmCb3C4RTO91uv4im1JTaxYmjv4COqy5CdYkdp0wZCQB4cWUzbnxxLWbe+bYQTHyQXjKdbKtVfUN49MZpNcNmMalyn/K6vCozbbbhVUb+NHhUwu7+6OsgoWJcuDDfrpy7+g0BjyJyAiGmadqoNqyu3xeem7K/S+tliQb3QKTDTOsNhLC2uVvzXJvKM7d2b/egM2r0qCOq5U4rSlXTxI2Y9gGiR1V5Z1pg8Db6fV7+O819RCXR1E8ifVR4NKWxsijqhi7XkFBJgFEjZMMrH2xcoxrtPaW2FFXFdiFU+v1B9HkDER1juVm21xsQXVDrlNJkIFKojK2SVe03j5Hny/zl0z34x7oDYAxicicvmRybRLdLh9WMUuUixIUXTxvpZ/0Ij0ouhIouovLJjkN4bkVzSu/Fm9upL0hq1JU/lPoxFlyEcpGhPneB6NFCtWlevRtVD3hLSKikIaKiFtcbD2gHzKmbSzIGvLWxNan31kZU5Rb6/HplRCMtELnpsllMmshR4h6VHJppE/GoqH63iURUuJDPR38KQEIlIUZVODVfXzZXTgddMLMBzy86FmaThCKbRZzcB3u9mpAqoPWQbGmVIyLcSAvIFwp1pJWH306aPBL15Q4RFQDCpWfNnXK+ekxVcqE63i9gx0G3cozyceubX+XSoyJa6Csn440vrsX/vbph0L4y0YhnpgXCu267xZSTtRKZg0cQ+aC9KXVlmufVs1M4baoqO3V+v1XlX9FXB0XD4xv67lu9SdAbffXVgMu2Jpf+idaJlEd+jRpR0Z/fDt3Xg1X95JNHxReIU/XjTc6jsiOP/SkACZWEaFAJFZvFhB+eNhEbf7UASy45SpM2qFEZatXDvgAouxX53zx1U6+KqJhMkkbMjFPEh8VswjdmN2qOhxv+eOonmYgKEN418A8n30XpQ4q5FSq8p4vcCpqHudWdghNF3y9BD89L59t8C2LoVOmquqbVaYezRftsH1RFVGKFzRMRKv26zqepoE5V8F0+j4iqUz8Akq78idbVmk9QzmXEIJPoIyr6zUvVYBEVXp6c7x6VJKt+hJGWIiqFC0/9ALIYkSQpami0WuVT0Vf9AOGOf7wXQn25tqU2T/+U2C2a/h5XHjcO5xxRh+MmVgEI76x46icZjwoQTnV8trsTQDjNpD8BuJk225OTgXB5ciAY0nQL3aWqekgU4VGJlfpRdlHkTzEelbo+OVPrtRGVaJ/tNlXkxOOPIVQSSP2Eq35Sv6lJkiTEFN/l1yrXDXXqB0i8VTrnkx0dALTmSV6ibMQ5P0BkBE0vVKoHq/rhZto8iKgkmvpJJKKyt0vZ9CZ5L8kWJFQSYHSFVqjEQhtR0Vb9AGGfygHelbZCK1S40W9cdZGmE2xFkQ1/vGwWvne83Pq9zTUAXyCEA8quLumISmm4uRwATKqVVbR+5L0vh2ZaqzKUMBBiInIEQAyETAbhUYkVUVFuZuRPMR5q/5HTasYY3bmiNtPyNIs6xeKJsRvdN0hEJRRiQiAPxaMChBsu8htObZl2XAf/XCc6fI7D2x58ZUaDeKzC4KkftfADIqNdvHCiw+3TVM5wROonl31UkjXT+gLY2+nBX5bvjtldmUeQRsa5v+USEioJoI6oxPtFjowaUQl/oPUNlWJFVMbF8JzUKBeoNpcX+7v7EWLyiZbsh4vvGjiTlLxkROonp2bacHRHHVHZqRMqh/q8eGnV3ojBg2r049z1HK50IZ5aWxr1eaJwqVJFVCbXlWp6qADa1M80Zb6XOqLijrEb3d8Ve/ZPIBjCO5vbxNdD7WKqr1bjLQ14CS3/OpmIypZWF7a09sJmNuGc6fXi8REi9WNMoQIAs8eOEP/Wb15GFNswqsIJxoAN+3v035oXZlp1WjwWapEVYsCP/roOt732BX72t/URrx1QCkCAcHQ53yChkgANmohK7Amo6sGE+qofAJqhXzWldnGD5HABMT5GHXutUPteMXZ+TGVR0nN4IoWKfIPWnwD50vBNI1QO9oGx8An6//6zHT9+eT2+9fiKmO8VNtNGX8fMxgp8/LNT8euvTU/HoRN5hNqjovenANrP9ozR8vmojqj0x7j5H+rzxRTH9/57K67+y2oAskiJVW2WKPqUZZ1uCnOtck1KJqLy988PAABOnjJS0zp/RqP8MzhiVHnU7zMCi04MDyWN1jRtZmMFAG0XYEC+HvJKyJyWJyufWbc3ENOzp67oAsJp/lc+3x8xI4qXtVvNUt525iahkgAldoswusZP/YTb6OurfgCgRPUhWHTi+Igd/hXHjcM3Zo/GJUpJsp7KIhssJgmMAav3dAGQ696TRS1UHFYTRisRo7CbXP4g83xsbhq+cY+KNvXjGgiIOUiAPEwOAFbt6cL7W+Sqh3+sO4B7/71FCJrBypMBubLLkoPIEZFZ1DvEKYMIlSNHVwDQdqfVR1Sqim0oViIksQy12xRj4vwJVfjTt2cNuXGa/vyr00VieaTV7QtoRHws3N4AXlq1F4DcK0rN144ajc9vOwOXzo1+DTICJ00eKf69JUoVIRdr63RCRW1KLc7hrB/us/nNv7bgzN9/iLv/uTniNX1xDLQvr9mn+ZqnfSqLbVkfPpsodGVOEF6iHC/Nwnc6LT3RIyr9vrB65yXOaqbVl+G3/zNDE8FRYzJJQiitFEbYVIRKeJc5saZEXEj1QwnfU8LXh+kMiNnAonhU/DqPCqA11PJ8PQDc+veN8AdD+L9XNuCh93fgyzb5hqEf504MH8ocFnFhn1oX/3PMIyoH+8LdafW7z1EjnCIVHMtQy8Pu3z52LE6YNDLqa5JBbfi1W0wR4zL4dUfdhDIeSz/ZjQ63D2OrinDm4bURz4/QVUoZDUmS8PuLZwAArlZFVzgzG+XU0Lq92tQPT63ZLaacbmr0qfhHP9yJZ1fs0TwWT6j8+aNdGkHLjcP6SfL5BAmVBPnqzAbUltkxb0JVzNfwC9ieDreYwaP2qFx53DiMqSzCA5fMTNlgV6NclHhEZXJt8uVk6ogKT/sAWpPW9vZerNvXA4tJwvkzGyLeI9MIj0ogJHpgcCOkWqh0q6Ir+7v78c6mNnGSdihVEoOVJxPGRZIknDW9HpNqSkRIX01DuQPnHFGHS+Y0YpyScvUHGbo8PjDGxM2Jp20byp1i06KOqDDGxOeMG+nTZc5WC5VShyWi4lC9eRrMp9LT78efPtgBALjpjMk5McrnA187ajQ++dmp+PGCKRHPTR9VBpMk981RV1Z58sBIC0QvbvjV65vEsTLGRNVPtGj4rkNuEfUDwhGVqpL8FajD81OaAt8/aQI+veU0UcobjQaliodHJCwmSeMqnz6qHB/+5JSIcGsy8AgCH0cytym2cIpFterCpm7wo54s+vJquSLg5Ck1OTFY8ZPxQE8/vIEQzCZJlGfvOhQ+yXi7cx4leubT8M6CD40MDyWkiMpw5A/fPApv33hi1M2BJEn442Wz8JuLjoTVbBLn1+4ON7yBkOhGPXqELJIbKqJHVP7v1Y046o53sLfTE9VIPxRsGqFijfBHlDmtwrA7mE/lqU92wzUQwJTaUnzlyOxvQPKJhhjp3iKbBZMVY73ap8I3QEM1Rw8VvVBpKHfAFwjh4WXbAci+G75RVkecyxwWkfZSNwcMR1RIqBiCwfJ3dotZ42Epc1rTnvOrVRnpasvsKaV+im1mEV2YpBIqPKLi9Yfw989lofI/s1IXVUOBn4y8V0xDhQMTlejPTqWjbjDERNOqkybXAAj3hgDC0ZaBQHwzLWF8Ej0PeZrziwMujSdhwkh5gzKuukikWg6qTLcrdnWg3x/E+n09wshYlraISvjGWGK3RFSclNgtQrzEi6gM+IN46pPdAIBrT5lgyKGD6YJH39Y0d4nHuAjM9XgBvqHk3H3hEQCA5z/bi9aeAfH5kyRt9HxkqR0nT+FC5aB4PBxRodTPsGG0qpQ5Ew5qtVCZ21SVkhCSJAlHjqqAw2rCzDEV4nEuDnq9AdEu/OQpNUM74BSx6BozjaksEjcLHrZ09fvFjpefgGq6+30IhZioXsrHYVtEfjFdqXbZuL9HhPodVhNuPGMyfnLWFFx49GjRvbW7P9y9lIviDrdX7LzT1elYn/rRpx5KHGHx4okjVF5Zsx8dbh9GVThxzhH1MV9HAPMnVgMA/rMlHHlwp6GBXzpQe1Qqi204afJIHNNUCV8whBdX7hWfvxKbNk0oCxX5er5yd2c4Re6m1M+wY9SIcIQjEy3Z1RGbueMrU36fp686Bh/99FRNubU+n1nqsOTs5s4bvnEaRxRhmrLb3XmwDwP+oEj7lNotmD1uRMR79Hj8mvJDEirEYPCWARv3u8KeBJsFY6uKce3JE1Fit4h+SFychEIM3cpnUV1Kn65Ox+rzssRuieiKWqp6rKVnAKff/0FEJQhjDI9/tBMA8N3jm4atNyVRTpo8EhaThO3tfaLJZLiHSv54VHin9BMnycLqQHe/MHOXOLSfleoSO5qqizG2qgj+IMMf39+OA939wstXTWba4YN6gGG6Qr9q9BGVVHFYzRH9VPQXL/1E52yij6g0VRejptSOEUVWhBiwra1P3Bwqiq2oL3dq