titans-pytorch 0.1.9__tar.gz → 0.1.11__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: titans-pytorch
3
- Version: 0.1.9
3
+ Version: 0.1.11
4
4
  Summary: Titans
5
5
  Project-URL: Homepage, https://pypi.org/project/titans-pytorch/
6
6
  Project-URL: Repository, https://github.com/lucidrains/titans-pytorch
@@ -35,7 +35,7 @@ Classifier: Programming Language :: Python :: 3.9
35
35
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
36
36
  Requires-Python: >=3.9
37
37
  Requires-Dist: accelerated-scan>=0.2.0
38
- Requires-Dist: axial-positional-embedding>=0.3.5
38
+ Requires-Dist: axial-positional-embedding>=0.3.7
39
39
  Requires-Dist: einops>=0.8.0
40
40
  Requires-Dist: einx>=0.3.0
41
41
  Requires-Dist: hyper-connections>=0.1.8
@@ -62,7 +62,7 @@ Unofficial implementation of [Titans](https://arxiv.org/abs/2501.00663) in Pytor
62
62
 
63
63
  ## Appreciation
64
64
 
65
- - [@sentialx](https://github.com/sentialx) for sharing his early experimental results with me
65
+ - [Eryk](https://github.com/sentialx) for sharing his early experimental results with me, positive for 2 layer MLP
66
66
 
67
67
  ## Install
68
68
 
@@ -8,7 +8,7 @@ Unofficial implementation of [Titans](https://arxiv.org/abs/2501.00663) in Pytor
8
8
 
9
9
  ## Appreciation
10
10
 
11
- - [@sentialx](https://github.com/sentialx) for sharing his early experimental results with me
11
+ - [Eryk](https://github.com/sentialx) for sharing his early experimental results with me, positive for 2 layer MLP
12
12
 
13
13
  ## Install
14
14
 
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "titans-pytorch"
3
- version = "0.1.9"
3
+ version = "0.1.11"
4
4
  description = "Titans"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -26,7 +26,7 @@ classifiers=[
26
26
 
27
27
  dependencies = [
28
28
  "accelerated-scan>=0.2.0",
29
- "axial_positional_embedding>=0.3.5",
29
+ "axial_positional_embedding>=0.3.7",
30
30
  "einops>=0.8.0",
31
31
  "einx>=0.3.0",
32
32
  "hyper-connections>=0.1.8",
@@ -593,11 +593,9 @@ class MemoryAsContextTransformer(Module):
593
593
  # apply axial positional embedding
594
594
  # so intra and inter segment can be more easily discerned by the network
595
595
 
596
- neural_mem_windows = ceil(seq_len_with_mem / neural_mem_segment_len)
596
+ pos_emb = self.axial_pos_emb.forward_with_seq_len(seq_len_with_mem, (neural_mem_segment_len,))
597
597
 
598
- pos_emb = self.axial_pos_emb((neural_mem_windows, neural_mem_segment_len), flatten = True)
599
-
600
- x = x + pos_emb[:seq_len_with_mem]
598
+ x = x + pos_emb
601
599
 
602
600
  # prep flex attention
603
601
 
File without changes
File without changes
File without changes