tiny-recursive-model 0.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tiny_recursive_model-0.0.1/.github/workflows/python-publish.yml +36 -0
- tiny_recursive_model-0.0.1/.github/workflows/test.yml +21 -0
- tiny_recursive_model-0.0.1/.gitignore +207 -0
- tiny_recursive_model-0.0.1/LICENSE +21 -0
- tiny_recursive_model-0.0.1/PKG-INFO +70 -0
- tiny_recursive_model-0.0.1/README.md +24 -0
- tiny_recursive_model-0.0.1/pyproject.toml +60 -0
- tiny_recursive_model-0.0.1/tests/test_trm.py +70 -0
- tiny_recursive_model-0.0.1/tiny_recursive_model/__init__.py +4 -0
- tiny_recursive_model-0.0.1/tiny_recursive_model/mlp_mixer_1d.py +46 -0
- tiny_recursive_model-0.0.1/tiny_recursive_model/trm.py +232 -0
@@ -0,0 +1,36 @@
|
|
1
|
+
# This workflow will upload a Python Package using Twine when a release is created
|
2
|
+
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
3
|
+
|
4
|
+
# This workflow uses actions that are not certified by GitHub.
|
5
|
+
# They are provided by a third-party and are governed by
|
6
|
+
# separate terms of service, privacy policy, and support
|
7
|
+
# documentation.
|
8
|
+
|
9
|
+
name: Upload Python Package
|
10
|
+
|
11
|
+
on:
|
12
|
+
release:
|
13
|
+
types: [published]
|
14
|
+
|
15
|
+
jobs:
|
16
|
+
deploy:
|
17
|
+
|
18
|
+
runs-on: ubuntu-latest
|
19
|
+
|
20
|
+
steps:
|
21
|
+
- uses: actions/checkout@v2
|
22
|
+
- name: Set up Python
|
23
|
+
uses: actions/setup-python@v2
|
24
|
+
with:
|
25
|
+
python-version: '3.x'
|
26
|
+
- name: Install dependencies
|
27
|
+
run: |
|
28
|
+
python -m pip install --upgrade pip
|
29
|
+
pip install build
|
30
|
+
- name: Build package
|
31
|
+
run: python -m build
|
32
|
+
- name: Publish package
|
33
|
+
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
|
34
|
+
with:
|
35
|
+
user: __token__
|
36
|
+
password: ${{ secrets.PYPI_API_TOKEN }}
|
@@ -0,0 +1,21 @@
|
|
1
|
+
name: Pytest
|
2
|
+
on: [push, pull_request]
|
3
|
+
|
4
|
+
jobs:
|
5
|
+
build:
|
6
|
+
|
7
|
+
runs-on: ubuntu-latest
|
8
|
+
|
9
|
+
steps:
|
10
|
+
- uses: actions/checkout@v4
|
11
|
+
- name: Set up Python 3.10
|
12
|
+
uses: actions/setup-python@v5
|
13
|
+
with:
|
14
|
+
python-version: "3.10"
|
15
|
+
- name: Install dependencies
|
16
|
+
run: |
|
17
|
+
python -m pip install --upgrade pip
|
18
|
+
python -m pip install -e .[test]
|
19
|
+
- name: Test with pytest
|
20
|
+
run: |
|
21
|
+
python -m pytest tests/
|
@@ -0,0 +1,207 @@
|
|
1
|
+
# Byte-compiled / optimized / DLL files
|
2
|
+
__pycache__/
|
3
|
+
*.py[codz]