8rGAfCPhpclA5AAygtAzfZQshre194rPl97bws8LnnbsHQgIzxivUHNazWkTA3a9R0Wf+lFFVD7e3oHt7X14ebW2BHXVni7sPOhGkc2Mi+doZ4cRkZQ7rWIj+K5S/djnzf1AQkB7neal6pXF4db/3EhbYrdoPivcdH3qVDmq8sdlO3DG/R+I4gSKqAwjNKmfNJnp1DRVF8NskjB6hFOkQtKFPqKiblCXbfQzOZqqiyFJkoiqbG51ocst3ygqlRvHDKUPBqe73yfKNS0mifqkEIMyqsKJiiIr/EEmjJT6GxNvM9+lCBn+NxD2VKXz3Fd7VEodkREVtUeFVyJ1un2aEtWXV8nC5dwj6nPusSgUTp8ml25zoZIPAwkB7bWRN/vjIuNQn08MJNRHVLhQ+eGpk/CDUydiRJEVbl8Qu5XPbCWZaYcPo0ZkNqLSWFmE5xcei6e/e0zajbp6cVCRw4iKfjc6XhFlQqi0uETqhx/nCUr4k5cxd3v8g7bPJwg1kiRhupL++WyX3KtIH1Ep16V+1EKFp37SOTdK3UK/1GGB2SRpjOGldquIqOxTtfbnx+LxBfDGerkT7f/MGp224zI6XKis3N0F14A/POcnxxEV9YaSR5F51WOn2xc7oqJE0EcU2/CjM6fgtGnaHjr6CHs+QUIlzagHGGbCowIAxzRVYnwGxnHrfSG5jKhYVMdiksIdeKcq3UU3t7hEaJ4f52Vzx+IvVx2D2847DIAcmh8I5G4CNFGYHK6kf3jbcX2VDY+oeAMhDPiDml4+/GaWTiO92jzJfS/qqEix3SxunuqSaS5U/v1FK9y+IMZUFuGYptR9bcONxkq5wisYYth50J1HERWVR6VMl/rp8wrhXO60osgaGVHhzBqr9fVR6mcYMSrDVT+ZxGSSNFGV3EZUwscxaoRThL95RGVLa69opc87aZpMEk6YNFKUj8oRFar4IZKDG2p5mae+b0mJ3QKLUtrb7fFrIiqcdG5S1BGVErtVc0xOqxkWs0kYPNXmce6XWbVbLrE9+4i6vG2Rnq/w6Gxzp0dU/ZTkOqKi9qiUaVM/bl9QeE4aKpwaka2PmKiFitNqzun8osEgoZJmimwWkevLVEQlk6jVem7NtOHjaKoOR48m1pTAbJLQ7fFjc4sLQORx8h2v7FFRIirUQ4VIkKm6mUD6clRJkjQ+FfXsKU460756j4r6mEp0X6vhHZ35jUvdhZpIjDFKn6rmDjfcipm2KNdVP5rUjyxUSu3hURFfHJCvi3VlDo340M+pmziyRHye8tmfApBQyQjcUJsJj0qm0QiV4lymfsI7P/U0aYfVLEzE3EOgT1Hxm8iAPyQqM4Y6wZYYPoyrKtZE9KLtNNU+le4oEZV0lSYDuvJkXeqnVPk7Wsksj6jw8tqmGFPZidioIyqiPDnHfVTMqqgY96hIkiRm9fANXEOFQ0RUJClSjJhMEo4aI0dVqvM47QOQUMkIVx3fhOMmVglzZyGhFiq5TP2oL876Cyyv7uF9LvRD1ErssuEQCE/Cpa60RKLYLCaMV0XxokUrKkSJsi/zqR/VucDTyXxXHy+isrfTg35fEAeUGTAkVJKHC5U9HZ68iajwEQ2AtpssFyI8/VdX7hQiu6rYFrXqcZYiVPK5Ky1AQiUjnD9zFJ793rF5/8uPhvqimFszbXjXME53gZ2jMwTqUz+SJImmXK1CqFBEhUicKar0T7QdND83ZI9KNlM/Vs0xlcSJqOzt8oi0T7nTmtPzuVDhqZ+9ao9Kjs20ne6wMDarrpN6M2x9uQP1Sp+VcTFm1H1jzmicPGUkLp8/Lv0Hmkby1z1D5AR1yDunHhVV1U+jyqAMAHPGxRcqAFBeZEWH24eWHhIqRPJMqSsF1sn/dkZN/cifua5sp350wkR8HeUYB/whrNojp0d5HyIiOXhEpcU1INLI6m7eueBrR43C/e98iZMna8eGqIcKWkwSqkvsqCm147HvzMaU2uj+pPpyJ5ZeeUxGjzcdkFAhNGhTP7nbgZU6LMLUqJ9YPa6qCNUldhxSWj9H89LwiEqbElGh8mQiGSarLuz68mRAa9jmjQfVZCr1wwVQsd5Ma4/s9dLT78cHyvA5SvukRlWxDcU2M9y+INy+IKpLbGJwZa5oqHBi3S/ORJFu86WO4NeWOUS05YzDtP1SChG6ehMabJb8qPoxmSS88YPj8c8fnqAJbwJyameOarZPtOPkHoJWiqgQKaCu/LFFye1zIdyjiqiUqtIv6WxNwIWKJIUjJ3wwIv/sqyMqVrMkjv8/W+WheiRUUkOSJNHDCZCntOfD1OkSuyXiONRmWZ7yMQokVAgNPKJiM5tyPiXUYjbFvCjw9I/Tao4qQsIRFTnqQmZaIhnUM7sO9nojnq9Qbgpqj4raS5XOiArfPJTYwjenbx7TiKuOb8Ll88YB0JppK4psopqDTxcnoZI6Y1RC5ZSpkVPa8wV15U4dCRXCyPDdY0WRNa9z2scpY9gbK51Rny9XQvN83omdypOJJDCZJOH/mBVlMrfarN2v9OpRi4H0RlTkz67a91Jf7sRt5x0mzJ7qTrWVRTZcfeJ4UUKtPzYiOcYqP2OzScIJE/NXqFSqph8bLaJCHhVCA9+95TLtkwhT6krx9HeP0XQCVlPh1B4/pX6IZPnPj07C9vY+zBsfOaWce1R2d8hVNWaTpBHN6az6mVJXispimxDn0VB7VEYUWzGi2IYfnDoRd725GUBk5RyROBOUcSWzxo4QG6B8RF31U18e/bpYqJBQITTwqp9cGmkT5cTJsXc3+uOn1A+RLDVlDjFLRQ8XwnzOT4XTqhH36Uz9VBbb8Nn/nRZ3+rfao8KP44r547DjoBsjS+00MXkIfO3oUWjv9eLcI+tzfShxqTKwR4U+vYQG7lHJ94jKYOibwFFEhUgneiFcUWQVBm6rWUp7lVk8kQLIXi0O/+xbzCYsvvCItB7HcMRuMeOHp03K9WEMirrqp77CWBGVnG8zH3roIYwbNw4OhwNz587FZ599lutDGtbwORK5bJ+fDo5tqtRUC1F5MpFO9EJlRJFNNFQrc2Tf32UySaJkubLANxlEahTbzBhZaofNbMJYlQHYCOT06v3iiy/ipptuwi9+8QusWbMGM2bMwIIFC9De3p7LwxrW2IWZtrAvdjVlDpwyJZwaoogKkU70qZQjR1dg9Aj55tCQo90sb+2ujyYSwwNJkvDc9+bixauPNdxnIKdC5f7778fChQtx5ZVX4rDDDsMjjzyCoqIi/PnPf87lYQ1reHM1/QTZQuQbsxvFv/W9WAhiKEiShOMnVqPMYcEd5x+On587DVPqSvHYd2ZjySUzc3JMPKJCrfKHL5NqS0VpupHImUfF5/Nh9erVuOWWW8RjJpMJp59+OpYvXx71e7xeL7zecE8Dl8uV8eMcblx/6kScc0QdJtaUDP7iPOeUqTXi36Y8LrUmCpOnvnsMGGMa/0guu4BWFtuwu8ODuhgGYIIoVHIWUTl06BCCwSBqa7Undm1tLVpbW6N+z+LFi1FeXi7+NDY2Rn0dkTpmk4RJtaV53UMlUaxmE5767jH45jGNOC/PHftE4WE2SYOaXLPJ7V85HD87eyrmRimnJohCpqCqfm655RbcdNNN4muXy0VihYjLSZNH4qQ4ZcwEYRRmNlZgZmNFrg+DINJOzoRKdXU1zGYz2traNI+3tbWhrq4u6vfY7XbY7faozxEEQRAEYTxyFre02WyYNWsW3nvvPfFYKBTCe++9h3nz5uXqsAiCIAiCyCNymvq56aabcPnll2P27Nk45phjsGTJErjdblx55ZW5PCyCIAiCIPKEnAqViy++GAcPHsTtt9+O1tZWzJw5E2+99VaEwZYgCIIgiOGJxBgfBF54uFwulJeXo6enB2VlZbk+HIIgCIIgEiCZ+3f+1NYRBEEQBEHoIKFCEARBEETeQkKFIAiCIIi8hYQKQRAEQRB5CwkVgiAIgiDyFhIqBEEQBEHkLSRUCIIgCILIWwpqKKEe3gLG5XLl+EgIgiAIgkgUft9OpJVbQQuV3t5eAKAJygRBEARRgPT29qK8vDzuawq6M20oFMKBAwdQWloKSZLS+t4ulwuNjY3Yu3evIbveGn19gPHXaPT1AcZfo9HXB9AajUAm1scYQ29vLxoaGmAyxXehFHRExWQyYfTo0Rn9P8rKygz5weMYfX2A8ddo9PUBxl+j0dcH0BqNQLrXN1gkhUNmWoIgCIIg8hYSKgRBEARB5C0kVGJgt9vxi1/8Ana7PdeHkhGMvj7A+Gs0+voA46/R6OsDaI1GINfrK2gzLUEQBEEQxoYiKgRBEARB5C0kVAiCIAiCyFtIqBAEQRAEkbeQUCEIgiAIIm8ZlkLF6P7hgYEBvPjii9izZ0+uDyVjGP136Pf7sW/fPvG1EddrxDWpofOw8KHzMD8YdkJlyZIl+OpXv4prr70WK1asgM/ny/UhpZUHHngAtbW1ePLJJ3HgwAEEAoFcH1Laeeihh/DNb34T119/Pf773/8a7nd4//33Y8aMGfja176GCy64ABs3boQkSQiFQrk+tLRB52HhQ+dh4VMw5yEbJvT19bELL7yQjRs