titans-pytorch 0.0.35__tar.gz → 0.0.37__tar.gz

Sign up to get free protection for your applications and to get access to all the features.

Potentially problematic release.


This version of titans-pytorch might be problematic. Click here for more details.

Files changed (20) hide show
  1. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/PKG-INFO +1 -1
  2. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/pyproject.toml +1 -1
  3. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/titans_pytorch/mac_transformer.py +20 -21
  4. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/titans_pytorch/titans.py +1 -1
  5. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/train_mac.py +12 -8
  6. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/.github/workflows/python-publish.yml +0 -0
  7. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/.github/workflows/test.yaml +0 -0
  8. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/.gitignore +0 -0
  9. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/LICENSE +0 -0
  10. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/README.md +0 -0
  11. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/data/README.md +0 -0
  12. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/data/enwik8.gz +0 -0
  13. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/fig1.png +0 -0
  14. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/fig2.png +0 -0
  15. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/requirements.txt +0 -0
  16. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/tests/test_titans.py +0 -0
  17. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/titans_pytorch/__init__.py +0 -0
  18. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/titans_pytorch/associative_scan.py +0 -0
  19. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/titans_pytorch/titans_attn_memory.py +0 -0
  20. {titans_pytorch-0.0.35 → titans_pytorch-0.0.37}/train.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: titans-pytorch
3
- Version: 0.0.35
3
+ Version: 0.0.37
4
4
  Summary: Titans
5
5
  Project-URL: Homepage, https://pypi.org/project/titans-pytorch/
6
6
  Project-URL: Repository, https://github.com/lucidrains/titans-pytorch
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "titans-pytorch"
3
- version = "0.0.35"
3
+ version = "0.0.37"
4
4
  description = "Titans"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -7,7 +7,7 @@ from torch import nn, cat
7
7
  import torch.nn.functional as F
8
8
  from torch.nn import Module, ModuleList, Linear
9
9
 
10
- from einops import repeat, rearrange
10
+ from einops import repeat, rearrange, pack, unpack
11
11
  from einops.layers.torch import Rearrange
12
12
 
13
13
  from hyper_connections import get_init_and_expand_reduce_stream_functions
@@ -185,7 +185,9 @@ class MemoryAsContextTransformer(Module):
185
185
  # long term mem tokens
186
186
 
187
187
  self.segment_len = segment_len
188
+
188
189
  self.num_longterm_mem_tokens = num_longterm_mem_tokens
190
+ has_longterm_mems = num_longterm_mem_tokens > 0
189
191
 
190
192
  self.longterm_mems = nn.Parameter(torch.randn(num_longterm_mem_tokens, dim) * 0.02)
191
193
 
@@ -197,7 +199,11 @@ class MemoryAsContextTransformer(Module):
197
199
  self.neural_mem_layers = ModuleList([])
198
200
 
199
201
  layers = tuple(range(1, depth + 1))
200
- neural_memory_layers = set(default(neural_memory_layers, layers))
202
+
203
+ if not exists(neural_memory_layers):
204
+ neural_memory_layers = layers if has_longterm_mems else ()
205
+
206
+ assert not (num_longterm_mem_tokens > 0 and len(neural_memory_layers) == 0), 'empty `neural_memory_layers` when longterm memory tokens are present'
201
207
 
202
208
  for layer in layers:
203
209
 
@@ -205,8 +211,15 @@ class MemoryAsContextTransformer(Module):
205
211
 
206
212
  mem = None
207
213
 
208
- if num_longterm_mem_tokens > 0 and layer in neural_memory_layers:
209
- mem = NeuralMemory(dim = dim, chunk_size = num_longterm_mem_tokens)
214
+ if layer in neural_memory_layers:
215
+ assert has_longterm_mems, '`num_longterm_mem_tokens` must be greater than 0'
216
+
217
+ mem = NeuralMemory(
218
+ dim = dim,
219
+ chunk_size = num_longterm_mem_tokens + segment_len,
220
+ **neural_memory_kwargs
221
+ )
222
+
210
223
  mem = init_hyper_conn(dim = dim, branch = mem)
211
224
 