|
4
|
+
*$py.class
|
5
|
+
|
6
|
+
# C extensions
|
7
|
+
*.so
|
8
|
+
|
9
|
+
# Distribution / packaging
|
10
|
+
.Python
|
11
|
+
build/
|
12
|
+
develop-eggs/
|
13
|
+
dist/
|
14
|
+
downloads/
|
15
|
+
eggs/
|
16
|
+
.eggs/
|
17
|
+
lib/
|
18
|
+
lib64/
|
19
|
+
parts/
|
20
|
+
sdist/
|
21
|
+
var/
|
22
|
+
wheels/
|
23
|
+
share/python-wheels/
|
24
|
+
*.egg-info/
|
25
|
+
.installed.cfg
|
26
|
+
*.egg
|
27
|
+
MANIFEST
|
28
|
+
|
29
|
+
# PyInstaller
|
30
|
+
# Usually these files are written by a python script from a template
|
31
|
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32
|
+
*.manifest
|
33
|
+
*.spec
|
34
|
+
|
35
|
+
# Installer logs
|
36
|
+
pip-log.txt
|
37
|
+
pip-delete-this-directory.txt
|
38
|
+
|
39
|
+
# Unit test / coverage reports
|
40
|
+
htmlcov/
|
41
|
+
.tox/
|
42
|
+
.nox/
|
43
|
+
.coverage
|
44
|
+
.coverage.*
|
45
|
+
.cache
|
46
|
+
nosetests.xml
|
47
|
+
coverage.xml
|
48
|
+
*.cover
|
49
|
+
*.py.cover
|
50
|
+
.hypothesis/
|
51
|
+
.pytest_cache/
|
52
|
+
cover/
|
53
|
+
|
54
|
+
# Translations
|
55
|
+
*.mo
|
56
|
+
*.pot
|
57
|
+
|
58
|
+
# Django stuff:
|
59
|
+
*.log
|
60
|
+
local_settings.py
|
61
|
+
db.sqlite3
|
62
|
+
db.sqlite3-journal
|
63
|
+
|
64
|
+
# Flask stuff:
|
65
|
+
instance/
|
66
|
+
.webassets-cache
|
67
|
+
|
68
|
+
# Scrapy stuff:
|
69
|
+
.scrapy
|
70
|
+
|
71
|
+
# Sphinx documentation
|
72
|
+
docs/_build/
|
73
|
+
|
74
|
+
# PyBuilder
|
75
|
+
.pybuilder/
|
76
|
+
target/
|
77
|
+
|
78
|
+
# Jupyter Notebook
|
79
|
+
.ipynb_checkpoints
|
80
|
+
|
81
|
+
# IPython
|
82
|
+
profile_default/
|
83
|
+
ipython_config.py
|
84
|
+
|
85
|
+
# pyenv
|
86
|
+
# For a library or package, you might want to ignore these files since the code is
|
87
|
+
# intended to run in multiple environments; otherwise, check them in:
|
88
|
+
# .python-version
|
89
|
+
|
90
|
+
# pipenv
|
91
|
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92
|
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93
|
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94
|
+
# install all needed dependencies.
|
95
|
+
#Pipfile.lock
|
96
|
+
|
97
|
+
# UV
|
98
|
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100
|
+
# commonly ignored for libraries.
|
101
|
+
#uv.lock
|
102
|
+
|
103
|
+
# poetry
|
104
|
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106
|
+
# commonly ignored for libraries.
|
107
|
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108
|
+
#poetry.lock
|
109
|
+
#poetry.toml
|
110
|
+
|
111
|
+
# pdm
|
112
|
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
113
|
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
114
|
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
115
|
+
#pdm.lock
|
116
|
+
#pdm.toml
|
117
|
+
.pdm-python
|
118
|
+
.pdm-build/
|
119
|
+
|
120
|
+
# pixi
|
121
|
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
122
|
+
#pixi.lock
|
123
|
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
124
|
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
125
|
+
.pixi
|
126
|
+
|
127
|
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
128
|
+
__pypackages__/
|
129
|
+
|
130
|
+
# Celery stuff
|
131
|
+
celerybeat-schedule
|
132
|
+
celerybeat.pid
|
133
|
+
|
134
|
+
# SageMath parsed files
|
135
|
+
*.sage.py
|
136
|
+
|
137
|
+
# Environments
|
138
|
+
.env
|
139
|
+
.envrc
|
140
|
+
.venv
|
141
|
+
env/
|
142
|
+
venv/
|
143
|
+
ENV/
|
144
|
+
env.bak/
|
145
|
+
venv.bak/
|
146
|
+
|
147
|
+
# Spyder project settings
|
148
|
+
.spyderproject
|
149
|
+
.spyproject
|
150
|
+
|
151
|
+