3jt12221szpw5bNKkSezWW2/N9aGljYcffphNmzaNvfjiiywUCrFQKJTrQ0ora9asYbNnz2ZTpkxht956K5s9ezabNm0ae+aZZ3J9aGnB5XKxiy++mE2cOJG99NJL7I9//CM7+eST2XnnnZfrQ0sbdB4WPnQeFj6Fdh4OG6Hy2WefsUmTJrE1a9aIx26//XY2YcIE9vzzz+fwyIZOIBBgAwMD7Mwzz2T33XcfY4yx/fv3szfffJNt2bKFuVwuxhhjwWAwl4c5JFpaWtiVV17JFi5cyLq7u8XjJ5xwAvvf//1fxhgr+BvCxx9/zKZOncrWr18vHrv55pvZFVdcwRhjhrjp0XlI52G+Q+dh/p2Hhk/98DBdd3c3Ojo6MHLkSPHc9773PZx88sm47bbbcnV4Q4YxBrPZDJ/Ph7Vr1+KMM87A448/jhkzZuDOO+/ESSedhIULF4IxNuiEynyEKflTm82GkpISfP/730d5eTm8Xi8AYPbs2Vi5ciUApH2Cdrbp6+tDc3MzrFareGzjxo0YPXo0vvjiC0iSVLBrpPOQzsNCgc7D/DsPC++MSYDXX38df/vb39Dc3IxgMAgA6OnpwahRo7B582bxusbGRlx22WUwmUy47777cnW4ScPXt2fPHrG+9vZ2TJ8+HU888QRefPFFLF26FK+++iruv/9+rFy5Etdddx0AFEx+dcOGDQAgcsKVlZW49957cfTRRwOAaOW8d+9enHDCCTk7zlTh6wPCN4Gamhocc8wxWLBgAW6++WZUVlZi165deP/993Huuedi4cKFuTrclKDzkM7DfIfOwwI5D3MXzEk/W7ZsYTNnzmSjR49mU6dOZRMnTmT/93//xxhjzOPxsDFjxrCf/exnzO12i+85dOgQu+KKK9iFF17IPB5Prg49IaKt7+c//zljjDGv18vOOussVl1dzb72ta9pvu+JJ55gJSUlrLW1NReHnRRr165lc+fOZQ0NDezdd99ljMkhdY465BoKhdj8+fPZX//616wfZ6pEW5/f7xfP7927l7366qvsmGOOYb/4xS+Y3+9n3d3d7P3332eSJLHVq1czxvI7vE7nIZ2H+Q6dh4V1HhoqovLkk0+ipqYGX3zxBf7973/j+9//PpYsWYJHH30UTqcTP/zhD/Hwww9j1apV4nuqqqpQWVmJ9vZ2OJ3OHB794OjXd/XVV+P3v/89HnvsMdhsNnzve99DR0cHent7Nd/X1NSEurq6vC+T/O9//4uFCxeivLwckydPxjPPPINgMAiz2Sx2O+qQ6/bt27FhwwZMnz5dPNbV1ZX1406UWOuzWCxihz169GiMHTsWe/bswfe+9z1YLBaUl5dj+vTpGDVqFP7zn/8AyO/wOp2HdB7SeZh7DHUe5loppQuPx8NGjx7Nfv/734vHvF4vu/XWW1l5eTnbs2cPY4yxI444gl1wwQVs3bp14nU//OEP2Ve+8hWNos43Blvf7t27GWOMff3rX2fjxo1jL730knjdc889x2bNmqUxv+Ujzc3NbNGiRWz79u3s3nvvZXPnzmVPP/00YyxyB8cYYw8++CCbOXMmY4yxjo4OduWVV7Jzzz2XHTx4MPsHnwCJru/tt99m8+fPZytXrhSPvfPOO2zatGkag18+QuchnYd0HuYeo52HhhAq3EU/f/58dsMNNzDGwh+4np4eNmnSJLZw4ULGGGMffPABmzdvHps6dSp74IEH2C9/+UtWWVnJnn322dwcfAIksr5FixYxxhhbt24du/DCC1lxcTG78cYb2U9/+lNWW1vL7r77bhYIBPI6VMkYY729vYwxxg4cOMD+53/+h5133nmsra2NMRZZLXHdddexW2+9lS1ZsoSVlpayOXPmsO3bt2f9mJMh3vr4hWHdunXshBNOYHPnzmWPPfYYu+OOO1hdXR27/vrrmcfjydvfIZ2HdB7SeZh7jHgeGkKoMMbYwMAAu/baa9k555zDdu7cyRgL/8Ief/xx5nA4WGdnJ2OMsU2bNrFrrrmGnX322eyoo45ir7/+es6OO1GSWV93dzf79a9/zS6//HJ20kknsX/84x85O+5U4LnwZ555hh177LFs8eLFEa/p6upio0aNYpIksdGjR7NXX301y0eZOoms75133mFf+9rXxIUynz6j8S7QRjgP07W+fD4PE7nJFvJ5mK715fN5GA8jnIdqCkaoxOs9wD+UL7zwAjv66KPZ/fffr3l+w4YNbOrUqeyVV17RPM5VdT6QifXlm+JPtH8EP26Px8MWLlzITj75ZBFq5ReXgwcPstNOO4396U9