212
225
  self.neural_mem_layers.append(mem)
@@ -258,7 +271,7 @@ class MemoryAsContextTransformer(Module):
258
271
  x, inverse_segment = pad_and_segment_with_inverse(x, segment_len)
259
272
 
260
273
  mems = repeat(self.longterm_mems, 'n d -> b n d', b = x.shape[0])
261
- x = cat((mems, x), dim = -2)
274
+ x, mem_ps = pack((x, mems), 'b * d')
262
275
 
263
276
  x = inverse_segment(x)
264
277
 
@@ -275,21 +288,7 @@ class MemoryAsContextTransformer(Module):
275
288
  for (attn, ff), maybe_neural_mem in zip(self.layers, self.neural_mem_layers):
276
289
 
277
290
  if exists(maybe_neural_mem):
278
- batch_streams = x.shape[0]
279
-
280
- x, inverse_segment = pad_and_segment_with_inverse(x, total_segment_len)
281
-
282
- longterm_mems, x = x[:, :num_longterm_mem_tokens], x[:, num_longterm_mem_tokens:]
283
-
284
- longterm_mems = rearrange(longterm_mems, '(b w) n d -> b (w n) d', b = batch_streams)
285
-
286
- longterm_mems = maybe_neural_mem(longterm_mems)
287
-
288
- longterm_mems = rearrange(longterm_mems, 'b (w n) d -> (b w) n d', n = num_longterm_mem_tokens)
289
-
290
- x = cat((longterm_mems, x), dim = -2)
291
-
292
- x = inverse_segment(x)
291
+ mems = maybe_neural_mem(mems)
293
292
 
294
293
  x = attn(x)
295
294
 
@@ -301,7 +300,7 @@ class MemoryAsContextTransformer(Module):
301
300
 
302
301
  x, inverse_segment = pad_and_segment_with_inverse(x, total_segment_len)
303
302
 
304
- x = x[:, num_longterm_mem_tokens:]
303
+ x, mem = unpack(x, mem_ps, 'b * d')
305
304
 
306
305
  x = inverse_segment(x)
307
306
 
@@ -132,7 +132,7 @@ class NeuralMemory(Module):
132
132
  max_grad_norm: float | None = None,
133
133
  use_accelerated_scan = False,
134
134
  default_mlp_kwargs: dict = dict(
135
- depth = 4
135
+ depth = 2
136
136
  )
137
137
  ):
138
138
  super().__init__()
@@ -24,11 +24,13 @@ SHOULD_GENERATE = False
24
24
  SEQ_LEN = 512
25
25
 
26
26
  PROJECT_NAME = 'titans-mac-transformer'
27
- WANDB_ONLINE = False # turn this on to pipe experiment to cloud
28
- GLOBAL_LAYERS = (2, 4)
27
+ WANDB_ONLINE = True # turn this on to pipe experiment to cloud
29
28
  NEURAL_MEMORY_DEPTH = 2
30
- WINDOW_SIZE = 64
31
- RUN_NAME = 'mac'
29
+ NUM_PERSIST_MEM = 4
30
+ NUM_LONGTERM_MEM = 4
31
+ NEURAL_MEM_LAYERS = (4,)
32
+ WINDOW_SIZE = 32
33
+ RUN_NAME = 'mac - 4 longterm mems, layers (4,)'
32
34
 
33
35
  # wandb experiment tracker
34
36
 
@@ -57,12 +59,14 @@ model = MemoryAsContextTransformer(
57
59
  dim = 384,
58
60
  depth = 8,
59
61
  segment_len = WINDOW_SIZE,
60
- num_persist_mem_tokens = 16,
61
- num_longterm_mem_tokens = 16,
62
- neural_memory_layers = (3, 4),
62
+ num_persist_mem_tokens = NUM_PERSIST_MEM,
63
+ num_longterm_mem_tokens = NUM_LONGTERM_MEM,
64
+ neural_memory_layers = NEURAL_MEM_LAYERS,
63
65
  neural_memory_kwargs = dict(
66
+ dim_head = 64,
67
+ heads = 4,
64
68
  default_mlp_kwargs = dict(
65
- depth = NEURAL_MEMORY_DEPTH
69
+ depth = NEURAL_MEMORY_DEPTH,
66
70
  )
67
71
  )
68
72
  ).cuda()
File without changes