# Rope project settings
|
152
|
+
.ropeproject
|
153
|
+
|
154
|
+
# mkdocs documentation
|
155
|
+
/site
|
156
|
+
|
157
|
+
# mypy
|
158
|
+
.mypy_cache/
|
159
|
+
.dmypy.json
|
160
|
+
dmypy.json
|
161
|
+
|
162
|
+
# Pyre type checker
|
163
|
+
.pyre/
|
164
|
+
|
165
|
+
# pytype static type analyzer
|
166
|
+
.pytype/
|
167
|
+
|
168
|
+
# Cython debug symbols
|
169
|
+
cython_debug/
|
170
|
+
|
171
|
+
# PyCharm
|
172
|
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
173
|
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
174
|
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
175
|
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
176
|
+
#.idea/
|
177
|
+
|
178
|
+
# Abstra
|
179
|
+
# Abstra is an AI-powered process automation framework.
|
180
|
+
# Ignore directories containing user credentials, local state, and settings.
|
181
|
+
# Learn more at https://abstra.io/docs
|
182
|
+
.abstra/
|
183
|
+
|
184
|
+
# Visual Studio Code
|
185
|
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
186
|
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
187
|
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
188
|
+
# you could uncomment the following to ignore the entire vscode folder
|
189
|
+
# .vscode/
|
190
|
+
|
191
|
+
# Ruff stuff:
|
192
|
+
.ruff_cache/
|
193
|
+
|
194
|
+
# PyPI configuration file
|
195
|
+
.pypirc
|
196
|
+
|
197
|
+
# Cursor
|
198
|
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
199
|
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
200
|
+
# refer to https://docs.cursor.com/context/ignore-files
|
201
|
+
.cursorignore
|
202
|
+
.cursorindexingignore
|
203
|
+
|
204
|
+
# Marimo
|
205
|
+
marimo/_static/
|
206
|
+
marimo/_lsp/
|
207
|
+
__marimo__/
|
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Phil Wang
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,70 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: tiny-recursive-model
|
3
|
+
Version: 0.0.1
|
4
|
+
Summary: Tiny Recursive Model
|
5
|
+
Project-URL: Homepage, https://pypi.org/project/tiny-recursive-model/
|
6
|
+
Project-URL: Repository, https://github.com/lucidrains/tiny-recursive-model
|
7
|
+
Author-email: Phil Wang <lucidrains@gmail.com>
|
8
|
+
License: MIT License
|
9
|
+
|
10
|
+
Copyright (c) 2025 Phil Wang
|
11
|
+
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
14
|
+
in the Software without restriction, including without limitation the rights
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
17
|
+
furnished to do so, subject to the following conditions:
|
18
|
+
|
19
|
+
The above copyright notice and this permission notice shall be included in all
|
20
|
+
copies or substantial portions of the Software.
|
21
|
+
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
28
|
+
SOFTWARE.
|
29
|
+
License-File: LICENSE
|
30
|
+
Keywords: artificial intelligence,deep learning,reasoning
|
31
|
+
Classifier: Development Status :: 4 - Beta
|
32
|
+
Classifier: Intended Audience :: Developers
|
33
|
+
Classifier: License :: OSI Approved :: MIT License
|
34
|
+
Classifier: Programming Language :: Python :: 3.9
|
35
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
36
|
+
Requires-Python: >=3.9
|
37
|
+
Requires-Dist: accelerate
|
38
|
+
Requires-Dist: einops>=0.8.1
|
39
|
+
Requires-Dist: ema-pytorch
|
40
|
+
Requires-Dist: torch>=2.4
|
41
|
+
Requires-Dist: x-transformers
|
42
|
+
Provides-Extra: examples
|
43
|
+
Provides-Extra: test
|
44
|
+
Requires-Dist: pytest; extra == 'test'
|
45
|
+
Description-Content-Type: text/markdown
|
46
|
+
|
47
|