/yszBpkA61ufz+TSvyTfjpc/nY16vN+pzRjgPM7G+fDsP461RTaGeh+lYX76fh729vWzDhg2MMa3JmTFjnId6CsJMe//99+Oyyy7D9ddfjxUrVsDv9wNAhLHr4osvxpQpU/DPf/4Ty5YtE9/v8/mwd+9e1NXVab6vpKQki6uITbrXx8kno9dga1TDSyGdTicuueQSMMawdOlS7NmzB5dddhnWr1+P6upqvPXWW1i0aFG2lxKVdK3v29/+tujVAAC1tbVZXUc8fvOb3+CMM87AhRdeiIcfflgYJo1yHqZ7fZx8Og8HW6OaQjwP07W+fD4PN2/ejLKyMnz9619Hf3+/xuQMFP55GI28FiqffvopZsyYgaVLl2LSpEn48MMPcfXVV+O1114DoL0AcLf2DTfcALvdjuuuuw5r1qxBW1sb/vWvf2HGjBkYN25cxPflkkytL59IZo1qeFOsU089FXPmzMGf//xnTJkyBStWrEBxcTEYY7BYLFlbRywysT6Hw5FXg8I+/PBDTJ8+HX/5y1/wrW99C2VlZXj88cfx/PPPAyj88zBT68snklmjmkI5DzOxvnw7DzkbN27ElClTUFVVhd/97ncAIoVYIZ6Hcclq/CYJ9u7dyy677DJ2/fXXs76+PvH4nDlzRC14rJDq2rVr2WmnncYaGxvZuHHjWH19PfvnP/+ZleNOFKOvj7GhrZExOfz66quvsvr6etbU1JQ3+W+O0dfHGGPt7e3smmuuYTfddBPr7+9njMlrOvzww9mSJUvE19EohM+p0dfH2NDWyFj+f06Nvj4OX8Ojjz7KLrroInbrrbeyww8/nG3bto0xFjv1XCif03jkrVDZv38/u/7660UebmBggDHG2He/+122YMGCqN+j/jB6vV62bdu2vP2FGH19jKW2RjVut5tNnTqV/eQnP8nocaaK0dfHGGP9/f1s5cqVbP/+/eIxl8vFzjjjDPb6669rmkXxz2chfU6Nvj7GUlujmnz/nBp9ffpjXrRoEXv88cfZF198webNmycqePSvK7TPaTwkxvIjtvXCCy+gt7cX8+fPx/jx4+F0OtHf3x/RdOacc87Bcccdh5///Oc5OtLUMPr6gPSukTeY8nq9ok13rjH6+gDtGidOnAi73Y5AICDC+0uWLMEvf/lLVFZWwu/3Y8KECfj2t7+Nq666SqwpnzH6+oD0rjEfP6dGXx8QfY0+nw82mw3/+7//i4kTJ+Laa6/F448/jgceeADHHnss7HY7Fi9ejIqKilwffvrJtVLatGkTmz59Ohs3bhw74ogj2JgxY9j3v/998bxeFR599NHsX//6Vy4ONSWMvj7GjL9Go6+PscHXyLnuuuvYn//8Z9bT08PWrVvHfvrTn7KGhgbW09OTg6NOHKOvjzHjr9Ho62MssTXOmDGD/fe//2WMMfanP/2JlZWVMbPZzJYuXZqLQ84KORcqt99+Ozv11FNZf38/a21tZc8//zyzWq3s3nvvFY13eO7t888/Z2VlZaIunDG5E2I+Y/T1MWb8NRp9fYwltkbGIsPLzz//PBszZgz77LPPsn3ISWH09TFm/DUafX2MxV8j999ceuml7MUXX2RnnXUWczgc7Oyzz2ZTp05lTz31FGMsslzZCORUqPT397OpU6eyu+++W/P47373O1ZaWsqWL1+uefyuu+5ixx13HGOMsZaWFnbppZeyCy+8MG9bUht9fYwZf41GXx9jya+RsfDN4M4772Qnn3xyQn0rcoXR18eY8ddo9PUxFn+NJSUlbMWKFYwxxqqqqpgkSeyiiy5iO3bsYG1tbWzhwoVs3LhxBRE1SoWclSeHQiE4HA5UV1djx44dACBGUP/oRz/C6NGj8dBDD2nGoe/YsQPnnnsu7rnnHkyYMAF79+7FAw88gPLy8pysIR5GXx9g/DUafX1Aamvs7+9Hd3c37rjjDjzxxBO4/PLLYbPZ8rKU0+jrA4y/RqOvDxh8jY2Njfj9738PAHjxxRfxxhtv4K9//SvGjx+PmpoanHPOObj00kthMpnydo1DIpcqye/3szvuuIMdffTRYjYEV71/+9vfmNVqFYOtWlpaWEVFBZMkiTU1NbG33norZ8edKEZfH2PGX6PR18dYcmtctmwZu+WWW9jkyZPZ1KlT2fvvv5+rw04Yo6+PMeOv0ejrYyy5NXJ41CjRrtiFSs4iKn6/HxaLBbNmzYLD4cCjjz4KALDZbACAE044AaNGjcKbb74pvmfmzJlYunQpdu7ciQULFuTkuBPF6OsDjL9Go68PSH6NRxxxBEaNGoVf/epX2Lx5M04++eRcHXpCGH19gPHXaPT1AYmv8Z///Kfm+3izNt64zrBkSgG98cYbjLFIY1M0o89Pf/pTdtRRR2kqJdavX8+qq6vZu+++Kx7Lp5kZRl8fY8Zfo9HXx1hm1phPGH19jBl/jUZfH2PDY42ZJO1C5f3332eTJk1ikiSJKYzRwlIvvPACGzVqFFu2bBn78ssv2aWXXsrq6+vZ22+/zXbt2sXuvPNOdvTRR7M9e/ak+xCHhNHXx5jx12j09TFm/DUafX2MGX+NRl8fY8NjjdkgrUJl1apV7Ktf/Sr73ve+x77+9a+zyZMna54PhUKso6ODnXXWWaympobdf//9YkplS0sL++pXv8omTJjAxowZw0aPHs3efvvtdB7ekDH6+hgz/hqNvj7GjL9Go6+PMeOv0ejrY2x4rDFbpFWo7N27l913331sy5YtbNOmTWzEiBHst7/9LWMsrCL7+/vZQw89xFpaWiK+PxAIsNbWVvbBBx+k87DShtHXx5jx12j09TFm/DUafX2MGX+NRl8fY8NjjdliSELlk08+YQcOHNA8xhVhKBRid911FyspKRENr9RNeaKRb85lo6+PMeOv0ejrY8z4azT6+hgz/hqNvj7Ghscac0VKQuXdd99lTU1NbOzYsWz06NFs4cKFbOvWrYwx+RfCDUP79+9n06ZNY1dccYV4rhAw+voYM/4ajb4+xoy/RqOvjzHjr9Ho62NseKwx1yQtVJqbm9mxxx7LbrvtNrZ9+3b20ksvsfHjx7MLL7yQ7d69mzGmVYrPPfcckySJrVmzhjEmK8y+vr40HX76Mfr6GDP+Go2+PsaMv0ajr48x46/R6OtjbHisMR9IWqi8/fbbzOl0ioY0jMnNaE488UR29dVXi8e4WnS5XOzss89mJ510Elu/fj07++yz2SOPPJK38wiMvj7GjL9Go6+PMeOv0ejrY8z4azT6+hgbHmvMB5IWKi+88AI7+uijRWiLMdn08+tf/5oddthhbNmyZeIxziuvvMIkSWKSJLFTTjmFdXZ2puHQM4PR18eY8ddo9PUxZvw1Gn19jBl/jUZfH2PDY435QNJCZcOGDczhcLDXXntN8/jnn3/OFixYwG688UbxmM/nY0899RSz2+1szpw5bOXKlUM/4gxj9PUxZvw1Gn19jBl/jUZfH2PGX6PR18fY8FhjPpB0393p06fjlFNOwf3334++vj7x+MyZM1FTU4OdO3eK4VButxsbN27EkiVL8Nlnn2H27Nnpa6mbIYy+PsD4azT6+gDjr9Ho6wOMv0ajrw8YHmvMC1JRN2vXrmUWi4U9/PDDmtHZP//5z9nEiRPTpqJyhdHXx5jx12j09TFm/DUafX2MGX+NRl8fY8NjjbnGkoq4mTFjBn7605/izjvvhNVqxSWXXIJQKIRVq1bhW9/6Vrq1VNYx+voA46/R6OsDjL9Go68PMP4ajb4+YHisMecMReVce+21rL6+ns2dO5eNHTuWHXbYYeyLL75Il4jKOUZfH2PGX6PR18eY8ddo9PUxZvw1Gn19jA2PNeYKiTHGUhU5AwMD2Lx5M9asWQO73W449Wj09QHGX6PR1wcYf41GXx9g/DUafX3A8FhjrhiSUCEIgiAIgsgkSVf9EARBEARBZAsSKgRBEARB5C0kVAiCIAiCyFtIqBAEQRAEkbeQUCEIgiAIIm8hoUIQBEEQRN5CQoUgCIIgiLyFhApBEARBEHkLCRWCILLCySefjBtuuCHXh0EQRIFBQoUgiLxj2bJlkCQJ3d3duT4UgiByDAkVgiAIgiDyFhIqBEGkHbfbje985zsoKSlBfX097rvvPs3zf/nLXzB79myUlpairq4Ol156Kdrb2wEAu3fvximnnAIAGDFiBCRJwhVXXAEACIVCWLx4MZqamuB0OjFjxgy8/PLL4n27urpw2WWXYeTIkXA6nZg0aRKefPLJ7CyaIIiMYMn1ARAEYTx+/OMf44MPPsBrr72Gmpoa/N///R/WrFmDmTNnAgD8fj/uvPNOTJkyBe3t7bjppptwxRVX4J///CcaGxvxt7/9DRdddBG2bt2KsrIyOJ1OAMDixYvxzDPP4JFHHsGkSZPw4Ycf4lvf+hZGjhyJk046Cbfddhs2bdqEf/3rX6iursb27dvR39+fw58EQRBDhaYnEwSRVvr6+lBVVYVnnnkGX//61wEAnZ2dGD16NBYtWoQlS5ZEfM+qVaswZ84c9Pb2oqSkBMuWLcMpp5yCrq4uVFRUAAC8Xi8qKyvx7rvvYt68eeJ7v/e978Hj8eC5557DV7