titans-pytorch 0.3.0__tar.gz → 0.3.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/PKG-INFO +1 -1
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/pyproject.toml +1 -1
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/tests/test_titans.py +6 -1
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/titans_pytorch/memory_models.py +6 -2
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/titans_pytorch/neural_memory.py +4 -2
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/.github/workflows/python-publish.yml +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/.github/workflows/test.yaml +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/.gitignore +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/LICENSE +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/README.md +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/data/README.md +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/data/enwik8.gz +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/fig1.png +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/fig2.png +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/titans_pytorch/__init__.py +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/titans_pytorch/associative_scan.py +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/titans_pytorch/mac_transformer.py +0 -0
- {titans_pytorch-0.3.0 → titans_pytorch-0.3.2}/train_mac.py +0 -0
@@ -156,6 +156,7 @@ def test_neural_mem_chaining_with_batch_size():
|
|
156
156
|
@pytest.mark.parametrize('neural_mem_segment_len', (8, 16))
|
157
157
|
@pytest.mark.parametrize('neural_mem_weight_residual', (False, True))
|
158
158
|
@pytest.mark.parametrize('neural_mem_batch_size', (None, 64))
|
159
|
+
@pytest.mark.parametrize('neural_mem_momentum', (False, True))
|
159
160
|
def test_mac(
|
160
161
|
seq_len,
|
161
162
|
num_persist_mem_tokens,
|
@@ -164,6 +165,7 @@ def test_mac(
|
|
164
165
|
neural_mem_segment_len,
|
165
166
|
neural_mem_weight_residual,
|
166
167
|
neural_mem_batch_size,
|
168
|
+
neural_mem_momentum
|
167
169
|
):
|
168
170
|
transformer = MemoryAsContextTransformer(
|
169
171
|
num_tokens = 256,
|
@@ -175,7 +177,10 @@ def test_mac(
|
|
175
177
|
neural_mem_gate_attn_output = neural_mem_gate_attn_output,
|
176
178
|
neural_memory_segment_len = neural_mem_segment_len,
|
177
179
|
neural_memory_batch_size = neural_mem_batch_size,
|
178
|
-
neural_mem_weight_residual = neural_mem_weight_residual
|
180
|
+
neural_mem_weight_residual = neural_mem_weight_residual,
|
181
|
+
neural_memory_kwargs = dict(
|
182
|
+
momentum = neural_mem_momentum
|
183
|
+
)
|
179
184
|
)
|
180
185
|
|
181
186
|
x = torch.randint(0, 256, (1, seq_len))
|
@@ -36,10 +36,14 @@ class MemoryMLP(Module):
|
|
36
36
|
def __init__(
|
37
37
|
self,
|
38
38
|
dim,
|
39
|
-
depth
|
39
|
+
depth,
|
40
|
+
expansion_factor = 4.
|
40
41
|
):
|
41
42
|
super().__init__()
|
42
|
-
|
43
|
+
dim_hidden = int(dim * expansion_factor)
|
44
|
+
dims = (dim, *((dim_hidden,) * (depth - 1)), dim)
|
45
|
+
|
46
|
+
self.weights = ParameterList([Parameter(torch.randn(dim_in, dim_out)) for dim_in, dim_out in zip(dims[:-1], dims[1:])])
|
43
47
|
|
44
48
|
self.ln = LayerNorm(dim)
|
45
49
|
|
@@ -299,7 +299,8 @@ class NeuralMemory(Module):
|
|
299
299
|
accept_weight_residual = False,
|
300
300
|
gated_transition = False,
|
301
301
|
default_model_kwargs: dict = dict(
|
302
|
-
depth = 2
|
302
|
+
depth = 2,
|
303
|
+
expansion_factor = 4.
|
303
304
|
)
|
304
305
|
):
|
305
306
|
super().__init__()
|
@@ -652,13 +653,14 @@ class NeuralMemory(Module):
|
|
652
653
|
next_last_update = TensorDict()
|
653
654
|
next_last_momentum = TensorDict()
|
654
655
|
|
655
|
-
for (param_name, surprise), (_, last_update)
|
656
|
+
for (param_name, surprise), (_, last_update) in zip(surprises.items(), past_last_update.items()):
|
656
657
|
|
657
658
|
update = surprise
|
658
659
|
|
659
660
|
# derive momentum with associative scan - eq (10)
|
660
661
|
|
661
662
|
if has_momentum:
|
663
|
+
last_momentum = past_last_momentum[param_name]
|
662
664
|
update = self.assoc_scan(adaptive_momentum, surprise, prev = last_momentum) # momentum is S / surprise in the paper
|
663
665
|
momentum = update
|
664
666
|
next_last_momentum[param_name] = momentum[:, -1]
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|