+
|
48
|
+
<img width="300" alt="trm-fig1" src="https://github.com/user-attachments/assets/950db79e-5f9c-4fec-a4e4-7b9355b39ce8" />
|
49
|
+
|
50
|
+
## Tiny Recursive Model (TRM) wip
|
51
|
+
|
52
|
+
Implementation of [Tiny Recursive Model](https://arxiv.org/abs/2510.04871) (TRM), improvement to [HRM](https://github.com/lucidrains/hrm) from Sapient AI, by [Alexia Jolicoeur-Martineau](https://ajolicoeur.wordpress.com/about/)
|
53
|
+
|
54
|
+
Official repository is [here](https://github.com/SamsungSAILMontreal/TinyRecursiveModels)
|
55
|
+
|
56
|
+
<img width="300" alt="trm-fig3" src="https://github.com/user-attachments/assets/bfe3dd2a-e859-492a-84d5-faf37339f534" />
|
57
|
+
|
58
|
+
## Citations
|
59
|
+
|
60
|
+
```bibtex
|
61
|
+
@misc{jolicoeurmartineau2025morerecursivereasoningtiny,
|
62
|
+
title = {Less is More: Recursive Reasoning with Tiny Networks},
|
63
|
+
author = {Alexia Jolicoeur-Martineau},
|
64
|
+
year = {2025},
|
65
|
+
eprint = {2510.04871},
|
66
|
+
archivePrefix = {arXiv},
|
67
|
+
primaryClass = {cs.LG},
|
68
|
+
url = {https://arxiv.org/abs/2510.04871},
|
69
|
+
}
|
70
|
+
```
|
@@ -0,0 +1,24 @@
|
|
1
|
+
|
2
|
+
<img width="300" alt="trm-fig1" src="https://github.com/user-attachments/assets/950db79e-5f9c-4fec-a4e4-7b9355b39ce8" />
|
3
|
+
|
4
|
+
## Tiny Recursive Model (TRM) wip
|
5
|
+
|
6
|
+
Implementation of [Tiny Recursive Model](https://arxiv.org/abs/2510.04871) (TRM), improvement to [HRM](https://github.com/lucidrains/hrm) from Sapient AI, by [Alexia Jolicoeur-Martineau](https://ajolicoeur.wordpress.com/about/)
|
7
|
+
|
8
|
+
Official repository is [here](https://github.com/SamsungSAILMontreal/TinyRecursiveModels)
|
9
|
+
|
10
|
+
<img width="300" alt="trm-fig3" src="https://github.com/user-attachments/assets/bfe3dd2a-e859-492a-84d5-faf37339f534" />
|
11
|
+
|
12
|
+
## Citations
|
13
|
+
|
14
|
+
```bibtex
|
15
|
+
@misc{jolicoeurmartineau2025morerecursivereasoningtiny,
|
16
|
+
title = {Less is More: Recursive Reasoning with Tiny Networks},
|
17
|
+
author = {Alexia Jolicoeur-Martineau},
|
18
|
+
year = {2025},
|
19
|
+
eprint = {2510.04871},
|
20
|
+
archivePrefix = {arXiv},
|
21
|
+
primaryClass = {cs.LG},
|
22
|
+
url = {https://arxiv.org/abs/2510.04871},
|
23
|
+
}
|
24
|
+
```
|
@@ -0,0 +1,60 @@
|
|
1
|
+
[project]
|
2
|
+
name = "tiny-recursive-model"
|
3
|
+
version = "0.0.1"
|
4
|
+
description = "Tiny Recursive Model"
|
5
|
+
authors = [
|
6
|
+
{ name = "Phil Wang", email = "lucidrains@gmail.com" }
|
7
|
+
]
|
8
|
+
readme = "README.md"
|
9
|
+
requires-python = ">= 3.9"
|
10
|
+
license = { file = "LICENSE" }
|
11
|
+
keywords = [
|
12
|
+
'artificial intelligence',
|
13
|
+
'deep learning',
|
14
|
+
'reasoning',
|
15
|
+
]
|
16
|
+
|
17
|
+
classifiers=[
|
18
|
+
'Development Status :: 4 - Beta',
|
19
|
+
'Intended Audience :: Developers',
|
20
|
+
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
21
|
+
'License :: OSI Approved :: MIT License',
|
22
|
+
'Programming Language :: Python :: 3.9',
|
23
|
+
]
|
24
|
+
|
25
|
+
dependencies = [
|
26
|
+
"accelerate",
|
27
|
+
"einops>=0.8.1",
|
28
|
+
"ema-pytorch",
|
29
|
+
"torch>=2.4",
|
30
|
+
"x-transformers",
|
31
|
+
]
|
32
|
+
|
33
|
+
[project.urls]
|
34
|
+
Homepage = "https://pypi.org/project/tiny-recursive-model/"
|
35
|
+
Repository = "https://github.com/lucidrains/tiny-recursive-model"
|
36
|
+
|
37
|
+
[project.optional-dependencies]
|
38
|
+
examples = []
|
39
|
+
test = [
|
40
|
+
"pytest"
|
41
|
+
]
|
42
|
+
|
43
|
+
[tool.pytest.ini_options]
|
44
|
+
pythonpath = [
|
45
|
+
"."