/6VVRXV+PPf/5zNpZKEEQWoIgKQRBpZceOHfD5fJg7d654rLKyElOmTBFfr169Gr/85S+xbt06dHV1IRQKAQCam5tx2GGHRX3f7du3w+Px4IwzztA87vP5cNRRRwEArrnmGlx00UVYs2YNzjzzTFxwwQWYP39+updIEEQWIaFCEERWcbvdWLBgARYsWIBnn30WI0eORHNzMxYsWACfzxfz+/r6+gAAb775JkaNGqV5zm63AwDOPvts7NmzB//85z/xzjvv4LTTTsN1112H3/3ud5lbEEEQGYXMtARBpJUJEybAarVixYoV4rGuri58+eWXAIAtW7ago6MDv/nNb3DCCSdg6tSpwkjLsdlsAIBgMCgeO+yww2C329Hc3IyJEydq/jQ2NorXjRw5EpdffjmeeeYZLFmyBI8++mgml0sQRIahiApBEGmlpKQEV111FX784x+jqqoKNTU1+PnPfw6TSd4XjRkzBjabDX/4wx/w/e9/Hxs3bsSdd96peY+xY8dCkiS88cYbOOecc+B0OlFaWoqbb74ZN954I0KhEI4//nj09PTg448/RllZGS6//HLcfvvtmDVrFg4//HB4vV688cYbmDZtWi5+DARBpAmKqBAEkXbuvfdenHDCCfjKV76C008/HccffzxmzZoFQI54LF26FC+99BIOO+ww/OY3v4lIzYwaNQq/+tWv8LOf/Qy1tbW4/vrrAQB33nknbrvtNixevBjTpk3DWWedhTfffBNNTU0A5EjMLbfcgiOPPBInnngizGYzXnjhhewuniCItEJVPwRBEARB5C0UUSEIgiAIIm8hoUIQBEEQRN5CQoUgCIIgiLyFhApBEARBEHkLCRWCIAiCIPIWEioEQRAEQeQtJFQIgiAIgshbSKgQBEEQBJG3kFAhCIIgCCJvIaFCEARBEETeQkKFIAiCIIi8hYQKQRAEQRB5y/8H/PtwvwXPZjAAAAAASUVORK5CYII=",
|
|
312
|
-
"text/plain": [
|
|
313
|
-
"<Figure size 640x480 with 1 Axes>"
|
|
314
|
-
]
|
|
315
|
-
},
|
|
316
|
-
"metadata": {},
|
|
317
|
-
"output_type": "display_data"
|
|
318
|
-
}
|
|
319
|
-
],
|
|
320
|
-
"source": [
|
|
321
|
-
"url = \"http://localhost:8003/feature?\"\n",
|
|
322
|
-
"url += f\"group={g.name}&subdir=NET1&subdir=MDR3&name=rsam\"\n",
|
|
323
|
-
"url += \"&starttime=2024-01-02T00:00:00&endtime=2024-01-04T00:00:00\" \n",
|
|
324
|
-
"rsam = pd.read_csv(url, parse_dates=True, index_col=0, date_format='ISO8601')\n",
|
|
325
|
-
"rsam.plot()"
|
|
326
|
-
]
|
|
327
|
-
}
|
|
328
|
-
],
|
|
329
|
-
"metadata": {
|
|
330
|
-
"kernelspec": {
|
|
331
|
-
"display_name": "Python 3",
|
|
332
|
-
"language": "python",
|
|
333
|
-
"name": "python3"
|
|
334
|
-
},
|
|
335
|
-
"language_info": {
|
|
336
|
-
"codemirror_mode": {
|
|
337
|
-
"name": "ipython",
|
|
338
|
-
"version": 3
|
|
339
|
-
},
|
|
340
|
-
"file_extension": ".py",
|
|
341
|
-
"mimetype": "text/x-python",
|
|
342
|
-
"name": "python",
|
|
343
|
-
"nbconvert_exporter": "python",
|
|
344
|
-
"pygments_lexer": "ipython3",
|
|
345
|
-
"version": "3.10.16"
|
|
346
|
-
}
|
|
347
|
-
},
|
|
348
|
-
"nbformat": 4,
|
|
349
|
-
"nbformat_minor": 2
|
|
350
|
-
}
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|