|
46
|
+
]
|
47
|
+
|
48
|
+
[build-system]
|
49
|
+
requires = ["hatchling"]
|
50
|
+
build-backend = "hatchling.build"
|
51
|
+
|
52
|
+
[tool.rye]
|
53
|
+
managed = true
|
54
|
+
dev-dependencies = []
|
55
|
+
|
56
|
+
[tool.hatch.metadata]
|
57
|
+
allow-direct-references = true
|
58
|
+
|
59
|
+
[tool.hatch.build.targets.wheel]
|
60
|
+
packages = ["tiny_recursive_model"]
|
@@ -0,0 +1,70 @@
|
|
1
|
+
import pytest
|
2
|
+
param = pytest.mark.parametrize
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from tiny_recursive_model.trm import TinyRecursiveModel, Trainer
|
6
|
+
|
7
|
+
@param('use_self_attn', (False, True))
|
8
|
+
def test_trm(
|
9
|
+
use_self_attn
|
10
|
+
):
|
11
|
+
from torch.optim import AdamW
|
12
|
+
|
13
|
+
if use_self_attn:
|
14
|
+
from x_transformers import Encoder
|
15
|
+
network = Encoder(dim = 512, depth = 2)
|
16
|
+
else:
|
17
|
+
from tiny_recursive_model.mlp_mixer_1d import MLPMixer1D
|
18
|
+
network = MLPMixer1D(dim = 512, depth = 2, seq_len = 1024)
|
19
|
+
|
20
|
+
trm = TinyRecursiveModel(
|
21
|
+
dim = 512,
|
22
|
+
num_tokens = 256,
|
23
|
+
network = network
|
24
|
+
)
|
25
|
+
|
26
|
+
optim = AdamW(trm.parameters(), lr = 1e-4)
|
27
|
+
|
28
|
+
seq = torch.randint(0, 256, (2, 1024))
|
29
|
+
answer = torch.randint(0, 256, (2, 1024))
|
30
|
+
|
31
|
+
outputs, latents = trm.get_initial()
|
32
|
+
|
33
|
+
for _ in range(3):
|
34
|
+
loss, losses, outputs, latents, pred, halt = trm(seq, outputs, latents, labels = answer)
|
35
|
+
|
36
|
+
loss.backward()
|
37
|
+
optim.step()
|
38
|
+
optim.zero_grad()
|
39
|
+
|
40
|
+
def test_trainer():
|
41
|
+
from torch.utils.data import Dataset
|
42
|
+
from tiny_recursive_model.mlp_mixer_1d import MLPMixer1D
|
43
|
+
|
44
|
+
trm = TinyRecursiveModel(
|
45
|
+
dim = 16,
|
46
|
+
num_tokens = 256,
|
47
|
+
network = MLPMixer1D(
|
48
|
+
dim = 16,
|
49
|
+
depth = 2,
|
50
|
+
seq_len = 256
|
51
|
+
),
|
52
|
+
)
|
53
|
+
|
54
|
+
class MockDataset(Dataset):
|
55
|
+
def __len__(self):
|
56
|
+
return 16
|
57
|
+
|
58
|
+
def __getitem__(self, idx):
|
59
|
+
inp = torch.randint(0, 256, (256,))
|
60
|
+
out = torch.randint(0, 256, (256,))
|
61
|
+
return inp, out
|
62
|
+
|
63
|
+
trainer = Trainer(
|
64
|
+
trm,
|
65
|
+
MockDataset(),
|
66
|
+
epochs = 1,
|
67
|
+
batch_size = 16
|
68
|
+
)
|
69
|
+
|
70
|
+
trainer()
|
@@ -0,0 +1,46 @@
|
|
1
|
+
from functools import partial
|
2
|
+
|
3
|
+
from torch import nn
|
4
|
+
from torch.nn import Module, LayerNorm
|
5
|
+
from einops.layers.torch import Rearrange, Reduce
|
6
|
+
|
7
|
+
pair = lambda x: x if isinstance(x, tuple) else (x, x)
|
8
|
+
|
9
|
+
class PreNormResidual(Module):
|
10
|
+
def __init__(self, dim, fn):
|
11
|
+
super().__init__()
|
12
|
+
self.fn = fn
|
13
|
+
self.norm = LayerNorm(dim, bias = False)
|
14
|
+
|
15
|
+
def forward(self, x):
|
16
|
+
return self.fn(self.norm(x)) + x
|
17
|
+
|
18
|
+
def FeedForward(dim, dim_hidden, dropout = 0., dense = nn.Linear):
|
19
|
+
return nn.Sequential(
|
20
|
+
dense(dim, dim_hidden),
|
21
|
+
nn.GELU(),
|
22
|
+
nn.Dropout(dropout),
|
23
|
+
dense(dim_hidden, dim),
|
24
|
+
nn.Dropout(dropout)
|
25
|
+
)
|
26
|
+
|
27
|
+
def MLPMixer1D(*, dim, depth, seq_len, expansion_factor = 4, expansion_factor_token = 0.5, dropout = 0.):
|
28
|
+
chan_first, chan_last = partial(nn.Conv1d, kernel_size = 1), nn.Linear
|
29
|
+
|
30
|
+
return nn.Sequential(
|
31
|
+
*[nn.Sequential(
|
32
|
+
PreNormResidual(dim, FeedForward(seq_len, int(expansion_factor * dim), dropout, chan_first)),
|
33
|
+
PreNormResidual(dim, FeedForward(dim, int(expansion_factor_token * dim), dropout, chan_last))
|
34
|
+
) for _ in range(depth)],
|
35
|
+
LayerNorm(dim, bias = False)
|
36
|
+
)
|
37
|
+
|
38
|
+
# quick test
|
39
|
+
|
40
|
+
if __name__ == '__main__':
|
41
|
+
|
42
|
+
import torch
|
43
|
+
tokens = torch.randn(1, 1024, 512)
|
44
|
+
mixer = MLPMixer1D(dim = 512, depth = 4, seq_len = 1024)
|
45
|
+
|
46
|
+
assert mixer(tokens).shape == tokens.shape
|
@@ -0,0 +1,232 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
from contextlib import nullcontext
|
3
|
+
|
4
|
+
import torch
|
5
|
+
from torch import nn
|
6
|
+
import torch.nn.functional as F
|
7
|
+
from torch.nn import Module, ModuleList
|
8
|
+
from torch.optim import AdamW
|
9
|
+
from torch.utils.data import Dataset, DataLoader
|
10
|
+
|
11
|
+
from einops import rearrange, repeat
|
12
|
+
from einops.layers.torch import Reduce, Rearrange
|
13
|
+
|
14
|
+
# network related
|
15
|
+
|
16
|
+
from x_transformers import Encoder
|
17
|
+
from tiny_recursive_model.mlp_mixer_1d import MLPMixer1D
|
18
|
+
|
19
|
+
# ema - apparently greatly helped with results
|
20
|
+
|
21
|
+
from ema_pytorch import EMA
|
22
|
+
|
23
|
+
# helpers
|
24
|
+
|
25
|
+
def exists(v):
|
26
|
+
return v is not None
|
27
|
+
|
28
|
+
def default(v, d):
|
29
|
+
return v if exists(v) else d
|
30
|
+
|
31
|
+
def range_from_one(n):
|
32
|
+
return range(1, n + 1)
|
33
|
+
|
34
|
+
def is_empty(t):
|
35
|
+
return t.numel() == 0
|
36
|
+
|
37
|
+
# classes
|
38
|
+
|
39
|
+
class TinyRecursiveModel(Module):
|
40
|
+
def __init__(
|
41
|
+
self,
|
42
|
+
*,
|
43
|
+
dim,
|
44
|
+
num_tokens,
|
45
|
+
network: Module,
|
46
|
+
num_refinement_blocks = 3, # T in paper
|
47
|
+
num_latent_refinements = 6, # n in paper - 1 output refinement per N latent refinements
|
48
|
+
halt_loss_weight = 1.
|
49
|
+
):
|
50
|
+
super().__init__()
|
51
|
+
assert num_refinement_blocks > 1
|
52
|
+
|
53
|
+
self.input_embed = nn.Embedding(num_tokens, dim)
|
54
|
+
self.output_init_embed = nn.Parameter(torch.randn(dim) * 1e-2)
|
55
|
+
self.latent_init_embed = nn.Parameter(torch.randn(dim) * 1e-2)
|
56
|
+
|
57
|
+
self.network = network
|
58
|
+
|
59
|
+
self.num_latent_refinements = num_latent_refinements
|
60
|
+
self.num_refinement_blocks = num_refinement_blocks
|
61
|
+
|
62
|
+
# prediction heads
|
63
|
+
|
64
|
+
self.to_pred = nn.Linear(dim, num_tokens, bias = False)
|
65
|
+
|
66
|
+
self.to_halt_pred = nn.Sequential(
|
67
|
+
Reduce('b n d -> b d', 'mean'),
|
68
|
+
nn.Linear(dim, 1, bias = False),
|
69
|
+
nn.Sigmoid(),
|
70
|
+
Rearrange('... 1 -> ...')
|
71
|
+
)
|
72
|
+
|
73
|
+
self.halt_loss_weight = halt_loss_weight
|
74
|
+
|
75
|
+
def refine_latent_then_output_once(
|
76
|
+
self,
|
77
|
+
inputs, # (b n d)
|
78
|
+
outputs, # (b n d)
|
79
|
+
latents, # (b n d)
|
80
|
+
):
|
81
|
+
|
82
|
+
# so it seems for this work, they use only one network
|
83
|
+
# the network learns to refine the latents if input is passed in, otherwise it refines the output
|
84
|
+
|
85
|
+
for _ in range(self.num_latent_refinements):
|
86
|
+
|
87
|
+
latents = self.network(outputs + latents + inputs)
|
88
|
+
|
89
|
+
outputs = self.network(outputs + latents)
|
90
|
+
|
91
|
+
return outputs, latents
|
92
|
+
|
93
|
+
def get_initial(self):
|
94
|
+
outputs = self.output_init_embed
|
95
|
+
latents = self.latent_init_embed
|
96
|
+
|
97
|
+
return outputs, latents
|
98
|
+
|
99
|
+
def deep_refinement(
|
100
|
+
self,
|
101
|
+
inputs, # (b n d)
|
102
|
+
outputs, # (b n d)
|
103
|
+
latents, # (b n d)
|
104
|
+
):
|
105
|
+
|
106
|
+
for i in range(self.num_refinement_blocks):
|
107
|
+
|
108
|
+
# only last round of refinement receives gradients
|
109
|
+
|
110
|
+
is_last = i == (self.num_refinement_blocks - 1)
|
111
|
+
context = torch.no_grad if not is_last else nullcontext
|
112
|
+
|
113
|
+
with context():
|
114
|
+
outputs, latents = self.refine_latent_then_output_once(inputs, outputs, latents)
|
115
|
+
|
116
|
+
return outputs, latents
|
117
|
+
|
118
|
+
def forward(
|
119
|
+
self,
|
120
|
+
seq,
|
121
|
+
outputs,
|
122
|
+
latents,
|
123
|
+
labels = None
|
124
|
+
):
|
125
|
+
inputs = self.input_embed(seq)
|
126
|
+
|
127
|
+
outputs, latents = self.deep_refinement(inputs, outputs, latents)
|
128
|
+
|
129
|
+
pred = self.to_pred(outputs)
|
130
|
+
|
131
|
+
should_halt = self.to_halt_pred(outputs)
|
132
|
+
|
133
|
+
outputs, latents = outputs.detach(), latents.detach()
|
134
|
+
|
135
|
+
return_package = (outputs, latents, pred, should_halt)
|
136
|
+
|
137
|
+
if not exists(labels):
|
138
|
+
return return_package
|
139
|
+
|
140
|
+
# calculate loss if labels passed in
|
141
|
+
|
142
|
+
loss = F.cross_entropy(rearrange(pred, 'b n l -> b l n'), labels)
|
143
|
+
|
144
|
+
is_all_correct = (pred.argmax(dim = -1) == labels).all(dim = -1)
|
145
|
+
|
146
|
+
halt_loss = F.binary_cross_entropy(should_halt, is_all_correct.float())
|
147
|
+
|
148
|
+
# total loss and loss breakdown
|
149
|
+
|
150
|
+
total_loss = loss + halt_loss * self.halt_loss_weight
|
151
|
+
losses = (loss, halt_loss)
|
152
|
+
|
153
|
+
return (total_loss, losses, *return_package)
|
154
|
+
|
155
|
+
# trainer
|
156
|
+
|
157
|
+
class Trainer(Module):
|
158
|
+
def __init__(
|
159
|
+
self,
|
160
|
+
model: TinyRecursiveModel | Module,
|
161
|
+
dataset: Dataset,
|
162
|
+
optim_klass = AdamW,
|
163
|
+
learning_rate = 1e-4,
|
164
|
+
weight_decay = 1.,
|
165
|
+
batch_size = 16,
|
166
|
+
epochs = 2,
|
167
|
+
halt_prob_thres = 0.5,
|
168
|
+
max_recurrent_steps = 12,
|
169
|
+
ema_decay_rate = 0.999,
|
170
|
+
ema_update_model_with_ema_every = 10000
|
171
|
+
):
|
172
|
+
super().__init__()
|
173
|
+
|
174
|
+
self.batch_size = batch_size
|
175
|
+
self.epochs = epochs
|
176
|
+
|
177
|
+
self.dataset = dataset
|
178
|
+
self.dataloader = dataloader = DataLoader(self.dataset, batch_size = self.batch_size, shuffle = True)
|
179
|
+
|
180
|
+
self.optim = optim_klass(
|
181
|
+
model.parameters(),
|
182
|
+
lr = learning_rate,
|
183
|
+
weight_decay = weight_decay
|
184
|
+
)
|
185
|
+
|
186
|
+
self.model = model
|
187
|
+
|
188
|
+
self.ema_model = EMA(
|
189
|
+
model,
|
190
|
+
beta = ema_decay_rate,
|
191
|
+
update_model_with_ema_every = ema_update_model_with_ema_every
|
192
|
+
)
|
193
|
+
|
194
|
+
self.halt_prob_thres = halt_prob_thres
|
195
|
+
|
196
|
+
self.max_recurrent_steps = max_recurrent_steps
|
197
|
+
|
198
|
+
def forward(self):
|
199
|
+
|
200
|
+
for epoch in range_from_one(self.epochs):
|
201
|
+
|
202
|
+
for dataset_input, dataset_output in self.dataloader:
|
203
|
+
|
204
|
+
outputs, latents = self.model.get_initial()
|
205
|
+
|
206
|
+
for recurrent_step in range_from_one(self.max_recurrent_steps):
|
207
|
+
|
208
|
+
loss, (main_loss, halt_loss), outputs, latents, pred, halt = self.model(dataset_input, outputs, latents, labels = dataset_output)
|
209
|
+
|
210
|
+
print(f'[{epoch} ({recurrent_step} / {self.max_recurrent_steps})] loss: {main_loss.item():.3f} | halt loss: {halt_loss.item():.3f}')
|
211
|
+
|
212
|
+
loss.backward()
|
213
|
+
|
214
|
+
self.optim.step()
|
215
|
+
self.optim.zero_grad()
|
216
|
+
|
217
|
+
self.ema_model.update()
|
218
|
+
|
219
|
+
# handle halting
|
220
|
+
|
221
|
+
halt_mask = halt >= self.halt_prob_thres
|
222
|
+
|
223
|
+
if not halt_mask.any():
|
224
|
+
continue
|
225
|
+
|
226
|
+
outputs = outputs[~halt_mask]
|
227
|
+
latents = latents[~halt_mask]
|
228
|
+
dataset_input = dataset_input[~halt_mask]
|
229
|
+
dataset_output = dataset_output[~halt_mask]
|
230
|
+
|
231
|
+
if is_empty(outputs):
|
232
|
+
break
|